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Simulations of dilute sedimenting suspensions
at finite-particle Reynolds numbers

R. Sungkorn and J. J. Derksen
Department of Chemical and Materials Engineering, University of Alberta, Edmonton,
Alberta T6G 2G6, Canada

(Received 1 May 2012; accepted 6 November 2012; published online 13 December 2012)

An alternative numerical method for suspension flows with application to sediment-
ing suspensions at finite-particle Reynolds numbers Rep is presented. The method
consists of an extended lattice-Boltzmann scheme for discretizing the locally av-
eraged conservation equations and a Lagrangian particle tracking model for track-
ing the trajectories of individual particles. The method is able to capture the main
features of the sedimenting suspensions with reasonable computational expenses.
Experimental observations from the literature have been correctly reproduced. It is
numerically demonstrated that, at finite Rep, there exists a range of domain sizes in
which particle velocity fluctuation amplitudes 〈�V‖,⊥〉 have a strong domain size
dependence, and above which the fluctuation amplitudes become weakly dependent.
The size range strongly relates with Rep and the particle volume fraction φp. Fur-
thermore, a transition in the fluctuation amplitudes is found at Rep around 0.08.
The magnitude and length scale dependence of the fluctuation amplitudes at finite
Rep are well represented by introducing new fluctuation amplitude scaling functions
C1, (‖, ⊥)(Rep, φp) and characteristic length scaling function C2(Rep, φp) in the cor-
relation derived by Segre et al. from their experiments at low Rep [“Long-range
correlations in sedimentation,” Phys. Rev. Lett. 79, 2574–2577 (1997)] in the form
〈�V‖,⊥〉 = 〈V‖〉C1,(‖,⊥)(Rep, φp)φ1/3

p {1 − exp[−L/(C2(Rep, φp)rpφ
−1/3
p )]}. C© 2012

American Institute of Physics. [http://dx.doi.org/10.1063/1.4770310]

I. INTRODUCTION

Sedimenting suspensions exist in various forms of natural phenomena and man-made processes.
Examples include the sedimentation of dust in the atmosphere, the centrifugation of proteins, and
the deposit of contaminants in waste water. Despite a century of research, a complete understanding
of such phenomena is only partially achieved.1–5

When a solid spherical particle is placed in a quiescent viscous fluid within an unbounded
domain, the particle velocity magnitude increases from zero to a steady value Vt under the influence
of gravity. Note that, this paper focuses only on systems with spherical particles. The particle
maintains its terminal velocity Vt , since the net force (e.g., the sum of the drag force, buoyancy, and
gravity) on the particle is zero. While sedimenting, the particle drags the fluid with it generating
a velocity disturbance in the fluid which decays as O(1/r) with r the distance around the particle.1

By randomly adding identical particles in the domain, a sedimenting suspension of monodisperse
particles is formed. The dynamics of the suspension are more complex since they are not characterized
solely by the interactions between particle and fluid but also by the direct and indirect interactions
between particles. The direct interactions take place in the form of collisions between particles.
The indirect interactions are induced by the velocity disturbance in the fluid generated by other
particles. The indirect interactions are also known as the long-range multibody hydrodynamic
interactions.1, 6 The average particle settling velocity in the direction parallel to gravity 〈V‖〉 will
be smaller than the terminal velocity due to the hydrodynamic interaction, the effect of particles
displacing significant amount of fluid, and the buoyancy which now relates to the mixture density.
Hereafter 〈−〉 represents the average value over all particles in the domain. The subscripts ‖ and ⊥
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represent the directions parallel and perpendicular to gravity, respectively. The hindrance in 〈V‖〉 is
well understood by the rigorous theoretical derivation of Batchelor7 at low particle Reynolds number
Rep = 2Vtrp/νl (based on the particle radius rp and the fluid kinematic viscosity ν l) and low particle
volume fraction φp, and by numerical simulations at higher φp.4 The average settling velocity in
the direction parallel to gravity 〈V‖〉 is found to be a function of φp and well represented by the
correlation

〈
V‖

〉 = Vt k
(
1 − φp

)n
, (1)

where the values of k and n depend on the Rep regime8, 9 However, sedimenting suspensions are
not characterized completely by the average settling velocity, the amplitude of the particle velocity
fluctuations about the average 〈�V‖,⊥〉 = 〈[V‖,⊥ − 〈V‖,⊥〉]2〉1/2 is also important, especially in de-
scribing the mixing within the suspensions. Despite the universal behavior of the average settling
velocities (i.e., 〈V‖,⊥〉 being independent from the size and shape of the container7, 10), Caflisch
and Luke11 pointed out based on Batchelor’s assumptions that the particle velocity fluctuations
scale linearly with the size of the container. Similar scaling behavior was found in numerical
simulations.12, 13 In contrast, no such dependency was found experimentally.3, 4, 6, 10 This contradic-
tion, known as Caflisch-Luke paradox, generated controversy among researchers. However, some
observations from the experiments at Rep up to O(10−3) play a key role in increasing our understand-
ing of sedimenting suspensions. First, the fluctuation amplitudes 〈�V‖,⊥〉 were found to increase
with the particle volume fraction as φ

1/3
p up to φp = 0.3, and exhibited strong anisotropy with the

greater magnitude in the direction parallel to gravity.2, 6 Second, there exists a range of domain sizes
in which 〈�V‖,⊥〉 have a strong domain size dependence, and above which 〈�V‖,⊥〉 become weakly
dependent.2 Remarkably, previous studies focus extensively on the influence of the particle volume
fraction φp and L on the sedimenting suspensions. The influence of finite Rep has sparked somewhat
less interest, first by Hinch14 and Koch,15 and recently by Yin and Koch.5, 16

The objectives of this paper are twofold. First, to propose an alternative numerical simulation
method which can be used to gain insight into sedimenting suspensions. A variation of the lattice-
Boltzmann (LB) scheme due to Somers,17 and Eggels and Somers18 is extended to include the
presence of the discrete particle phase in the locally averaged conservation equations.19 In order
to simulate large numbers of particles in large domains for a sufficiently long simulation period, a
distributed-particle concept is employed. With the expense of flow details, this approach provides
new perspective to the study of sedimenting suspensions which is prohibitively expensive for direct
numerical approaches with fully resolved particles. In this concept, the trajectories of individual
particles are tracked in a Lagrangian manner by solving Newton’s equations of motion. The influences
of the particles on the fluid are mimicked through momentum coupling between solid and fluid, and
the incorporation of the fluid volume fraction φl = 1 − φp in the conservation equations. Flow
features at scales smaller than the particles are lumped in correlations for drag and lift, and in
a hindrance function. It is postulated that the distributed-particle concept contains the minimum
physics required for realistic numerical simulations of dilute sedimenting suspensions at low and
finite Rep (i.e., Rep ≤ 2). This will be assessed by comparing the simulation results with experimental
data from the literature.

Second, to numerically investigate the behavior of sedimenting suspensions with particle
Reynolds numbers Rep in the finite range, i.e., Rep ∼ O(10−2) to O(100). This paper is limited
to sedimenting suspensions of non-Brownian monodisperse spherical particles at dilute particle
volume fraction, i.e., φp up to 0.01. Complexities, which may arise from the presence of walls and
stratification in the particle concentration, are avoided by considering only cubic periodic domains
with statistically uniformly distributed particles.

The paper is organized as follows. In Sec. II, a derivation of the extended lattice-Boltzmann
scheme is presented. The distributed-point particle concept is briefly introduced. The proposed
numerical method is used to simulate sedimenting suspensions at various particle volume fractions
φp, particle Reynolds numbers Rep, and domain sizes. In Sec. III, the simulation results are presented
and discussed. Comparisons with experimental data from the literature and the validity of the
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proposed method are demonstrated. The understandings obtained from the simulations are concluded
in Sec. IV.

