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Simulations of granular bed erosion due to laminar shear flow near
the critical Shields number
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Direct numerical simulations of granular beds consisting of uniformly sized spherical particles

being eroded by a shear flow of Newtonian liquid have been performed. The lattice-Boltzmann

method has been used for resolving the flow of the interstitial liquid. Fluid and solid dynamics are

fully coupled with the particles having finite size and undergoing hard-sphere collisions. Only

laminar flow has been considered with particle-based Reynolds numbers in the range 0.02 to 0.6.

The parameter range of the simulations covers the transition between static and mobilized beds.

The transition occurs for 0:10 < h < 0:15 with h the Shields number. The transition is insensitive

of the Reynolds number and the solid-over-liquid density ratio. Incipient bed motion has been

interpreted in terms of the probability density functions of the hydrodynamic forces acting on the

spheres in the upper layer of the bed. VC 2011 American Institute of Physics.

[doi:10.1063/1.3660258]

I. INTRODUCTION

Erosion of granular beds by a fluid flow occurs in many

natural and engineered situations: wind blowing over desert

sand, tidal flows interacting with sea beds and beaches, flows

in horizontal or slightly inclined slurry pipelines that have a

deposit layer of granular material, mixing tanks containing

an incompletely suspended slurry. The granular bed and the

flow interact, and the nature and extent of the interactions

depend on the flow characteristics, fluid properties, and bed

properties such as its density, topology, particle size and

shape distributions, and inter-particle forces. In the majority

of applications the fluid flow over the bed is turbulent which

makes bed erosion a complicated, multi-scale process. The

turbulent flow over the bed has a spectrum of length scales

interacting with the bed. Once detached from the bed the sus-

pended particles feel this multitude of flow scales that even-

tually determine the fate of the particles: getting transported

away from the bed or falling back into it again.

In this paper, however, for a number of reasons the focus

is on granular beds eroded by laminar flow: In the first place

because we are interested in fine particles forming macro-

scopically flat beds so that Reynolds numbers based on parti-

cle size are relatively small and the relevant two-phase flow

phenomena take place in the viscous part of the boundary

layer above the bed. In the second place because we want to

identify the fundamental mechanisms and phenomena criti-

cal to bed erosion for relatively simple systems first, before

embarking on much more complicated turbulent cases. In the

third place because of the availability of detailed experimen-

tal data on erosion due to laminar shear flow in well-defined

systems.1–5 The present study is purely computational.

Numerical simulations allow for looking into erosion mecha-

nisms in detail and reveal information difficult to come by

through experimentation (e.g., because of limited optical

accessibility). Simulations also make it possible to check

sensitivities of erosion processes with respect to flow condi-

tions, bed properties, and physical phenomena (e.g., interpar-

ticle forces can be switched on and off at will). At the same

time experimental data are needed to guide the computa-

tional approach and assess the level of realism achieved in

simulations.

As noted above, important experimental papers on gran-

ular bed erosion as a result of laminar shear are due to

Charru and co-workers.1,2,4 In addition, papers due to Lob-

kovsky et al.,3 Ouriemi et al.,5 and Loiseleux et al.6 provide

valuable insights. The broader topic of critical Shields num-

bers has received much attention, specifically in the context

of civil engineering (e.g., the review due to Buffington and

Montgomery,7 and Paphitis8). The Shields number h is the

ratio of shear stress over net gravity: h � q� _c
g qp�qð Þ2a

(with

� and q the kinematic viscosity and density of the Newtonian

fluid, qp and a the particle density and radius, _c the shear

rate experienced by the upper layer of the bed, and g gravita-

tional acceleration) and is widely used to characterize

sheared granular beds. The critical Shields number hc is the

demarcation between static (non-eroded) and dynamic beds

(beds being eroded).

At the critical Shields number incipient bed erosion

occurs. It has been suggested5 that the critical Shields num-

ber is independent of the particle-based Reynolds number

(Re � a2 _c
� ) in a wide range of (low to moderate) Reynolds

numbers. This would imply that viscous forces, not inertial

(lift) forces are responsible for incipient erosion: In order for

particles (here and in the rest of the paper we assume par-

ticles to be solid spheres with radius a) in the upper layer of

the bed to start moving, the flow must provide vertical forces

that overcome the net gravity force acting on the particle:

Fvert � 4p
3

a3g qp � q
� �

. A vertical force due to viscous

effects would scale according to Fvert ¼ C1q� _ca2, a vertical

force due to inertial lift according to Fvert ¼ C2q _c2a4 9,10a)Electronic mail: jos@ualberta.ca.
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with C1 and C2 dimensionless proportionality constants of

the order 1�10. Only in case the vertical force is viscous,

the force inequality can be written in terms of a constant

(i.e., Re-independent) critical Shields number:
�q _c

g qp�qð Þ2a
� 4p

3
1

2C1
and 4p

3
1

2C1
can thus be interpreted as the crit-

ical Shields number. In recent work,10 we have shown that

the vertical forces due to a simple shear flow acting on

spheres in the upper layer of a granular bed are dominated

by the sphere-to-sphere force variation, not by the vertical

force averaged over all spheres in the upper layer. While the

average vertical force scales according to inertial lift, the

sphere-to-sphere variation of the vertical force (in that paper

quantified by the root-mean-square value) scales as viscous

drag. The distribution of vertical forces experienced by indi-

vidual spheres is very wide. In terms of the constant C1,

peak forces reach levels so that C1 gets of the order of 10.