II. NUMERICAL METHOD

A. Liquid hydrodynamics

Consider a two-phase flow system consisting of dispersed particles in a continuous fluid phase
without mass transfer. If the scale of interest is larger than the scale of the dispersed particles, the
continuous phase hydrodynamics can be described by averaging properties at an instant in time
over a volume. The averaging volume must be chosen such that it is large enough to obtain a near
stationary average and small enough to correctly provide the local-averaged values.19, 21 In this paper,
the following form of the locally averaged mass conservation equation is used:20

∂t (φlρl) + � · (φlρlu) = 0, (2)

with φl the continuous fluid phase volume fraction, ρ l the fluid density, and u the average velocity
of the continuous fluid phase. The locally averaged momentum conservation equation takes the
following form:

∂t (φlρlu) + � · (φlρluu) = φl � ·σ − 1

Vl
Fp, (3)

with Fp the sum of forces exerted by particles on the fluid and Vl the averaging volume. The stress
tensor σ is expressed as

σ = −PI + ρlνl

[
�u + (�u)T − 1

2
(� · u) I

]
, (4)

where P denotes the modified pressure.
In order to extend the existing lattice-Boltzmann scheme for the locally averaged conservation

equations presented above, we split the governing equations into a contribution to the single phase
flow and a part arising from the presence of the dispersed particles. The equations are rearranged
using some standard algebra to

∂tρl + � · (ρlu) = f φ, (5)

∂t (ρlu) + � · (ρluu) = � · σ − 1

φl Vl
Fp + f φu. (6)

The factor due to the presence of the dispersed phase f φ is defined as

f φ = −ρl

φl
[∂tφl + u · �φl] . (7)

It can be noticed that Eqs. (5) and (6) resemble their single-phase counterparts with an addition of
the factor f φ and the solid-to-fluid coupling force term.

The lattice-LB scheme mimics the evolution of fluid flow using a many-particle system residing
on a uniform, cubic lattice.22, 23 The projection of the four-dimensional (4D) face-centered-hyper-
cubic (FCHC) lattice is commonly used for simulations of the Navier-Stokes equations.17, 24 In this
paper, the FCHC lattice is projected with 18 velocity directions ci (with i = 1, . . . ,18) for 3D space.
The scheme involves two steps: a propagation step in which mass densities Ni at position x travel to
position x + ci�t , and a collision step that redistributes the mass densities at each lattice site. These
two steps can be described in the form of the lattice-Boltzmann equation (LBE) which is similar to
the kinetic equation in lattice-gas automata,25

Ni (x + ci�t, t + �t) = Ni (x, t) + �i (N) , (8)

with �t the time increment in lattice units (usually set to unity), and �i the collision operator which
depends nonlinearly on all components of N. The differential form of the LBE can be derived from
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a first-order Taylor expansion in time and space,

∂t Ni + ci · �Ni = �i (N) . (9)

According to the locally averaged conservation equations introduced earlier (Eqs. (5) and (6)), �i is
constrained by the following conditions:∑

i

�i (N) = f φ,
∑

i

ci�i (N) = f + u f φ, (10)

with f = −Fp/(φl Vl ). The mass density ρl(x, t) and the momentum concentration ρl(x, t)u(x, t) are
defined in terms of Ni as

ρl (x, t) =
∑

i

Ni (x, t) , ρl (x, t) u (x, t) =
∑

i

ci Ni (x, t) . (11)

According to statistical mechanics, Ni will evolve toward a local equilibrium at low Mach number.
Using the Boltzmann approximation and certain other restrictions, Ni can be approximated by a
multi-scale expansion,17, 18, 22, 23

Ni = miρl

24
{1 + 2ciu + 3cici : uu − 3

2
tr (uu)

−6νl

[
(ci · �) (ci · u) − 1

2
� ·u

]
+ O

(
u3, u � u

)}. (12)

Using the approach similar to that introduced by Eggels and Somers,18 the locally averaged mass
conservation equation (Eq. (5)) is recovered by substituting Eq. (12) into Eq. (9), and carrying out
the summation over all i with the first constraint in Eq. (10), the definitions in (11), and moments of
Ni and �i summarized in Appendix A 1,

∂t

∑
i

Ni + � ·
∑

i

ci Ni =
∑

i

�i (N) ,

∂tρl + � · (ρlu) = f φ. (13)

In a similar manner, by multiplying Eq. (9) by ci and performing a summation over all i,

∂t

∑
i

ci Ni + � ·
∑

i

cici Ni =
∑

i

ci�i (N) ,

∂t (ρlu) + � · (ρluu) = � · σ + f + u f φ, (14)

resulting in the locally averaged momentum conservation equations (Eq. (6)). Detailed discussions
concerning the derivation of the collision operator and time evolution of the scheme are summarized
in Appendix A 2.

B. Particle dynamics

The trajectories of individual particles can be tracked by various numerical methods depending
on the level of physics being solved, e.g., the immersed boundary method,26 the force-coupling
model,27 and the multiphase-particle-in-cell method.28 Here, we are interested in a method that
invokes a minimum set of physics required to capture the main features in sedimenting suspensions,
yet economic for large amounts of particles and long simulation time. Therefore, the Lagrangian
particle tracking (LPT) model with the distributed-point concept is chosen in this paper. In contrast to
the point-particle concept in which particles do not occupy space in fluid, displacement of particles
in fluid (i.e., the volume effect) is included in the distributed-particle concept. This results in the
so-called three-way coupling which includes the effects of fluid on particle dynamics, the effects
of particles on hydrodynamics, and the effects of the velocity disturbance in the fluid generated by
other particles.21 The first two effects are represented via the momentum coupling between phases.
The latter is realized through the presence of the volume fraction in the conservation equations. Its
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capability to reproduce particle dynamics has been proven by various authors12, 29–32 and will be
further justified by favourable results obtained in this paper.

In the framework of the LPT model employed here, individual particles evolve in a time-
dependent, three-dimensional manner under the influence of their properties and those of the fluid
phase following Newton’s equations of motion,

∂t xp = V, (15)

m p∂t V = FN, (16)

with xp the center position of the particle, V the particle velocity, and mp the particle mass. The net
force FN acting on the particle is the sum of net gravity force FG, forces due to the stress gradients
FS, drag force FD, net transverse lift force FL, and added mass force FA. The expressions for the
forces above and their closures are provided in Appendix B 1. Note that the effects of the presence
of other particles on the drag force are expressed as the product of the drag force on an unhindered
particle and a hindrance function g(φp) = (1 − φp)2.65 with φp the local particle volume fraction,9

see Table I in Appendix B 1. The Basset history force FH is neglected in this paper for physical
and computational reasons. First, it is known that the effects of FH are relatively small when the
time-averaged quantities are of interest.33 Second, the calculation of FH requires significant amounts
of computational resources. Neglecting FH will not introduce large error and provide feasibility for
simulations of large numbers of particles. Under the flow conditions considered in the present paper,
preliminary tests showed that the rotational motion of the particles is insignificant for the simulation
results. Hence, it is excluded from the LPT model. Since the ratio between the characteristic length
of the flow field and the particle radius (ξ /rp) used in this work is large compared to the particle
size (see Fig. 2), it can be assumed that the Faxen forces, i.e., the term involving with r2

p �2 u, are
relatively small compared to other forces. Therefore, they are neglected in this work. This is justified
by favorable results obtained in our work.

The particles affect the continuous fluid phase by exerting forces, and displacing the fluid. The
momentum coupling is provided by the interphase forces (i.e., drag, lift, added mass, forces due
to pressure, and stress gradients) acting on the fluid through the forcing term Fp in the momentum
equation, Eq. (3). The displacement is described in terms of volume fraction φl in the continuity
(Eq. (2)) and momentum equations (Eq. (3)). In this paper, we separate this effect in the form of
the factor f φ as shown in Sec. II A. The effect of f φ will be determined and discussed in detail in
Sec. III.

Since we restrict ourselves to dilute suspensions (φp ≤ 0.01) and finite particle Reynolds
numbers (Rep up to O(100)), particles will move smoothly (in the sense that the wake behind the
particle34 and the inertial effects are small13) with large interparticle separation rpφ

−1/3
p compared to

rp. Therefore, the direct interactions (i.e., collisions between particles) are assumed to have negligible
effects and are not considered.

In order to mathematically describe the coupling of quantities between Eulerian and Lagrangian
reference frames, the mapping function with volume-weighted averaging is chosen.35 A quantity 
 j

on the Eulerian reference frame is mapped to the Lagrangian reference frame, and vice versa, by


p = 1

Vl

∑
∀ j∈cell

ζ
j

cell
 j , (17)

where 
p is the quantity on the Lagrangian reference frame, and ζ
j

cell is the weighting function of
the neighbor cells. In the framework of this paper, the fluid velocity u, the fluid vorticity � × u at
the center of the particle, and the particle volume fraction φp are transferred between the reference
frames. Since the particle diameter dp is small compared to the fluid’s grid spacing h, the particles
are assumed to interact only with fluid nodes in their immediate environment, i.e., 8 surrounding
nodes in 3D space. Hence, the weighted function ζ

j
cell is described by

ζ
j

cell = (
h − ∣∣x j − x p

∣∣) (
h − ∣∣y j − yp

∣∣) (
h − ∣∣z j − z p

∣∣) . (18)

The subscripts p and j indicate the quantities on the Lagrangian and Eulerian reference frames,
respectively. The choice of the dp/h ratios of 0.1 and 0.25 employed in this work is a compromise
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between a sufficiently fine grid resolution to capture fluid flow details and a sufficiently coarse grid
resolution to keep the local averaging and distributed-particle approaches valid.

III. RESULTS AND DISCUSSION

In this section, we first discuss the numerical implementation. As mentioned earlier, we avoid
complexities which may arise from the presence of walls and stratification of the particle concen-
tration by considering only systems with monodisperse particles in a cubic periodic domain which
are statistically uniformly distributed, see Fig. 1. The continuous fluid phase is discretized into a
uniform cubic grid. The conservation equations of the fluid phase are solved using the extended
lattice-Boltzmann scheme. Trajectories of individual particles are tracked in the framework of a
Lagrangian particle tracking model with the distributed-point particle approach. Once a particle
leaves through a boundary, it will appear at the opposite boundary.

The particle to fluid density ratio ρp/ρ l is kept constant at 2.5 in all simulations except two sets
of simulations in Sec. III C. The ratio between the domain size L and the particle diameter (dp = 2rp)
is varied between 40 and 280. Grid resolution is varied by using the ratio between dp and the grid
space h of 0.1 and 0.25. The number of particles being tracked simultaneously is up to 470 000. The
simulations start with quiescent fluid and particles at rest. The time increment in the simulations is
chosen such that one Stokes time τ s (i.e., the period required for a particle to travel over the distance
of its radius rp at its terminal velocity Vt ) is discretized by 1000 time steps. A body force equal to
the excessive weight due to particles Fx = (ρ̄d − ρl)g, with ρ̄d the domain-average mixture density,
is distributed uniformly throughout the fluid grid nodes to prevent an unbounded acceleration due
to the periodic nature of the domain and the absence of solid walls. Hence, the particle velocity in
the direction of gravity V‖ in the simulations is the velocity relative to the reference frame moving
with the fluid velocity induced by Fx. Therefore, V‖ is equivalent to the particle velocity observed
in sedimentation experiments. The particle Reynolds number Rep is varied in the range between
0.02 and 2.53 by varying the fluid viscosity ν l. The simulations are typically carried out for 5000
Stokes times. The long-term average values presented in Secs. III A–III F are the values averaged
over the last 2500 Stokes times where the simulations are in (quasi) steady state. The standard error
of the mean σM = σ/

√
Nmean , measured with the standard deviation σ and the number of mean

values Nmean, of the simulations is much smaller than the size of symbols we present in our graphs
and error bars are omitted. Note that the mean values are taken every 5τ s. Therefore, each mean
value is sampled from an independent realization. All simulation results are shown in dimensionless
form such that comparisons with available literature data can be performed conveniently. We present
and discuss our simulation results for sedimenting suspensions at finite Rep in the light of the
understandings obtained from sedimentation experiments at low Rep.1–7, 10, 11, 16, 36–39

FIG. 1. Three-dimensional impression of the particles formation typically found in the simulations (a) and a cross section at
the middle of the domain with the thickness of one grid node (b). The particles in (b) are colored by their velocity magnitude
normalized by the terminal velocity |V|/Vt and enlarged 2.5 times its diameter for visualization purpose. The snapshot
was taken at t = 1000τ s. The particles are randomly distributed in a cubic periodic domain with Rep = 0.05, φp = 0.01,
L/dp = 200, and dp/h = 0.25. The total number of particles is 150 000.
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A. Sedimenting suspension of spherical particles

First, we demonstrate the idea that a simulation with a set of closure relations (Appendix B 1)
and a large number of particles results in complex behavior as observed in sedimentation experiments.
Preliminary tests were carried out with a single particle sedimenting in a cubic periodic domain.
As one would expect, the particle accelerates from rest to its terminal velocity Vt . We then carried
out simulations of sedimenting suspensions in a cubic periodic domain with randomly, statistically
uniformly distributed particles. An impression of a simulation with 150 000 particles is shown
in Fig. 1(a). A cross-sectioned impression at the middle of the domain from a simulation with
Rep = 0.05 and φp = 0.01 is shown in Fig. 1(b). Variations of the particle velocity magnitude |V|
can be directly noticed. It can be further observed in the animation of the simulation that |V| slowly
evolves with time. The animation is available upon request. The particle settling velocity vector
field scaled by its terminal velocity mapped on an Eulerian grid for simulations with Rep = 0.05
and 0.33 is shown in Figs. 2(a) and 2(b), respectively. The particle velocity fluctuations around the
average, defined by δV = V − 〈V〉, scaled by the average particle settling velocity in the direction
parallel to gravity 〈V‖〉 are shown in Figs. 2(c) and 2(d) for the simulations with Rep = 0.05 and 0.33,

FIG. 2. Instantaneous particle velocity vector field V at the middle of the domain from the simulations with Rep = 0.05 (a),
and Rep = 0.33 (b) scaled by the terminal velocity Vt according to the color scale. Instantaneous particle velocity fluctuations
field δV from the simulation with Rep = 0.05 (c), and Rep = 0.33 (d) scaled by the average particle velocity in the direction
parallel to gravity 〈V‖〉 according to the color scale. The vector in (d) is magnified by a factor of 2 for visualization purpose.
All instantaneous fields were taken at 4000 Stokes times. Both simulations are carried out with φp = 0.01, L/dp = 200, and
dp/h = 0.25.
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FIG. 3. Histogram of the long-term average particle velocity in the direction parallel (filled bars) and perpendicular (empty
bars) to gravity (a), and the particle velocity fluctuations ratio (b). The simulation is carried out with φp = 0.01, Rep = 0.05,
L/dp = 200, and dp/h = 0.25.

respectively. Despite the low Rep values invoked in the simulations, the velocity fluctuations fields
manifest high complexity, such as swirls, helical structures, and saddle points. These are reminiscent
to the experimental data of Segre et al.2 and Bernard-Michel et al.37

The long-term average velocity distributions in both directions are found to be smooth and have
Gaussian shape, see Fig. 3(a). The mean value of the histogram of 〈V‖〉 is higher than −1 indicating
the hindrance effect due to hydrodynamic interactions, the effect from the particle displacement,
and the buoyancy. The mean value of the average particle velocity in the direction perpendicular
to gravity 〈V⊥〉 is around zero. By subtracting the average values from the velocity histograms, the
velocity fluctuations δV histogram in both directions can be compared directly. The distribution of the
fluctuations around their means in Fig. 3(b) shows a larger variance of the fluctuations in the direction
parallel to gravity. As a result, the amplitude of the fluctuations 〈�V‖,⊥〉 = 〈[V‖,⊥ − 〈V‖,⊥〉]2〉1/2

is found to be highly anisotropic with higher magnitude in the direction parallel to gravity. These
behaviors are in accordance with the experimental observations reported by various authors.2, 6, 37, 40