Since the critical Shields number relates to incipient bed ero-

sion, the peak force levels matter for hc (not so much the

averages), so that the critical Shields number 4p
3

1
2C1

would be

of the order 0.2. This is a value in order-of-magnitude agree-

ment with experimental data.5,6

In this paper, we describe three-dimensional, time-

dependent numerical simulations of the joint motion of New-

tonian fluid and uniformly sized spherical particles. Next to

hydrodynamic forces, the solid spheres feel gravity and they

undergo hard-sphere collisions with neighboring spheres. The

spheres form a dense bed that is supported by a flat, horizon-

tally placed wall. An opposing wall placed well above the par-

ticle bed moves horizontally and thereby creates a shear flow

in the liquid above the bed. In our numerical simulations we

attempt as much as possible to resolve the motion of liquid

and particles. The flow of liquid above and in the bed is simu-

lated with the lattice-Boltzmann method (LBM).11,12 The no-

slip condition at the surfaces of the (translating and rotating)

particles is achieved by an immersed boundary method.13,14

The spatial resolution of the simulations is such that the parti-

cle radius a spans 6 spacings on the uniform and cubic lattice

as used in the simulations. The lattice-Boltzmann method pro-

vides the hydrodynamic forces and torques acting on each

individual particle. These are used (according to Newton’s

second law) to update the linear and angular velocities and the

positions of the particles that in turn provide the boundary

conditions for the liquid flow. In the simulations this tightly

coupled solid-liquid system is evolved in time. Two-

dimensional simulations (with circular disks instead of

spheres) of similar systems have been reported by Papista

et al.15 While providing interesting insights, the predictive

capability of 2D simulations is limited given the inherently

three-dimensional nature of the flow through and above 3D

assemblies of spherical particles.

In parts of the flow domain the solids form a dense sus-

pension with closely spaced spheres. On the fixed grid that is

used, this implies that the interstitial liquid flow is locally

not fully resolved. To compensate for this, radial lubrication

forces (according to low-Reynolds number analytical expres-

sions16) are explicitly added to the equations of motion of

the particles. The sensitivity of this modeling step on the bed

dynamics has been investigated in this paper. Similarly the

role of the dry (sphere-sphere) contact parameters (more spe-

cifically the friction coefficient which represents the effect of

unresolved surface roughness) needs attention.

The goals of this paper are (1) to outline a methodology

for performing direct simulations with resolution of the

solid-liquid interfaces of sheared granular beds; (2) to inves-

tigate if the simulations capture phenomena as observed in

experimental studies; (3) to use the detailed information gen-

erated in the simulations to try and identify key mechanisms

in the mobilization of solids in sheared granular beds.

The paper is organized in the following manner: In Sec.

II, the flow systems are defined and dimensionless numbers

that make up the parameter space are identified. We distin-

guish between physical dimensionless numbers on one side

and dimensionless numbers related to the numerical process

and/or related to modeling assumptions on the other. Then

the numerical procedure is described. In Sec. IV, first some

impressions of main flow features are presented, followed by

an account of the impact of numerical and modeling settings

on bed mobility. We then study the effects of the Shields and

the Reynolds number. These effects are interpreted by

assessing hydrodynamic forces experienced by the particles.

In Sec. V, we summarize and reiterate the main conclusions.

II. FLOW SYSTEMS

The basic flow configuration with a Cartesian coordinate

system is sketched in Figure 1: we have a flat wall of size

L�W supporting a bed of spherical particles all having the

same radius a. The bed consists of a dense monolayer of

immobile spheres glued to the bottom wall on top of which

there is a layer of mobile spheres of typically 8a thickness.

The surface fraction of the immobile bottom layer is

r � npa2 � 0:7 with n the number of spheres per unit area.

The spheres in the bottom layer are placed such that they all

touch the flat bottom wall. The mobile layers of spheres on

top are generated by randomly placing spheres above the

bottom layer. These spheres we let fall through vacuum

towards the bottom layer where non-elastic sphere-sphere

collisions (restitution coefficient e¼ 0.8) remove the energy

from this granular system so that it eventually comes to rest.

We then end up with a fairly loosely packed bed with overall

solids volume fraction / � 0.52. Note that / is also limited

because the bed is relatively shallow and bounded by a flat

FIG. 1. Flow geometry and coordinate system. Randomly placed spheres on

the flat bottom wall experience a shear flow due to the motion in x-direction

of an upper wall.
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wall below and a free surface at the top. In the process of

making the granular bed, periodic conditions in x and

y-direction apply.

After the bed has been formed, the void space and the

space above the granular bed is filled with liquid to a level

z¼H above the bottom plate. A shear flow of the liquid is

generated by placing a wall parallel to the bottom wall at

vertical distance H and giving that wall a velocity u0 in the

positive x-direction (see Figure 1). The overall shear rate

experienced by the bed of spheres _c0 depends on u0 and the

height of the open space above the bed. The latter—in

turn—depends on to what extent the shear flow is able to

expand and/or erode the bed and suspend particles in the liq-

uid above the bed. As a consequence _c0 is a result, not an

input parameter of the simulations. In this work _c0 is calcu-

lated for each simulation separately by determining—once

the flow is stationary—the average liquid velocity uxh i as a

function of z inside and above the bed and taking the deriva-

tive of the linear portion of this profile well above the bed

(see below for examples): _c0 ¼ d uxh i
dz . This overall shear rate

we use in the definitions of the (particle-based) Reynolds

number and Shields number, Re ¼ _c0a2

� and h ¼ q� _c0

g qp�qð Þ2a
,

respectively. As a third independent dimensionless number

that governs this flow system the density ratio
qp

q is taken.

Note that, e.g., a Stokes number can be defined by combining

Re and the density ratio: St ¼ 2
9

qp

q
_c0a2

� .

While being moved with the flow, the solid spheres

undergo hard-sphere collisions for which the two-coefficient

model due to Yamamoto et al.17 was adopted. The two coef-

ficients are the restitution coefficient e and the friction coeffi-

cient l. In a collision, two spheres i and j having

pre-collision linear and angular velocity upi, upj, xpi, and

xpj exchange momentum according to

~upi ¼ upi þ J; ~upj ¼ upj � J; ~xpi ¼ xpi þ
5

2a
n� J;

~xpj ¼ xpj þ
5

2a
n� J: (1)

The superscript � indicates post-collision quantities and n is

the unit vector pointing from the center of sphere i to the

center of sphere j. The momentum exchange vector J can be

decomposed in a normal and tangential part: J ¼ Jnnþ Jtt.

The tangential unit vector t is in the direction of the pre-

collision slip velocity cc between the sphere surfaces at the

point of contact,

cc ¼ upj�upi

� �
� upj�upi

� �
�n

� �
n� axpi�n� axpj�n:

(2)

In the collision model the components of the momentum

exchange vector are

Jn ¼
1þ eð Þ

2
upj � upi

� �
� n

Jt ¼ min �lJn;
1

7
ccj j

� �
:

(3)

As indicated in the expression for Jt, the collision switches

between a slipping and a sticking collision at �lJn ¼ 1
7

ccj j.
In some simulations the friction coefficient l was set to infin-

ity which means that in such a simulation a collision always

is a sticking collision (with Jt ¼ 1
7

ccj j). If one of the two

spheres (say sphere j) in a collision is a fixed sphere attached

to the bottom wall, the update equations for sphere i are

~upi ¼ upi þ 2J; ~xpi ¼ xpi þ 5
a n� J; and the same expres-

sion for J (Eq. (3)) applies.