The average particle velocity in the direction parallel to gravity 〈V‖〉 and the fluctuation ampli-
tudes 〈�V‖,⊥〉 slowly evolve with time to their (quasi) steady values. In sedimenting suspensions,
particles initially cause perturbation in the fluid which accelerates particles around t/τ s = 35, then
the velocity drops to its steady value, see Fig. 4(a). Following the same trend, large particle velocity
fluctuations were initially developed, reached a peak value around t/τ s = 180, and slowly decayed
to its steady level, see Fig. 4(b). Similar behavior is also observed experimentally (at low Rep)36 and
numerically (at finite Rep).16 However, quantitative comparison of the initial velocity fluctuations to
the experimental data cannot be done. This is because the flow conditions in experiments are compli-
cated by the presence of walls, stratification, and the initial mixing of the suspensions. Furthermore,
several authors believe that the evolution of the microstructure in sedimenting suspensions could be

FIG. 4. Development of the average particle settling velocity ratio 〈V‖〉/Vt in the direction parallel to gravity (a) and the
average fluctuation amplitudes ratio 〈�V‖,⊥〉/〈V‖〉 (b) in the direction parallel (solid line) and perpendicular (dashed line) to
gravity. The simulation is carried out with φp = 0.01, Rep = 0.52, L/dp = 200, and dp/h = 0.25.
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used to explain the so-called screening mechanism of fluctuation amplitudes, i.e., the independent
of particle velocity fluctuations from the domain size. Several ideas related to the microstructure and
the screening mechanism have been proposed in the literature, such as three-body hydrodynamic
interactions,41 convection of density fluctuations,14 the effects of vertical walls,39 and the effects of
horizontal walls.42 No conclusion has been drawn. The evolution of the fluctuation amplitudes and
microstructure in sedimenting suspensions is subjected to our future work. Additional information
can be found in literature.6, 16, 43

Note that, in our preliminary tests, the effect of initial particle position is found to be insignificant
when the particles are statistically uniformly distributed. This is mainly due to large numbers of
particles and long simulation times used in the present work. In order to avoid the uncertainty at
the initial phase of the sedimentation, only the long-term average values in the period between t/τ s

= 2500 and 5000 are used in the present paper.

B. Particle volume fraction effects

It is well known that the average particle velocity in the direction parallel to gravity 〈V‖〉 is lower
than the terminal velocity Vt .7–9 The hindrance effect is taken into account explicitly via the hindrance
function g(φp) (see Table I in Appendix B 1) and implicitly through the fluid volume fraction φl

= 1 − φp in the conservation equations of the fluid phase. Our simulations are able to capture
the hindrance in 〈V‖〉 as a function of φp with deviations from the Richardson-Zaki correlation
(Eq. (1) with k = 1, and n = 4.65) less than 1%, see Fig. 5. The results are independent from
the dp/h ratios used in the simulations. This implies that the Richardson-Zaki correlation exponent
n = 4.65 contains contributions from the hindrance effect due to hydrodynamic interactions (with
the exponent 2.65 in the hindrance function), the effect from the particle displacement, and the
buoyancy.

In a sedimenting suspension within a sufficiently large domain size at low Rep, the fluctuation
amplitudes were found experimentally to depend solely on φp and scaled with φ

1/3
p as2, 6〈

�V‖,⊥
〉 = C1,(‖,⊥)φ

1/3
p . (19)

The experimental data were found to be well fitted with the values of the fluctuation amplitudes
scaling constants C1, ‖ in the range between 2 and 3, and C1, ⊥ in the range between 1 and 1.5.6, 43 At
Rep = 0.05, the simulated 〈�V‖〉 and 〈�V⊥〉 values resemble the scaling observed in experiments at
low Rep with C1, ‖ = 3, and C1, ⊥ = 1, respectively, see Fig. 6(a). This agreement with experimental
observations is used to validate the ability to correctly predict the second-order statistics (i.e., the
velocity variance) of the present numerical method. Noticeably, at Rep = 0.33, the simulated 〈�V‖〉
and 〈�V⊥〉 values are well below the scaling derived from the experiments at low Rep (Eq. (19)),
see Fig. 6(b). However, this result is in accordance with the recent finding of Yin and Koch16 that
the fluctuation amplitudes decrease with increasing Rep at sufficiently high Rep. This suggests that,
between the Rep values of 0.05 and 0.33, additional physics which are unimportant at low Rep begin

FIG. 5. Long-term average particle settling velocity ratio 〈V‖〉/Vt in the direction parallel to gravity versus particle volume
fraction φp from the simulation with Rep = 0.05 (circles) and Rep = 0.33 (diamonds). The dotted line is the prediction from
Richardson-Zaki correlation (Eq. (1)) with n = 4.65 and k = 1.0.
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FIG. 6. Long-term average fluctuation amplitudes ratio 〈�V‖,⊥〉/〈V‖〉 in the directions parallel (diamonds) and perpendicular
(squares) to gravity versus particle void fraction φp with Rep = 0.05 (a) and Rep = 0.33 (b). Dotted and dotted-dashed lines

are the calculations from 〈�V‖〉/〈V‖〉 = 3φ
1/3
p and 〈�V⊥〉/〈V‖〉 = φ

1/3
p , respectively.

to characterize the suspension leading to the dependence of the scaling of 〈�V‖,⊥〉 on Rep. This
observation will be further discussed in Sec. III C.

C. Particle Reynolds number Rep effects

In a sedimenting suspension, the complexity in hydrodynamics is initially induced by the
random nature of the suspension microstructure, i.e., the distribution of the particle positions. The
hydrodynamics, in turn, determine the complexity in the particle dynamics. Following the study
of Rep effects by Yin and Koch,16 Rep is varied while the particle to fluid density ratio ρp/ρ f is
kept constant. This setting mimics possible experiments where Rep is varied by changing the fluid
viscosity with the same set of particles. Figure 7 shows simulated fluctuation amplitudes 〈�V‖,⊥〉
as a function of Rep for φp = 0.01 and 0.005. At low Rep, 〈�V‖,⊥〉 depend only weakly on Rep

and are known to reach a constant 〈�V 〉/〈V 〉 at very low Rep.6 When Rep is increased beyond a
certain value, 〈�V‖,⊥〉 decrease with increasing Rep. The transition in the scaling behavior occurs
at a critical particle Reynolds number Rep, c beyond which 〈�V‖,⊥〉 start to depend on Rep. Our
simulation results for both φp = 0.01 and 0.005 suggest Rep, c ≈ 0.08. This value agrees well with
Rep, c = 0.1 proposed by Yin and Koch.16 The values of 〈�V‖〉 and 〈�V⊥〉 at Rep below Rep, c agree
fairly well with Eq. (19) with C1, ‖ = 3 and C1, ⊥ = 1, respectively. Furthermore, the simulation
results exhibit only weak dependence on the choice of dp/h ratio, which can be directly observed in
Fig. 7: simulation results from different dp/h ratios follow similar trends in 〈�V‖,⊥〉. This indicates
that the results are independent of the spatial resolution.

As mentioned above, Rep in the simulations set shown in Fig. 7 is varied by changing the
fluid viscosity while ρp/ρ f is kept constant. Consequently, the Stokes number, given by St = τ p/τ l

FIG. 7. Long-term average fluctuation amplitudes ratio as a function of the particle Reynolds number Rep in the direction
parallel (filled symbols) and perpendicular (empty symbols) to gravity with dp/h = 0.1 (diamonds), and dp/h = 0.25 (circles).
Simulations are carried out with φp = 0.01 (a), and φp = 0.005 (b). The solid and dotted lines are the calculations from

〈�V‖〉/〈V‖〉 = 3φ
1/3
p , and 〈�V⊥〉/〈V‖〉 = φ

1/3
p , respectively. The dashed lines are the prediction using Eq. (20).
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FIG. 8. Long-term average fluctuation amplitudes ratio as a function of the Stokes number in the direction parallel (diamond
symbols) and perpendicular (square symbols) to gravity with dp/h = 0.25, φp = 0.01, L/dp = 200, and Rep = 0.33.

where τ p is the characteristic time of dynamic relaxation for the particles and τ l is a time charac-
teristic of the fluid flow field,21, 44 varies with Rep. Within the parameter ranges considered here,
St = ρpRep/(9ρ f). In order to separate the effects of St from Rep, two additional sets of simulations
have been carried out. In the first set, Rep is kept constant at 0.33 while St is varied in the range
between 0.07 and 0.11 by varying the fluid viscosity and ρp/ρ f between 2 and 4. It can be directly
observed from Fig. 8 that, in the range studied here, St has no significant effect on 〈�V‖,⊥〉. In the
second set, Rep is varied while St is kept constant at 0.09. The dependency of 〈�V‖,⊥〉 on Rep closely
follows the trend found in the previous set of simulations where Rep was varied while ρp/ρ f was kept
constant, see Fig. 9. Based on these results, it can be concluded that 〈�V‖,⊥〉 are determined mainly
by the agitation of the fluid phase by the particles (i.e., the Rep effects), while the level of response
between particles and fluid phase, i.e., St number, has no significant effect. Hence, the transition
of the scaling behavior found in Fig. 7 might stem from the instability in the fluid flow field, e.g.,
brakeup of fluid vortices, occurring beyond Rep, c ∼ 0.08 (corresponding to St ∼ 0.02). A detailed
study of liquid flow field and its effect on the scaling of 〈�V‖,⊥〉 is the subject of our future work.

At (quasi) steady state and a sufficiently large domain size, a suspension contains swirl structures
of various sizes and velocity magnitudes. The length over which the particle dynamics are correlated,
i.e., the correlation length ξ , can be determined through the spatial correlation function of 〈�V‖〉
along the direction perpendicular to gravity. The location where the spatial correlation function gets
zero provides an estimate of ξ .36 The magnitude of ξ is a measure for the average size of the swirl
structures in the suspension. In the low Rep regime, ξ was found experimentally to be approximately
20 times the interparticle separation rpφ

1/3
p , and independent from Rep.2, 6, 36 A comparison of the

long-term average correlation functions of 〈�V‖〉 along the direction perpendicular to gravity from
the simulations with Rep in the range between 0.03 and 0.52 (Fig. 10) demonstrates a decrease in

FIG. 9. Long-term average fluctuation amplitudes ratio as a function of the particle Reynolds number Rep in the direction
parallel (diamond symbols) and perpendicular (square symbols) to gravity with dp/h = 0.25, φp = 0.01, L/dp = 200, and

St = 0.09. The solid and dotted lines are the calculations from 〈�V‖〉/〈V‖〉 = 3φ
1/3
p , and 〈�V⊥〉/〈V‖〉 = φ

1/3
p , respectively.

The dashed lines are the prediction using Eq. (20).
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FIG. 10. Long-time average spatial correlation functions of the particle velocity fluctuation in the direction parallel to gravity
〈V‖〉 along the direction perpendicular to gravity versus distance normalized by the interparticle separation x/rpφ

−1/3
p at

various Reynolds numbers. The simulation is carried out with φp = 0.01, L/dp = 200, and dp/h = 0.25.

ξ with increasing Rep. A similar trend has been reported in the numerical simulations of Climent
and Maxey.27 We depict the finding by showing the particle velocity field around the average
δV = V − 〈V〉 at Rep = 0.05 and 0.33 in Figs. 2(c) and 2(d), respectively. Smaller swirl structures
can be noticed from the simulation result with Rep = 0.33. These results suggest that, in the finite
Rep regime, 〈�V‖,⊥〉 and ξ decrease with increasing Rep.

D. Domain size effects

Consider a situation, in which the domain size L is only a few times larger than the interparticle
separation rpφ

−1/3
p . The swirls will then have a size of the order of the domain size. If L is further

enlarged by a few interparticle separations, while the particle volume fraction φp and the particle
Reynolds number Rep are kept constant, the swirl sizes will also increase. As a result, the fluctuation
amplitudes 〈�V‖,⊥〉 increase following the swirl sizes. However, when L is larger than a characteristic
swirl size Ls, the swirl sizes will not increase with L. Consequently, 〈�V‖,⊥〉 get saturated and
independent from L. Here, Ls is defined as the length in which 〈�V‖,⊥〉 are within a 10% range of their
magnitude when they are independent from L. This behavior has been demonstrated experimentally
by Segre et al.2 at Rep ∼ O(10−3). Similar behavior exists in sedimenting suspensions at finite Rep. We
demonstrate this by carrying out simulations of sedimenting suspensions at Rep = 0.33 and φp = 0.01
with varying domain size L in the range between 17 to 120 times the interparticle separation rpφ

−1/3
p .

The fluctuation amplitudes 〈�V‖,⊥〉 as a function of L are plotted in Fig. 11(a). It can be observed
that 〈�V‖,⊥〉 increase with L. The characteristic swirl size Ls in the suspensions with Rep = 0.33 and
φp = 0.01 is ∼50 rpφ

−1/3
p . In a similar manner, the simulations with Rep = 0.05 and φp = 0.01

(Fig. 11(b)) indicate Ls around 110 rpφ
−1/3
p . These results show that Ls decreases with increasing

Rep, and 〈�V‖,⊥〉 get saturated at a smaller L/(rpφ
−1/3
p ) ratio when Rep increases. We further

investigate the dependency of fluctuation amplitudes by carrying out simulations with particle
volume fractions of 0.01, 0.005, and 0.001. The simulation results are shown in Figs. 11(a), 11(c),
and 11(d), respectively. The values of Ls are around 50, 45, and 25 times the interparticle separation
as the particle volume fraction decreases. These results suggest that 〈�V‖,⊥〉 > get saturated at a
smaller L/(rpφ

−1/3
p ) ratio when φp decreases.

E. Analysis of sedimenting suspensions at finite Rep

In light of the results obtained from our simulations, the behavior of sedimenting suspensions
at finite-particle Reynolds numbers has been revealed. In such system, the complex hydrodynamics
are induced by the random nature of the suspension microstructure, i.e., the distribution of the
particle positions. The hydrodynamics, in return, cause the complexities in the particle dynamics
via hydrodynamic interactions. Consequently, these interactions form swirls which contain a large
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FIG. 11. Long-term average fluctuation amplitudes 〈�V‖,⊥〉/〈V‖〉 in the direction parallel (squares) and perpendicular

(triangles) to gravity normalized by C1,(‖,⊥)φ
1/3
p versus the normalized domain size L/rpφ

−1/3
p . All simulations have

dp/h = 0.25 with φp = 0.01 and Rep = 0.33 (a), φp = 0.01 and Rep = 0.05 (b), φp = 0.005 and Rep = 0.33 (c), and φp

= 0.001 and Rep = 0.33 (d). Dotted lines are the fit using Eq. (20). The values of C1, ‖ in the case (a), (b), (c), and (d) are
equal to 1.20, 4.37, 1.24, and 1.35, respectively. The values of C2 in the case (a), (b), (c), and (d) are equal to 21.23, 50.00,
17.58, and 11.34, respectively.

number of particles. After a sufficiently long time, effects of initial conditions vanish and swirls
constantly are generated and destroyed in the suspension. The fluctuation amplitudes 〈�V‖,⊥〉 related
to 〈V 〉 and the correlation length ξ decrease with increasing Rep (see Sec. III C). Furthermore, it is
found that 〈�V‖,⊥〉 get saturated at a smaller L/(rpφ

−1/3
p ) ratio with increasing Rep and decreasing

φp (see Sec. III D).
In order to express these relations mathematically, we extended the correlation derived from the

sedimentation experiments at low Rep by Segre et al.2 for sedimenting suspensions at Rep greater
than Rep, c ∼ 0.08. From earlier discussion, it follows that the scaling of 〈�V‖,⊥〉 is a function of φp,
Rep, and L. Therefore, the fluctuation amplitude scaling constants C1, (‖, ⊥) and characteristic length
scaling constant C2 as proposed by Segre et al.2 are replaced by functions C1, (‖, ⊥)(Rep, φp) and
C2(Rep, φp), respectively. The new correlation has the form