We restrict ourselves to binary collisions between

spheres and do not consider enduring contacts between

spheres. Given the denseness of the suspension this implies

continuous (though very often minute) motion of spheres

deeper in the bed. It also implies that deeper in the bed colli-

sions between spheres are particularly frequent and at the

same time very weak. Our event-driven collision algorithm

can efficiently deal with this; we keep track of each individ-

ual collision, no matter how closely spaced in time, and do

not allow (and do not have) overlap of spheres.

The flow systems are periodic in the x (streamwise) and

y (lateral) direction. At every solid surface (bounding upper

and lower wall, as well as the sphere surfaces) no-slip

applies for the liquid. Moving spheres do not collide with the

bounding walls so that particle-wall collision parameters are

not relevant. The bottom wall is shielded by a dense layer of

immobile spheres directly attached to it; the mobile spheres

also do not collide with the upper wall since Shields and

Reynolds numbers are small to moderate so that spheres do

not move far in vertical direction; if spheres move they stay

closely above the granular bed.

In terms of physical (as opposed to computational)

dimensionless numbers, the parameter space is thus five-

dimensional: h, Re,
qp

q , e, and l. One of our primary inter-

ests is in how erosion and solids mobility depend on the

Shields number h under laminar flow conditions, and if we

can identify a critical Shields number hc below which the

solids are (virtually) immobile. For this reason in this study

Shields numbers in the range 0.05 to 0.8 have been investi-

gated since experiments1,5 indicate hc to be well within this

range, at least for laminar flow. Particle-based Reynolds

numbers have been varied in the range of 0.02 to 0.6. We

anticipate the role of the density ratio (other than via h) to

be minor given the limited influence of inertia: the flow is

laminar and the spheres move slowly (St 	 2). As the

default density ratio we took
qp

q ¼ 4.0, a value of 3.0 was

considered as well, mainly to compare situations that have

the same Shields and Reynolds number but a different den-

sity ratio so that the hypothesis that inertia is of limited im-

portance can be assessed.

In liquid-solid systems the role of the restitution coeffi-

cient is relatively weak (much weaker than in gas-solid sys-

tems) because energy dissipation mainly occurs in the liquid

phase,18 not so much as a result of solid-solid contact. We

set e¼ 1.0 in all our flow simulations. Frictional (i.e., non-

smooth) collisions transfer—next to linear momentum—

angular momentum between particles, which in a solid bed

mobilized by a shear flow is a relevant mechanism: The

shear flow exerts a torque on the upper spheres; and we

expect that collisional friction influences the rotational

113303-3 Simulations of granular bed erosion Phys. Fluids 23, 113303 (2011)
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behavior of the spheres deeper in the bed and thus the behavior

of the bed as a whole. To investigate this we compare simula-

tions involving frictionless collisions (smooth particles, l¼ 0)

with simulations that have l¼ 0.1 (which was our base-case

friction coefficient) and up to l!1 (sticky collisions).

In addition to a physical parameter space, we deal with

numerical settings, the influence of which needs to be con-

sidered. These settings are discussed at the end of Sec. III

that describes the numerical method.

III. MODELING APPROACH

As in many of earlier works on direct simulations of

liquid-solid suspensions with full resolution of the interfaces,

we used the lattice-Boltzmann (LB) method11,12 to solve for

the flow of the interstitial liquid. The method has a uniform,

cubic grid (grid spacing D) on which fictitious fluid particles

move in a specific set of directions and collide to mimic the

behavior of an incompressible, viscous fluid. The specific

LB scheme employed here is due to Somers;19 also see

Eggels and Somers.20 The no-slip condition at the spheres’

surfaces was dealt with by means of an immersed boundary

(or forcing) method.13,14 In this method, the sphere surface is

defined as a set of closely spaced points (the typical spacing

between points is 0.7D), not coinciding with lattice points.

At these points the (interpolated) fluid velocity is forced to

the local velocity of the solid surface according to a control

algorithm; the local solid surface velocity has a translational

and rotational contribution. Adding up (discrete integration)

of the forces needed to maintain no-slip provides us with the

(opposite; action equals minus reaction) force the fluid exerts

on the spherical particle. Similarly the hydrodynamic torque

exerted on the particles can be determined. Forces and tor-

ques are then used to update the linear and rotational equa-

tions of motion of each spherical particle.

We have validated and subsequently used this method

extensively to study the interaction of (static as well as mov-

ing) solid particles and Newtonian and non-Newtonian flu-

ids. For instance, simulation results of a single sphere

sedimenting in a closed container were compared with parti-

cle image velocimetry (PIV) experiments of the same system

and showed good agreement in terms of the sphere’s trajec-

tory, as well as the flow field induced by the motion of the

falling sphere up to Re � 30.21 For dense suspensions (with

volume-averaged solids volume fractions up to 0.53), Derk-

sen and Sundaresan18 were able to quantitatively correctly

represent the onset and propagation of instabilities (planar

waves and two-dimensional voids) of liquid-solid fluidiza-

tion as experimentally observed.22,23

It should be noted that having a spherical particle on a

cubic grid requires a calibration step, as earlier realized by

Ladd.24 He introduced the concept of a hydrodynamic radius.

The calibration involves placing a sphere with a given radius

ag in a fully periodic cubic domain in creeping flow and

(computationally) measuring its drag force. The hydrody-

namic radius a of that sphere is the radius for which the meas-

ured drag force corresponds to the expression for the drag

force on a simple cubic array of spheres due to Sangani and

Acrivos25 which is a modification of the analytical expression

due to Hasimoto.26 Usually a is slightly bigger than ag with

a� ag typically equal to half a lattice spacing or less.