〈
�V‖,⊥

〉
V‖

= C1,(‖,⊥)
(
Rep, φp

)
φ1/3

p

[
1 − exp

(
−L

C2
(
Rep, φp

)
rpφ

−1/3
p

)]
. (20)

It is assumed that the functions C1, (‖, ⊥)(Rep, φp) and C2(Rep, φp) are power functions of the form
a Reb

pφ
c
p with fitting parameters a, b, and c. The values of each parameter are determined using the

simulation sets described in Sec. III D which are carried out with various Rep, φp, and L (Fig. 11).
The total number of simulations is 28 with two data points (〈�V‖〉 and 〈�V⊥〉) per simulation.
First, we consider only the fluctuation amplitude in the direction parallel to gravity 〈�V‖〉. In each
simulation set, the values of the functions C1, ‖(Rep, φp) and C2(Rep, φp) which provide the best fit
to the simulation results are determined. Then, the fitting parameters a, b, and c for the function
C1, ‖(Rep, φp) and C2(Rep, φp) are estimated. The process is repeated iteratively until the functions
C1, ‖(Rep, φp) and C2(Rep, φp) provide best fit for all simulation sets.
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It is known that, at low Rep, the fluctuation amplitude in the direction parallel and perpendicular
to gravity relate with each other with an anisotropy ratio γ a = C1, ‖/C1, ⊥ in a range between 2 and
4.2, 6 We assume that the fluctuation amplitudes also relate in the same way at finite Rep. We further
assume that γ a depends on Rep and φp with the form of power function similar to the expression of
the function C1, ‖(Rep, φp) with a different set of fitting parameters. The iterative procedure described
above is used to determine the values of the fitting parameters.

The fluctuation amplitude scaling function is found to be

C1,‖
(
Rep, φp

) = 0.44Re−0.69
p φ−0.05

p . (21)

When the domain size L is sufficiently large, the domain size effect is negligibly small (i.e., the
square bracket in Eq. (20) is approximately unity). Equation (20) becomes〈

�V‖
〉

V‖
= 0.44Re−0.69

p φ0.28
p . (22)

It can be implied from Eq. (22) that 〈�V‖〉 decreases with increasing Rep. This is in accordance
with the discussion concerning the effect of Rep in Sec. III C. It is important to note that, below the
critical particle Reynolds number Rep, c, the fluctuation amplitudes scale with φp with an exponent
of 0.33. This is in accordance with the exponent found in the experiments by Segre et al.2 Beyond
Rep, c, the exponent is slightly modified by the fluctuation amplitude scaling function to a value
of 0.28. Yin and Koch16 found that the fluctuation amplitudes scale with Rep with an exponent of
−1. It can be argued that in their work, the exponent was extracted from simulations at Rep higher
than approximately 3 which is greater than the maximum Rep considered here. Noticeably, their
simulation results at lower Rep exhibit Rep dependency with a higher exponent (i.e., less negative).
Hinch14 and Guazzelli and Hinch6 estimate the dependency of the fluctuation amplitudes on Rep with
an exponent of −1/3 based on the Poisson estimation with the blob concept. Our simulations suggest
an exponent of approximately −2/3. The anisotropy of the fluctuation amplitudes is expressed as

γa = 1.66Re0.04
p φ−0.12

p . (23)

The expression above implies that the anisotropy only very weakly depends on Rep and decreases
with increasing φp. At higher φp, the interparticle separation is smaller. Hence, the hydrodynamic
interactions are stronger resulting in a weaker anisotropy.

The characteristic length scaling function is expressed as

C2(Rep, φp) = 45Re−0.45
p φ0.27

p . (24)

With a constant value of the fluctuation amplitude scaling factors (the multiplication factor of
the square bracket on the right-hand side), Eq. (20) describes the dependency of the fluctuation
amplitudes on the domain size L. Following the discussion in Sec. III D, it can be noticed that the
value of the square bracket converges to unity when L is larger than the characteristic swirl size Ls

resulting in the independence of 〈�V‖,⊥〉 from L. By its definition, the magnitude of Ls is around
2.5 times C2(Rep, φp)rpφ

−1/3
p .

We now examine the ability to represent the fluctuation amplitudes of the correlation proposed
above (Eq. (20)) with other sets of simulations. It can be seen that the correlation correctly repre-
sents the scaling of the fluctuation amplitudes in dependency with the particle volume fraction at
Rep = 0.33, see Fig. 12(b). As expected, deviations occur at Rep lower than Rep, c, see Fig. 12(a).
The dependence of the fluctuation amplitudes beyond Rep, c on Rep is correctly represented by the
correlation, see Figs. 7(a) and 7(b). Also, the correlation is able to represent the fluctuation ampli-
tudes predicted by simulations with different dp/h ratios supporting independency of the results from
spatial resolution (see Fig. 7).

F. Particle displacement effects

Owing to the derivation of the conservation equations at high φp presented earlier
(Eqs. (5) and (6)), the displacement of fluid by the particles is mimicked through the factor f φ .
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FIG. 12. Long-term average fluctuation amplitudes ratio 〈�V‖,⊥〉/〈V‖〉 in the directions parallel (diamonds) and perpendic-
ular (squares) to gravity versus particle void fraction φp with Rep = 0.05 (a) and Rep = 0.33 (b). Perpendicular fluctuation

amplitudes are scaled by the anisotropy ratio γ a. Dotted and dashed lines are the prediction with 〈�V‖〉/〈V‖〉 = 3φ
1/3
p and

Eq. (20), respectively. The simulations are carried out with a sufficiently large domain size to avoid size-dependence effects.

The volume fraction also appears in the back-coupling force term Fp/(φpVl). In order to demon-
strate the effect of the particle displacement, we carried out two sets of simulations at low to high
φp; one with the volume fraction, and another without the volume fraction in the conservation equa-
tions. In order to be able to simulate dense particle systems without invoking particle collisions,
the particles are arranged in a face-centered cubic formation, i.e., the distance from a particle to its
surrounding neighbors is identical. Hence, the gradient and temporal variation of the volume fraction
are zero, i.e., f φ = 0. The effect of the particle displacement is represented only in the back-coupling
force term. Long-term average particle settling velocity in the direction parallel to gravity 〈V‖〉 from
both sets of simulations for various φp are shown in Fig. 13. At low φp (i.e., high liquid volume
fraction φl = 1 − φp), 〈V‖〉 from both sets is only marginally different. While, in the moderate φp

regime, φp ∼ 0.10, 〈V‖〉 from the simulations including volume fraction effects is significantly lower
than the ones without volume fraction effect. This is due to the fact that the back-coupling force
term has a higher magnitude in the simulations including volume fraction effects, which induces
a higher magnitude of fluid flow against the particle motion. A quantitative difference in settling
velocities is estimated by comparing the best fit correlation in a form similar to the Richardson-Zaki
correlation. The liquid volume fraction in the back-coupling force term (the second term on the rhs
of Eq. (6)) contributes to the exponent n with a magnitude of approximately 0.8. Note that, since the
simulations are carried out with an ideal configuration of particles within an unbounded domain, this
comparison should not be related to the settling velocity in a more realistic system with randomly
distributed particles.

Next, the particles in both sets of simulations are generated randomly with a statistically uniform
configuration. Hence, the effect of f φ is included in the simulations with the volume fraction. We

FIG. 13. Long-term average particle settling velocity ratio 〈V‖〉/Vt from simulations with ordered particles formation as a
function of liquid volume fraction (1 − φp) for simulations with (diamonds) and without the factor f φ (squares). Dotted and
dashed lines, and the equations next to them represent best fits for the simulation with and without the factor f φ , respectively.
The simulations are carried out with L/dp = 200, and dp/h = 0.25.
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FIG. 14. Long-time average correlation length ξ normalized by the interparticle separation rpφ
−1/3
p in the direction parallel

(filled symbols) and perpendicular (empty symbols) to gravity from the simulations with (a) and without the volume fraction
effect (b). The simulations are carried out with φp = 0.01, L/dp = 200, and dp/h = 0.25. Lines represent trend using linear
fitting method.

carried out simulations with φp up to 0.01. As expected, the mean settling velocity 〈V‖〉 and the
fluctuation amplitudes 〈�V‖,⊥〉 are not significantly different in both sets. However, differences
between simulations with and without the liquid volume fraction are found if the particle Reynolds
number Rep is varied, see Fig. 14. In the simulations with volume fraction effects, the correlation
length ξ decreases with increasing Rep. The simulations without volume fraction effect provide no
dependence between ξ and Rep. This result suggests that the factor f φ , which arose from the presence
of the volume fraction in the conservation equations and contains the gradient of the volume fraction,
relates to long-range hydrodynamic interactions between particles.

IV. SUMMARY AND CONCLUSION

We propose an alternative numerical method for simulations of sedimenting suspensions. Dif-
ferent from the approaches by Elgobashi45, 46 and Kuipers,47, 48 we use an extended lattice-Boltzmann
scheme to discretize the locally averaged conservation equations. It offers a simple and computa-
tionally efficient way to perform large scale simulations of sedimenting suspensions. The extended
lattice-Boltzmann scheme coupled with a Lagrangian particle tracking model is able to reproduce
the main features of sedimenting suspensions, such as swirls, helical structures, and saddle points, in
accordance with the experimental data available in the literature.37 Within the low particle volume
fraction φp regime considered in this paper, the simulated particle settling velocity 〈V‖〉 agrees well
with the Richardson-Zaki correlation (Eq. (1)).8, 9 Furthermore, at low Rep, the simulated fluctuation
amplitudes 〈�V‖,⊥〉 closely follow the scaling derived from the experimental data available in the
literature (Eq. (19)).2, 6, 43 These results confirm the ability to reproduce the first-order (i.e., the
mean settling velocity) and second-order (i.e., the fluctuation amplitudes) statistics of the present
numerical method.

At finite Rep, our simulation results suggest a transition of scaling behavior of the fluctuation
amplitudes 〈�V‖,⊥〉 at Rep, c = 0.08. The value of Rep, c is in accordance with the value of Rep, c

proposed by Yin and Koch16 using a surface-resolved numerical simulation method. In contrast to
previous simulations of sedimenting suspensions,13, 16, 27 we are able to demonstrate that fluctuation
amplitudes get independent of the domain size when sufficiently large domain size and simulation
time are invoked. We found that, at finite Rep, 〈�V‖,⊥〉 are functions of Rep and φp. In the spirit of
the correlation derived by Segre et al.,2 we propose a correlation that correctly represents 〈�V‖,⊥〉
in terms of φp, Rep, and L (Eq. (20)).

In conclusion, the present numerical method is able to reproduce complex behavior found in
sedimenting suspensions within the dilute suspension limit. Mechanisms behind the behavior of
sedimenting suspensions at finite Rep are numerically demonstrated and discussed. Our findings are
analyzed and formulated into a simple correlation.
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APPENDIX A: DERIVATIONS OF THE EXTENDED LATTICE-BOLTZMANN SCHEME

1. Moments of the mass density and the collision operator

In this section, the definitions of the mass density Ni and the constraints of the collision operator
�i introduced earlier will be proven. The summation of the first few moments of Ni and �i will be
carried out over all velocity direction index i using the following symmetry properties of the FCHC
lattice: ∑

i

mi = 24,

∑
i

mi ciα = 0,

∑
i

mi ciαciβ = 12δαβ, (A1)

∑
i

mi ciαciβciγ = 0,

∑
i

mi ciαciβciγ ciε = 4δαβδγ ε + 4δαγ δβε + 4δαεδβγ .

The mass density can be obtained by the zeroth-order moment of Ni,

∑
i

Ni = ρl

24

∑
i

mi + ρluα

12

∑
i

mi ciα + ρluαuβ

8

∑
i

mi ciαciβ

−ρluαuα

16

∑
i

mi − ρlνl

4
∂α

∑
i

mi ciαciβuβ + ρlνl

8
∂α

∑
i

mi uα

= ρl

24
(24) + ρluα

12
(0) + ρluαuβ

8
(12δαβ)

−ρluαuα

16
(24) − ρlνl

4
∂α(12δαβ )uβ + ρlνl

8
∂α(24)uα

= ρl . (A2)

Similarly, the momentum concentration is obtained by the first-order moment of Ni,

∑
i

ci Ni = ρl

24

∑
i

mi ciα + ρluα

12

∑
i

mi ciαciβ + ρluαuβ

8

∑
i

mi ciαciβciγ

−ρluαuα

16

∑
i

mi ciα − ρlνl

4
∂α

∑
i

mi ciαciβciγ uβ + ρlνl

8
∂α

∑
i

mi uαciβ

= ρl

24
(0) + ρluα

12
(12δαβ ) + ρluαuβ

8
(0)

−ρluαuα

16
(0) − ρlνl

4
∂α(0)uβ + ρlνl

8
∂α(0)uα

= ρluβ = ρlu. (A3)
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The second-order moment of Ni results into∑
i

cici Ni = ρl

24

∑
i

mi ciαciβ + ρluα

12

∑
i

mi ciαciβciγ + ρluαuβ

8

∑
i

mi ciαciβciγ ciε

−ρluαuα

16

∑
i

mi ciγ ciε − ρlνl

4
∂α

∑
i

mi ciαciβciγ ciεuβ + ρlνl

8
∂α

∑
i

mi uγ ciγ ciε

= ρl

24
(12δαβ) + ρluα

12
(0) + ρluαuβ

8
(4δαβδγ ε + 4δαγ δβε + 4δαεδβγ )

−ρluαuα

16
(12δγ ε) − ρlνl

4
∂α(4δαβδγ ε + 4δαγ δβε + 4δαεδβγ )uβ

+ρlνl

8
∂α(12δγ ε)uα

= ρl

2
δαβ + 1

2
ρluαuβδαβδγ ε + 1

2
ρluαuβδαγ δβε + 1

2
ρluαuβδαεδβγ

−1

2
uαuαδγ ε − 1

4
uαuαδγ ε − ρlνl∂αuβδαβδγ ε − ρlνl∂αuβδαγ δβε

−ρlνl∂αuβδαεδβγ + ρl∂αuαδγ ε + 1

2
ρ∂αuαδγ ε

= 1

2
ρl + 1

2
ρluγ uε + 1

2
ρluεuγ − 1

4
ρluαuαδγ ε − ρlνl∂γ uε

−ρlνl∂εuγ + 1

2
ρl∂αuαδγ ε. (A4)

Transforming Eq. (A4) into vector notation yields

∑
i

cici Ni = 1

2
ρl + ρluu − 1

4
ρluu · I − ρlνl [�u + (�u)T ] + 1

2
ρlνl(� · u)I

= 1

2
ρl[1 − 1

2
tr (uu)] + ρluu − ρlνl[�u + (�u)T ] + 1

2
ρlνl (� · u)I. (A5)

Applying the equation of state in the form

P = 1

2
ρl[1 − 1

2
tr (uu)], (A6)

Eq. (A5) becomes

∑
i

cici Ni = ρluu − {−PI + ρlνl[�u + (�u)T − 1

2
(� · u)I]}

= ρluu − σ. (A7)

According to the first constraint of �i, mass conservation is satisfied through the zeroth-order
moment,

∑
i

�i = ρl

12
∂α

∑
i

mi ciαciβuβ − ρl

24
∂α

∑
i

mi uα + f
12

∑
i

mi ciα

+ f φ

24

∑
i

mi + f φ

12

∑
i

mi ciαuα

= ρl

12
∂α(12δαβ )uβ − ρl

24
∂α(24)uα + f

12
(0) + f φ

24
(24) + f φ

12
(0)uα

= f φ. (A8)
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Similarly, the first-order moment of �i must satisfy the second constraint for the momentum con-
servation,

∑
i

�i ci = ρl

12
∂α

∑
i

mi ciαciβciγ uβ − ρl

24
∂α

∑
i

mi ciαuα + f
12

∑
i

mi ciαciβ

+ f φ

24

∑
i

mi ciα + f φ

12

∑
i

mi ciαciβuα

= ρl

12
∂α(0)uβ − ρl

24
∂α(0)uα + f

12
(12δαβ) + f φ

24
(0) + f φ

12
(12δαβ )uα

= f + u f φ. (A9)

2. Derivation of the collision operator, solution matrix, and solution vectors

The collision operator �i can be derived by substitution of Eq. (12) into Eq. (9) and expanding
the staggered formulation of Eq. (8) up to first-order,17, 18

Ni

(
x ± 1

2
ci, t ± 1

2

)
= Ni (x, t) ± 1

2
ci · �Ni (x, t) ± 1

2
∂t Ni (x, t) + h.o.t.