In previous papers,10,18,21,27,28 we have repeatedly

checked the impact of spatial resolution on the results of our

simulations and we consistently concluded that a resolution

such that a corresponds to 6 lattice spacings is sufficient for

accurate results (based on comparison with higher resolution

simulations and with experimental data) as long as particle-

based Reynolds numbers do not exceed values of the order

of 30. The simulations presented in this paper all have a reso-

lution such that a ¼ 6D. Once the spatial resolution is fixed,

the temporal resolution of the LB simulations goes via the

choice of the kinematic viscosity. In all simulations the vis-

cous time scale a2

� corresponds to 360 time steps (i.e., �¼ 0.1

in lattice units).

The time-step driven LB updates are linked with an

event-driven algorithm for the hard-sphere collisions. Once a

collision is being detected, all particles are frozen and the

collision is carried out which implies an update of the linear

velocities (and also angular velocities if l 6¼ 0) of the two

spheres involved in the collision event. Subsequently all

spheres continue moving until the end of the LB time step,

or until the next collision.

The fixed-grid simulations involving dense suspensions

as discussed here require explicit inclusion of sub-grid lubri-

cation forces.29 The low-Reynolds number expression for the

radial lubrication force on two equally sized solid spheres i
and j having relative velocity Duij � upj � upi reads16

Flub ¼
3

2
pq�a2 1

s
n � Duij

� �
; Flub;j ¼ �Flubn;

Flub;i ¼ Flubn; (4)

with s the smallest distance between the sphere surfaces

s � xpj � xpi

�� ��� 2a, and (as explained earlier in the context

of collision modeling) n the unit vector pointing from the

center of sphere i to the center of sphere j. Tangential lubri-

cation forces and torques have not been considered since

they are much weaker than the radial lubrication force; the

former scale with ln a
s

� �
, the latter with a

s. The expressions in

Eq. (4) need to be tailored for use in lattice-Boltzmann simu-

lations:18,29 (1) The lubrication force needs to be switched

off when sphere surfaces are sufficiently separated in which

case the LBM can accurately account for the hydrodynamic

interaction between the spheres (typically if s > D). (2) The

lubrication force needs to saturate when solid surfaces are

very close to account for surface roughness and to avoid

very high levels of the lubrication force that could lead to

unphysical instabilities in the simulations.

A smooth way to turn on and off the lubrication force

has been proposed by Nguyen and Ladd;29 instead of Eq. (4)

one writes

Flub ¼
3

2
pq�a2 1

s
� 1

d

	 

n � Duij

� �
if s 	 d; and

Flub ¼ 0 if s > d; (5)

with the modeling parameter d as the distance between solid

surfaces below which the lubrication force becomes active.

113303-4 J. J. Derksen Phys. Fluids 23, 113303 (2011)
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A second modeling parameter (e) is the distance below which

the lubrication force gets saturated: Flub ¼ 3
2
pq�a2

1
e � 1

d

� �
n � Duij

� �
if s 	 e. The default settings for the lubrica-

tion force modeling parameters were d ¼ 0:2a and

e ¼ 2 � 10�4a.

To summarize the numerical settings: the uniform grid

spacing was D ¼ a
6
; the time step was Dt ¼ a2

360�; the default

numerical settings for the of the lubrication force were

d ¼ 0:2a and e ¼ 2 � 10�4a. The sensitivity with respect to

the latter settings has been investigated.

In addition to physical and numerical parameters, the

necessarily finite size of the flow domain adds to the dimen-

sionality of the parameter space. The default aspect ratios

were L
a ¼ 20; W

a ¼ 10 and H
a ¼ 20. The particle bed typically

occupies the lower half of the flow domain so that the open

space above the bed has a height of approximately 10a. With

these default settings the number of spheres in a simulation

amounts to 286, of which 242 are mobile, and 44 make up

the monolayer glued to the bottom plate. We investigated the

impact of the aspect ratios, as well as the impact of the depth

of the particle bed on its global behavior. In an earlier paper

on shear flow above beds of fixed spherical particles10 it was

shown that the influence of the height of the free space above

the bed on drag and lift forces could be largely eliminated if

we scale the relevant flow quantities (velocities, hydrody-

namic forces and torques) by means of the shear rate result-

ing from the slope of the linear velocity profile well above

the bed: _c0 ¼ d uxh i
dz .

IV. RESULTS

A. Impressions of liquid flow and particle motion

We first consider three reference simulations that have

the default numerical settings and default aspect ratios as

defined above. They also have the same density ratio
qp

q ¼ 4.0, collision parameters (e¼ 1.0 and l¼ 0.1), and

approximately the same Reynolds number. They differ with

respect to their Shields number. The steady-state, time and

space (x and y) averaged interstitial liquid velocity profiles

are plotted in Figure 2. From these profiles _c0 is derived for

each simulation and subsequently Re and h are determined.

The three cases have Re¼ 0.121, h¼ 0.101 (case A);

Re¼ 0.122, h¼ 0.204 (case B); Re¼ 0.126, h¼ 0.420 (case

C). Figure 2 also shows the solids volume fraction profiles at

a resolution finer than the particle radius. The coherent fluc-

tuations in / are the consequence of the discrete nature of

the solids phase consisting of uniformly sized spheres, and

the fact that the relatively shallow layer of spheres was built

up starting from spheres glued to the flat bottom plate. The

partial entrainment of solid particles by the shear flow at the

top of the solids bed can be witnessed from the solids volume

fraction profiles extending higher up for higher Shields num-

bers. The latter is further detailed in single realizations of the

particle positions in the bed in Figure 3, with the particles

colored according to their absolute velocity; and in Figure 4

that shows vertical and streamwise velocities of individual

particles as a function of their vertical (z) center location in

the bed (this way of representing the data was inspired by

Figure 2 in Mouilleron et al.4). The higher the Shields num-

bers, the more particles attain higher velocities, and the liq-

uid flow is able to mobilize particles deeper in the bed.

Charru et al.1 observed in their experiments a slow com-

paction of the granular bed as a result of rearrangement of

particles due to the motion brought about by the sheared liq-

uid above the bed; a process that took place on a timescale

of the order of 106

_c0
. This timescale is well beyond our compu-

tational capabilities; the simulations reported here typically

run until t � 3�102

_c0
starting from t¼ 0 when we start moving

the upper wall over a zero-velocity liquid and particle field.

It then takes approximately 30 a2

� (� 4
_c0

with the default com-

putational settings) for the liquid momentum to penetrate

down to the granular bed. Impressions of the time evolution

of the reference simulations are given in Figure 5, where it

should be noted that all three reference simulations started

from the same sphere configuration. The bed height (defined

as the average z-center position of the top 44 spheres in the

bed) and the average translational kinetic energy per sphere

are used in Figure 5 as global characteristics of the beds. For

the lowest Shields number (case A) a compaction of the bed

and very little kinetic energy are observed. For this case A
bed height and kinetic energy are in fact time-correlated:

peaks in kinetic energy are associated with small humps in

bed height and occur when a sphere hops over another sphere

and falls back in the bed. Also for the intermediate Shields

number (case B) the bed compacts a little over time. Com-

paction, however, competes with entrainment of particles by

the shear flow in this case. The kinetic energy hardly ever

getting zero in case B implies (almost) continuous motion of

spheres. For the higher Shields number (case C) particle

entrainment by the flow almost from the start compensates

compaction so that initially the bed height increases and then

FIG. 2. Average solids volume fraction (left) and interstitial streamwise

liquid velocity (right) as a function of the vertical coordinate z for the three

reference cases A, B, and C as identified in the text.

FIG. 3. (Color online) Single realizations of the reference sheared granular

beds A, B, and C. The spheres are shaded/colored according to their absolute

velocity: red: up

�� �� � 0:1 _c0a; yellow: 0:1 _c0a > up

�� �� � 0:01 _c0a; green:

0:01 _c0a > up

�� �� � 0:001 _c0a; blue: 0:001 _c0a > up

�� ��.
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reaches a quasi steady state after approximately t � 160
_c0

. The

particle bed is in continuous motion for this case, i.e., the

average particle kinetic energy never drops to zero.

B. Impact of computational and modeling choices

In this section, the impact of the modeling choices on

the overall behavior of the granular beds is assessed. In addi-

tion to characterizing the beds in terms of their height and

translational solids kinetic energy, other global measures

will be used for comparison, such as the solids volumetric

flux.

The finite number of spheres in the default cases (286 of

which 242 are mobile and 44 glued to the bottom plate)

makes the results sensitive to the initial bed configuration as

can be seen in Figure 6. Here, the intermediate Shields num-

ber case B is repeated starting from a sphere assembly cre-

ated with random numbers independent of the numbers that

created the original bed. The alternative bed (case B2) starts

as slightly thicker (by 0.1a) compared to the original bed.

The B2-bed evolves to a height comparable to the eventual

height of case B, and does so on a similar time scale. The ki-

netic energy fluctuations (Figure 6, bottom panel) of the two

cases are similar as well. Quantitatively there are differences.

The time-averaged values of the kinetic energy signals

shown in Figure 6 differ by some 15%, and the RMS values

of the fluctuations by 1% (the actual numbers are given in

the figure caption); this is indicative for the uncertainty as a

result of the finite number of spheres per simulation and the

finite system size and should be kept in mind when interpret-

ing the results to come.

With our simulations we intend to mimic deep granular

beds, i.e., beds that extend deeper than the liquid flow is able

to penetrate. To check if this is the case we again took simu-

lation B and compared it to a case where we had one extra

FIG. 4. Individual particle velocities (left: x-component; right: z-compo-

nent) as a function of the z-location of the particle. Three independent real-

izations (3� np data points per panel, with np¼ 286 the number of spheres

in each simulation). From bottom to top simulations A, B, and C.

FIG. 5. (Color online) Time series of bed height (top) and average kinetic

energy of the solid particles (bottom). The bed height is defined as the aver-

age z-center-position of the 44 particles highest up in the bed. The particle’s

linear kinetic energy is non-dimensionalized according to k
p �
1
2

upj j2
_c0að Þ2 ; hk
pi

indicates averaging over all particles in the bed. Cases A, B, and C as

indicated.

FIG. 6. (Color online) Time series of bed height (top) and average kinetic

energy of the solid particles (bottom). Comparison between two cases with

the same settings but different initial particle configuration. The time-

averaged kinetic energy for case B is 6.48�10�4, for case B2 it is 5.52�10�4;

standard deviations are 5.19�10�4 and 5.13�10�4 for B and B2, respectively.
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layer of spheres (case Bþ) and a case with one less layer of

spheres (case B�). The three beds were created independ-

ently so that (also) configuration effects as discussed above

are anticipated. When adding or removing a sphere layer, the

liquid layer above the bed was kept at approximately

the same thickness. Given the unpredictability in the way the

particles organize themselves and get entrained as a result of

the flow the shear rates and thus Re and h differ slightly

between case B: Re¼ 0.122, h¼ 0.204; Bþ: Re¼ 0.118,

h¼ 0.197; and B�: Re¼ 0.131, h¼ 0.218. In Figure 7 the

cases are compared in terms of time series of translational

kinetic energy. Since now the number of spheres per simula-

tion is different we present the non-dimensional total kinetic

energy contained in translational motion of all spheres

involved in each simulation (nphk
pi with np the number of

spheres per simulation). For sufficiently deep granular beds,

this quantity should become independent of the depth of the

bed.

Results in Figure 7, however, indicate a systematic

effect of bed height: They show that the shallowest bed has

on average significantly higher kinetic energy levels com-

pared to the other two beds that have approximately the

same average kinetic energy. The kinetic energy fluctuation

levels are roughly the same for the three cases. To further

investigate the difference in kinetic energy between case B�

on one side and B and Bþ on the other side, the cases are fur-

ther compared in terms of average z-profiles of solids volume

fraction u, streamwise liquid velocity ux, and particle vol-

ume flux /upx in Figure 8 (we present particle flux rather

than particle velocity upx to emphasize volumetric transport

of solids; not only the solids velocity matters, also how

many particles have that velocity).

When here and later in this paper average data in terms

of z-profiles are presented averaging is done in space over

the homogeneous x and y-direction and over a time span

starting at t ¼ 100
_c until (at least) t ¼ 200

_c . In this time interval

the flow systems are largely in a stationary state (see, e.g.,

Figure 5) except for a slight compaction of the bed if h is

small (typically h < 0:2).