= Ni (x, t) ± mi

48
ci · �ρl ± miρl

24
(ci · �) (ci · u)

±mi

48
∂tρl ± mi

24
ci · ∂tρlu + h.o.t., (A10)

where h.o.t. represents higher-order terms containing contributions related to the lattice spacing,
the time step, and terms of the form u · �ρl which are negligibly small in the incompressible
limit.18 From Eqs. (5) and (6) with Eq. (A6), using ∂tρl = −ρl � ·u + f φ and ∂tρlu = − 1

2 � ρl +
f + u f φ + O(�u2,�2u), �i takes the following form:

�i = miρl

12
[(ci · �)(ci · u) − 1

2
� ·u] + mi

12
ci · f + mi

24
(1 + 2ciu) f φ + h.o.t., (A11)

which corresponds to the LBE in the form

Ni (x ± 1

2
ci, t ± 1

2
) = Ni (x, t) ± 1

2
�i (N). (A12)

As suggested by Somers17 (see also Ref. 18), the time marching of the staggered LBE (Eq. (A12))
can be obtained by a linear transformation into an orthogonal basis of eigenvectors 〈Ek〉 of �i. The
right-hand side of Eq. (A12) is rewritten in terms of a n × n matrix Eki and a solution vector α±

k (x, t)
as

Ni (x ± 1

2
ci, t ± 1

2
) = mi

24

n∑
k=1

Eikα
±
k (x, t), i = 1, . . . , n. (A13)

It has been demonstrated by Somers17 that the Ek eigenvectors also contain high-order (non-
hydrodynamic) modes. They do not appear directly in the conservation equations and are relaxed
throughout the simulation. The treatment of these high-order modes contributes to the enhanced sta-
bility at low viscosities of the lattice-Boltzmann scheme used here.49 In 3D, 18 velocity directions
are chosen, i.e., n = 18, thence Eki and α±

k (x, t) are obtained by substitution of Eqs. (12) and (A11)
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into Eq. (A12),

Eik =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, cix , ciy, ciz,

2c2
i x − 1, cix ciy, 2c2

iy − 1, cix ciz,

ciyciz, 2c2
i z − 1, cix

(
3c2

iy − 1
)

,

ciy
(
3c2

i x − 1
)
, cix

(
2c2

i z + c2
iy − 1

)
,

ciy
(
2c2

i z + c2
i x − 1

)
, ciz

(
3c2

i x + 3c2
iy − 2

)
,

ciz

(
c2

iy − c2
i x

)
, 3

(
c2

i x − c2
iy

)2
− 2,

(
c2

i x − c2
iy

) (
1 − 2c2

i z

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A14)

α±
k (x, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρl ± 1
2 fφ,

ρlux ± 1
2 fx ± 1

2 ux f φ,

ρluy ± 1
2 fy ± 1

2 uy f φ,

ρluz ± 1
2 fz ± 1

2 uz f φ,

ρlux ux + ρl(
±1−6νl

6 )(2∂x ux ),

ρlux uy + ρl(
±1−6νl

6 )(∂x uy + ∂yux ),

ρluyuy + ρl(
±1−6νl

6 )(2∂yuy),

ρlux uz + ρl(
±1−6νl

6 )(∂x uz + ∂zux ),

ρluyuz + ρl(
±1−6νl

6 )(∂yuz + ∂zuy),

ρluzuz + ρl(
±1−6νl

6 )(2∂zuz),

T ±
1 , T ±

2 , T ±
3 , T ±

4 , T ±
5 , T ±

6 ,

F±
1 , F±

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A15)

The relaxation of the third-order non-hydrodynamic modes is achieved by imposing T +
i = −0.8T −

i
with i = 1, . . . , 6. The fourth-order non-hydrodynamic modes are suppressed by setting them to zero,
i.e., F+

1 = 0 and F+
2 = 0. The time marching procedure of the scheme starts with the calculation

of α−
k using the existing macroscopic quantities. The mass density Ni required to perform boundary

condition is recovered from α−
k in the next step, see Eq. (A13). After propagation, Ni is used

to calculate α+
k (inverse of Eq. (A13)) and completed one evolution in lattice unit. The detailed

description of the procedure of marching in time with Eik and α±
k (x, t) can be found in Ref. 18.

APPENDIX B: EXPRESSIONS FOR THE LAGRANGIAN PARTICLE TRACKING MODEL

1. Expressions for the forces acting on a solid particle

Since the fluid and the particles experience effective body forces which relate to the acceleration
due to gravity, the net gravity force FG acting on each spherical particle is described with contribution
from the local-average density of mixture ρ̄ = (1 − φp)ρl + φpρp, see Table I.50 The effects of the
pressure gradient �p and the shear stress in the fluid � · τ on each particle can be formulated by
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TABLE I. Expressions for the forces acting on a solid particle.

Force Closure

FG = (
ρp − ρ̄

)
Vpg . . .

FS = ρl Vp Dt u + φp
(
ρp − ρl

)
Vpg . . .

FD = 3
8

m p
r p

g
(
φp

)
CD (u − V) |u − V| CD =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

24
Rep

, Rep < 0.5

24
Rep

(
1 + 0.15Re0.687

p

)
, 0.5 ≤ Rep ≤ 1000

0.44, Rep > 1000

g
(
φp

) = (
1 − φp

)−2.65

FL = πρl r3
pCL [(u − V) × ω]

CL = 4.1126Re−0.5
s fCL

fCL =
⎧⎨
⎩

(
1 − 0.3314β0.5

)
e0.1Rep + 0.3314β0.5, Rep ≤ 40

0.0524
(
β Rep

)0.5
, Rep > 40

β = 0.5 Res
Rep

Res = 4r2
p |ω|
νl

FA = 1
2 ρl VpCA∂t (u − V) CA = 0.5

applying the material derivative to the lhs of the local-average momentum equations,

Dt (φlρlu) = −φl � p + φl � ·τ + φl
FB

V
, (B1)

with FB = −φp,d (ρp − ρl )g the force per unit volume acting on the fluid derived from domain-
average force balance between particles and fluid,

NpVp
(
ρp − ρ̄d

)
g = − (

1 − φp,d
)

V FB, (B2)

where V is the volume of the domain and the subscript d indicates domain-average quantities. Using
simple algebraic and applying the continuity equation from Eq. (2) on the term on the lhs, Eq. (B1)
becomes

ρl Dt (u) = − � p + � · τ + FB

V
. (B3)

Substituting FB, Eq. (B3) provides expression for the combined effects of �p and � · τ ,

− �p + � · τ = ρl Dt (u) + φp
(
ρp − ρl

)
g. (B4)

Hence, the forces due to stress gradients FS acting on particles are found by multiplying the gradients
with the particle volume,

FS = ρl Vp Dt (u) + φp
(
ρp − ρl

)
Vpg. (B5)

The effect of other particles on the drag force FD is described in term of hindrance function g(φp).51

Detailed discussion concerning the closure relations can be found in Refs. 21, 33, and 34.
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