In Figure 8 the most significant difference between the

cases is the much greater particle flux in case B�, which

explains its greater kinetic energy. Integrating the /upxwith

respect to z gives the total solids volumetric flow rates per

unit (y) width as 0.0348 _c0a2 for case Bþ, 0.0326 _c0a2 for case

B, and 0.0395 _c0a2 for case B�, with _c0 approximately equal

in the three cases (see the middle panel of Figure 8). Given

the shape of the /upx-profiles, these differences are not a

result of particle motion near the bottom of the shallow bed.

The primary reason is the shallow bed being rougher at the

surface so that the shear flow is better able to penetrate the

bed and move the spheres. We quantify bed roughness by

determining the root-mean-square of the z-center locations

of the top 44 spheres: zrms

a ¼ 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

z2
c;i

n �
zc;i

n

� �2
h ir

(with

n¼ 44). Time average values (obtained after steady state

was reached) are zrms

a ¼ 0.57, 0.47, and 0.49 for B�, B, and

Bþ. respectively. The higher surface roughness for bed B� is

due to fewer sphere layers above the flat wall and thus less

packing opportunity for spheres. This makes shallower beds

have rougher bed surfaces. The fairly good correspondence

between beds B and Bþ in terms of solids flux and bed

roughness indicates that the depth of granular bed B (ten

times the sphere radius a) is sufficient to have limited influ-

ence on its overall dynamics; 10 a is the default depth we

work with in the rest of this paper.

The subgrid lubrication force is one of the main model-

ing steps in the simulations. To assess the influence of lubri-

cation forces on the overall granular bed dynamics we

compare the results of three simulations: Case C which has

h¼ 0.420 and for the rest default settings; a case as Case C
but without lubrication: Case Cnlub; and a case as Case C
where the saturation distance e of the lubrication force was

increased by a factor 10: instead of the default e ¼ 2 � 10�4a
it was set to e ¼ 2 � 10�3a. The latter case is referred to as

Crlub. All three cases start with the same sphere configuration.

The results in Figure 9 show that the lubrication force

plays a large role in the amount of solids being transported.

The effect of its precise settings, however, is less significant.

Clearly the mobility of the bed increases without lubrication

force (see the right panel of Figure 9). This is because it is

now easier for spheres to separate and move over the bed

surface (separating spheres induce an attractive lubrication

force). In the same spirit, lubrication makes it harder for

spheres that are detached from the bed to settle back into it

due to its repulsive nature for approaching particles.

The friction coefficient in particle-particle collisions is an

unknown factor. For instance, in the detailed experimental

work due to Charru and co-workers1,2,4 no data for the friction

coefficient is provided (the papers do consider “effective”

friction coefficients but these are overall ratios of shear and

FIG. 7. (Color online) Time series of the total kinetic energy of the solid

particles. Comparison between different granular bed heights. The time-

averaged total kinetic energy for case B�, B, and Bþ are 0.290, 0.185, and

0.168, respectively. The root-mean-square values of the fluctuations are

0.148, 0.148, and 0.158 for cases B�, B, and Bþ, respectively.

FIG. 8. (Color online) Average solids volume fraction (left), streamwise liq-

uid velocity (middle), and solids flux (right) as a function of z. Comparison

between different granular bed heights. Variants of case B (Re � 0.12, h �
0.20).
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normal particle stress in the context of e.g., Bagnold’s

model,30 not the “microscopic” friction coefficient l). It is

anticipated, however, that the level of microscopic friction

between particles is a relevant parameter for bed mobility,

with a-priori unknown consequences. Increased friction

makes particles stick more, at least in terms of their relative

tangential motion thus possibly making it harder to mobilize

the bed. On the other side, more friction could facilitate a

sphere to roll over a neighboring sphere at the bed surface. As

we did for assessing the effect of lubrication, we took case C
(h¼ 0.420) as a base case and ran cases that had friction coef-

ficients l different from its base-case value of 0.1. Statistical

data were collected in the same manner as indicated above. In

addition to solids volume fraction and solids flux, also data

regarding the spheres’ angular velocity component along the

y-axis (which is the main axis of rotation given the overall @ux

@z
fluid velocity gradient) are discussed since frictional collisions

transfer tangential momentum.

The behavior of the bed clearly depends on the friction

coefficient, see Figure 10. Higher friction increases the parti-

cle flux in the very top layer; less friction allows for more

motion (translation and rotation) deeper in the bed. The eas-

ier rolling of top spheres over underlying ones at higher fric-

tion is responsible for the former effect. The deeper

penetration of motion in the bed in the absence of friction is

induced by the shear flow that makes the spheres in the top

layer strongly spin. This spinning is transferred deeper in the

bed by the interstitial fluid and not hindered by (dry) friction.

Only a little friction (l ¼ 0:1) inhibits this process. The rota-

tion of spheres inside the bed enhances the spheres’ mobility

(also translational) deeper in the bed. A different representa-

tion of largely the same data but now in terms of average sol-

ids and liquid velocities shows minor sensitivity with respect

to l (Figure 11). This representation does show that (at least

for h � 0:4) the solids velocity slightly lags the liquid veloc-

ity which agrees with experimental observation in Mouil-

leron et al.4

In their experiments, Charru et al.1 evaluated the proba-

bility density function (PDF) of the streamwise component

of particle velocity. They observed exponential PDFs that—

if particle velocity was scaled with _ca—were independent of

h (as long as h 	 0:24). The latter result is not to be expected

from our simulations: e.g., in Figure 5 the kinetic energy of

particles scaled with _cað Þ2 clearly depends on h. It has to be

realized, however, that in the experiments the Shields num-

ber was varied by changing the shear rate _c while keeping

the other parameters in h constant. In the simulations, gravi-

tational acceleration g was varied to vary the Shields number

while _c was (mostly) kept constant (we used this strategy to

allow for changing h while keeping Re constant). This

implies that scaling particle velocity PDFs with the Stokes

settling velocity Us ¼ 2
9

g qp�qð Þa2

q� in the simulations is equiva-

lent to scaling with _ca in the experiments; note that the

Shields number is proportional to the ratio
_ca
Us

. Such PDF

scaling of the simulations should give h-independent results

to be consistent with the experimental results.

Figure 12 shows particle velocity PDFs derived from

simulations with h¼ 0.15, 0.20, and 0.40 (all at Re �0.12).

As in the experiments1 a cut-off velocity Uco was used to dis-

card particles that hardly move. The cut-off in the experi-

ments was Uco

Us
¼ 0.02 and the same value was adopted in the

simulations. Similar and more or less exponential velocity

PDF’s can be observed in Figure 12 for the three Shields

numbers. For h¼ 0.15 experimental data and simulated data

can be directly compared; the average streamwise particle

velocities are 0.32Us and 0.31Us in experiment and simula-

tion, respectively. Different from the experiments, however,

the average particle velocity does appreciably depend on the

choice of the cut-off velocity: if Uco

Us
is reduced by a factor of

FIG. 9. (Color online) Average solids volume fraction (left), streamwise liq-

uid velocity (middle) and solids flux (right) as a function of z. Comparison

between different settings for the lubrication force: C has standard settings,

Crlub has a 10 times smaller lubrication force saturation level

(e ¼ 2 � 10�3a), Cnlub has no lubrication force. Case C: Re � 0.12, h � 0.42.

FIG. 10. (Color online) Average solids volume fraction (left), solids flux

(middle), and particle y-angular velocity weighted with the solids volume

fraction (right) as a function of z. Comparison between different settings of

friction coefficient l. Variants of case C. Case C: Re � 0.12, h � 0.42.

FIG. 11. (Color online) Average solids and liquid velocity for four variants

of case C (Re � 0.12, h � 0.42), which only differ by the friction factor l.

The solids velocity is indicated only if locally / > 0:025.
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two, the average velocity goes down by some 20%. This

implies that in the simulations there is a less clear distinction

between moving and static spheres compared to the

experiments.

C. Shields and Reynolds number effects

We now fix the friction coefficient to l ¼ 0:1 and inves-

tigate how the bed mobility depends on the Shields number,

the Reynolds number, and the solid-over-liquid density ratio.

Based on the results (mainly experimental) from the litera-

ture it is anticipated that the Shields number is the primary

parameter for the onset of bed mobility and we want to see if

a critical Shields number can be identified based on the

results of our simulations.

The velocity profiles in Figure 13 show a clear trend of

increasing solids velocity if the Shields number is increased.

As argued above, a more sensitive parameter for bed mobility

is the solids volumetric flow rate that combines particle

velocity and (local) solids volume fraction. Integral volumet-

ric solids fluxes (symbol u0, solids volume per unit time and

unit lateral (y) width) as a function of h are given in Figure

14. Next to sensitivities with respect to the Shields number,

the figure considers effects of Re (top panel) and
qp

q (bottom

panel). If we would want to identify a critical Shields number

in the data set displayed in Figure 14, it would be between

the second and third data point, i.e., 0:10 < hc < 0:15.

Between h ¼ 0:10 and h ¼ 0:15 a fairly clear transition takes

place from a virtually immobile bed to a bed with a some-

what significant solids flux. More interestingly, the transition

takes place in the same h-interval irrespective of the Reyn-

olds number and the density ratio (within the parameter range

investigated of course).

The hc interval as identified through the simulations is

well in line with Ouriemi et al.’s experimental observations5

that indicate hc ¼ 0:12 6 0:03 for 4 � 10�6 < Re < 0:2 (note

that Ouriemi et al. based their Reynolds number definition on

sphere diameter, not on sphere radius). In turn, the results due

to Ouriemi et al. were compared with a large body of experi-

mental data collected from the literature; see Figure 5 in

Ouriemi et al.5 These older data only partly agree with Our-

iemi et al.’s results. Different from Ouriemi et al., the trend

in some of the older data with respect to the Reynolds number

is a fairly significant increase in hc if Re decreases in ranges

where Ouriemi et al. have constant hc. Typically hc would

increase from 0.1 for Re¼ 0.025 to 0.2 for Re¼ 3�10�4 (e.g.,

FIG. 12. (Color online) PDFs of streamwise particle velocity for three val-

ues of the Shields number as indicated. Re � 0.12. Particles with streamwise

velocity less than Uco ¼ 0:02Us have been discarded in the PDFs.

FIG. 13. (Color online) Average solids and liquid velocity for four variants

for different Shields numbers and further base-case conditions. The solids

velocity is indicated only if locally the solids volume fraction exceeds 2.5%

(/ > 0:025).

FIG. 14. Averaged volumetric flux per unit lateral width of solids /0 as a

function of the Shields number h. Top: for
qp

q ¼ 4:0 and various Re; bottom:

for Re¼ 0.12 and
qp

q ¼ 4:0 and 3.0. Note the different vertical scales in the

two panels.
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the data from White31). To check if we could discern a trend

with Re, we did a few additional simulations around the sus-

pected hc for various Reynolds numbers, see Figure 15. As

before, we used the solids volume flux per unit (lateral) width

as a metric for bed mobilization. There is no clear trend with

Re in Figure 15. There might be a weak trend towards lower

solid fluxes for higher Reynolds numbers. If anything, such a

trend would imply a very weak decrease in critical Shields

number with decreasing Re, opposite to the trend in the data

as compiled by Ouriemi et al.5

Away from the critical Shields number, Reynolds num-

ber effects on bed mobility are very significant (see the upper

panel of Figure 14). For instance, at h ¼ 0:8 the solids vol-

ume flux increases by a factor of 5 if Re goes from 0.04 to

0.37. The density ratio is a less critical parameter: Changing

the density ratio has minor effect on bed mobility as a func-

tion of h (see the lower panel of Figure 14).

D. Inside the sheared granular bed

For a mechanistic view of solid bed erosion we now

briefly look into forces on individual spheres in the granular

bed. In Figure 16 cross sections through beds sheared at dif-

ferent Shields numbers are shown. The liquid phase is col-

ored with pressure contours. The vectors indicate the

resolved hydrodynamic force (i.e., not the sub-lattice lubrica-

tion force) and velocity of individual spheres in the bed.

Clearly the spheres high up in the bed feel strong differential

pressure and associated hydrodynamic forces. For the higher

Shields numbers, pressure fluctuations extend deeper in the

bed. Non-dimensional forces and velocities increase with

increasing Shields number. Hydrodynamic force and veloc-

ity are not aligned which is obvious given the obstruction

formed by surrounding particles, and gravity and lubrication

also acting on the particles.

To relate to the earlier observations regarding bed mo-

bility as a function of the Shields number and the notion of a

critical Shields number in the range 0:10 < hc < 0:15 force

distribution functions are analyzed. The vertical component

of the hydrodynamic force is relevant since it would be

responsible for overcoming net gravity, lifting a sphere up so

that it can be transported over the bed by the liquid shear

flow. Also the horizontal force component could be critical

for bed mobilization, specifically if the sphere-sphere con-

tacts are frictional. Then—as the inset in the top panel of

Figure 17 suggests—the horizontal force provides a torque

FIG. 15. Average volumetric flux per unit lateral width of solids /0 as a

function of Re for three (small) values of h.

FIG. 16. (Color online) Cross sections through the

granular beds; single realizations of the pressure distri-

bution in the liquid along with sphere velocities (black,

thin-lined vectors) and hydrodynamic forces on the

spheres (red, thick-lined vectors). [a]: h ¼ 0:10; [b]:

h ¼ 0:20; [c]: h ¼ 0:42; [d]: h ¼ 0:64. Re¼ 0.12�0.13

in all cases.
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with respect to a sphere-sphere contact that makes one

sphere roll over an underlying one, slightly lifting the mov-

ing sphere at the same time.

The probability density functions of the hydrodynamic

vertical force and the horizontal, streamwise force on the

spheres in the top layer in the beds are given in Figure 17.

These are time and space-averaged functions: averaging over

the two homogeneous directions and over time during a sta-

tionary time interval of 100 a2

� . The streamwise (x) component

PDFs are clearly skewed towards positive values which

should be given the shear flow in positive x-direction; strong

negative x-forces are not exceptional though. Also the vertical

forces have a skewness towards the positive (is upwards), spe-

cifically noticeable for the lower Shields numbers. This is due

to the inertial Saffman lift force experienced by the spheres.

A low-Reynolds number expression for lift on a single sphere

attached to a flat wall in shear flow is9 Fhz ¼ 9:22q _c2
0a4, so

that Fhz
4
3
pa3 qp�qð Þg ¼ 4:40hRe. With Re¼ 0.12 in Figure 17, the

lift force becomes 0:5h which is of the same order of magni-

tude as the averages of the vertical force PDFs. The root-

mean-square values of the z-force are, however, one to two

orders of magnitude larger and thus much more relevant

quantities for mobilization of the spheres in the bed.

From the PDFs in Figure 17 the probability of a sphere

in the top layer feeling a dimensionless force larger than

unity has been derived. For the vertical force this implies the

probability of a sphere feeling a vertical hydrodynamic force

that overcomes its net gravity. For the streamwise force com-

ponent it would be a measure of the probability of a sphere

being able to roll over a neighboring sphere. Probabilities of
Fh

4
3
pa3 qp�qð Þg � F


h
being larger than unity as a function of h are

given in Figure 18. For the low h end of these data there is

resemblance with the results in Figure 14 on solids flux that

we used for identifying the h-interval in which incipient sol-

ids motion occurs. Specifically the chance of F

hz
> 1 is prac-

tically zero for h 	 0:1 and gets significant for h � 0:15. The

horizontal force probability gets non-zero for h � 0:1.

Therefore the horizontal force exceeding net gravity is tenta-

tively less critical for the onset of bed mobility.

V. SUMMARY AND CONCLUSIONS

We studied erosion of beds of fine particles supported

by a flat bottom wall as a result of a fluid flow. The flow over

the bed was a laminar simple shear flow, driven by moving

an opposing flat wall. The Reynolds number based on the

particle radius and the overall shear rate was in the range

0.02 to 0.6. Bed erosion is largely governed by the competi-

tion between gravity and viscous hydrodynamic forces. This

is reflected in the definition of the Shields number as an

order of magnitude estimate of the ratio of these two forces:

h � q� _c
g qs�qð Þ2a. For laminar flow, onset of bed erosion occurs

beyond a critical Shields number of approximately 0.15.5,6

In this paper, simulations were described that to a large

extent resolve the phenomena occurring during bed erosion

for relatively simple systems: beds of monosized, spherical

particles that only interact through hard-sphere collisions (no

other direct sphere-sphere interaction potentials) and through

the interstitial liquid. Modeling enters the simulations

through lubrication forces and through the friction coeffi-

cient. Regarding lubrication forces: The numerical procedure

(the lattice-Boltzmann method) uses a fixed grid so that the

hydrodynamic interaction between very closely spaced solid

surfaces is not resolved. This is compensated for by explic-

itly adding lubrication forces (based on analytical expres-

sions) to the equations of motion of the spheres. In the same

spirit the (dry) friction coefficient accounts for (unresolved)

FIG. 17. (Color online) Probability density functions of the resolved hydro-

dynamic force on the top layer of spheres in the beds for various Shields

numbers as indicated. Re¼ 0.12�0.13. Top: force in streamwise (x) direc-

tion; bottom: force in vertical (z) direction.

FIG. 18. Probability of F

h
� Fh

4
3
pa3 qp�qð Þg on top layer spheres being larger

than 1 as a function of the Shields number. Re¼ 0.12�0.13.
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surface roughness of the spheres. The sensitivity of the

global bed dynamics with respect to these modeling steps

was assessed. A little friction (l ¼ 0:1) was sufficient to sup-

press unphysically strong rotation of solids deep in the bed.

Solids mobility was significantly reduced if lubrication

forces were active which was expected. Solids mobility was

not sensitive with respect to modeling settings of the lubrica-

tion force.

In the simulations, the onset of bed erosion occurred

between a Shields number of 0.10 and 0.15 which is in line

with experimental observations. The Reynolds number and

the density ratio were not of influence on the interval con-

taining the critical Shields number. It was argued that—since

the critical Shields number does not depend on the Reynolds

number—reversible viscous forces, not irreversible inertial

(lift) forces are responsible for incipient erosion. For Shields

numbers much higher than the critical value the Reynolds

number has profound influence on the bed dynamics and the

extent to which the flow is able to mobilize and transport

solids.

Analysis of the simulation data showed that erosion sets

in once the probability of a sphere feeling a vertical hydrody-

namic force larger than its own net weight becomes non-

zero. At that stage probabilities of horizontal hydrodynamic

forces larger than the net weight are already significant.
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