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Particle imaging velocimetry experiments and lattice-Boltzmann
simulations on a single sphere settling under gravity
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A comparison is made between experiments and simulations on a single sphere settling in silicon oil
in a box. Cross-correlation particle imaging velocimetry measurements were carried out at particle
Reynolds numbers ranging from 1.5 to 31.9. The particle Stokes number varied from 0.2 to 4 and
at bottom impact no rebound was observed. Detailed data of the flow field induced by the settling
sphere were obtained, along with time series of the sphere’s trajectory and velocity during
acceleration, steady fall and deceleration at bottom approach. Lattice—Boltzmann simulations prove
to capture the full transient behavior of both the sphere motion and the fluid motion. The
experimental data were used to assess the effect of spatial resolution in the simulations over a range
of 2—8 grid nodes per sphere radius. The quality of the flow field predictions depends on the
Reynolds number. When the sphere is very close to the bottom of the container, lubrication theory
has been applied to compensate for the lack of spatial resolution in the simulatior2002
American Institute of Physics[DOI: 10.1063/1.151291]8

I. INTRODUCTION obtain restitution coefficients for submerged particles collid-
ing with a wall. The parameter that determines rebound is the
Particle motion and particle collisions play an important Stokes number $t= 1/9Rep,/ps). Gondretet al® demon-
role in the performance of many industrial processes involvstrated that the critical Stokes number above which rebound
ing suspension flow. For instance, in industrial crystalliza-pccurs is approximately 10. In our experiments, the Stokes
tion, crystal—crystal collisions determine kinetic mechanismsyumber was varied between 0.19 and 4.13 and no rebound
such as agglomeration and nucleation due to crystal fractufyas observed.
ing. Presently, we are developing a method to study suspen- e chose to perform the experiment in a closed con-
sions under turbulent conditions. For this method, it is atyziner for a number of reasons. First, the box width to par-
tempted to fully resolve the flow field around the particlesticie diameter ratio was kept relatively small, to avoid as-
and to make a direct coupling between the particle and thg mptions regarding the domain size and external boundary
fluid motion. To validate the way the particles are repre-conditions in the simulations. Thus, the influence of the con-
sented in the simulation procedure, we compare experimeRainer walls on the particle motion is contained both in the
tal and numerical results on the motion of a single sphergyperiment and in the numerical simulation. Second, the ex-
settling in a closed box. In the experiment, the transient MOperiment is transient and has a limited time-span. This has
tion of a single sphere and its associated flow field werghe agvantage that the transient character of the simulations
measured from the moment of release to a steady-staté Qo pe assessed throughout the different stages of accelera-
maximum settling velocity to deceleration and rest at th&jo, steady fall and deceleration at bottom approach. The
bottom of the box. For this experiment, the Reynolds numyirqt ghjective of this paper is to present our experimental
ber, based on the steady-state settling velocity of a sphere i, o, 4 settling sphere in a confined geometry. The data set
an infinite medium Re=p¢u..dy/ur) was varied between .,ngists of the velocity field of the fluid surrounding the
1.5 and 32. This range of Reynolds numbers was chosefuing sphere and the trajectdiiye., position as a function
because it corresponds to the range of Reynolds numbegg yine) The velocity field has been measured using cross
encountered in our sample crystallization process for producs, a|ation particle image velocimefryPIV). The PIV ex-

tlon:f am.rr}onluml'sulfate c:jysta’rs. I has b died periment is described in the next section. The second objec-
particle settling towards a wall has been studied prey, . s 1o present our approach to the simulation of freely

viously by Brenne?, v_vho derived an analytical solution in moving particles based on the lattice-Boltzmann method.
the creeping flow regime. However, at the Reynolds number§hiS method was chosen because it provides a robust nu-

studied, the pa_trt|cle_ IS \_/veII out of this regime. Recent EXPeIl i erical scheme that can efficiently treat the complex geom-
mental work in this field has been presented by sever

_ . aétry of freely moving particles. A further advantage of this
6

authors]™® who studied the wall approach and rebound, tomethod is that it can be parallelized at high computational
efficiency. The use of the lattice-Boltzmann scheme for

Telephone: +13-15-2781400; fax: +13-15-2782838; electronic mail. Simulation of suspensions has been proposed by Eddd,
A.tenCate@tnw.tudelft.nl who also presented validation of his method. A number of
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other author¥-*?have used the lattice-Boltzmann method totime) and the associated flow field of a settling sphere from
simulate suspended particles. Recent developments on diretd moment of release until rest at the bottom of a vessel,
simulation of suspensions can also be found in Koch andvhere the ratio of the vessel dimensions to sphere radius was
Hill. 13 kept relatively small, such that the full flow field could be
Our approach differs from the method of these authors irsimulated under identical conditions.
two ways. First, we use a scheme for solving the lattice- As the settling sphere, a precision Nylon bearing with a
Boltzmann equation, based on the work of Eggels andliameterd,=15mm and density,=1120 kg/nt was se-
Somerst* This scheme explicitly treats the higher order lected. The container dimensions were chosendapth
terms in the lattice-Boltzmann equation which improves thexwidthx height=100x100xX160 mm (see Fig. 1 Upon
stability of the numerical scheme and allows for the use of astart of an experiment, the sphere was released while simul-
low kinematic viscosity. Second, we use a fundamentally diftaneously triggering the camera system to start filming. The
ferent method for implementation of the moving no-slip sphere was hanging 120 mm from the bottom of the tank at
boundary at the surface of the solid particle. In our approachthe capillary tip of a Pasteur pipette that was connected to a
we apply the adaptive force-field technique that has beemacuum system. The sphere was released by abruptly open-
used in the work of Derksen and Van den AkReo imple-  ing an electronic valve, thus disconnecting the vacuum from
ment both the rotating impeller and the steady vessel walls ithe pipette.
the numerical study of the turbulent flow in a stirred vessel.  Various types of silicon oil were used as the working
To our knowledge this approach has not been applied previluid, because of their good optical accessibility and weak
ously for simulating freely moving particles. However, basedtemperature dependency of the viscosity. The Reynolds num-
on the good results obtained in previous studté$we had  ber of the settling sphere was based on the sedimentation
confidence that this approach could also be used to simulaielocity u,, of a sphere in an infinite medium. To determine
freely moving particles at a relatively low spatial resolution u,., a relation for the drag coefficient due to AbraHdmwas
per particle, bearing in mind that the method needs to besed:
applied to simulate many particle®©(10%)) in a turbulent
flow. C.= 24 [9.06
Therefore, our final objective is to assess and bench- 47 (9.062 \/R—e
mark our numerical method with the flow cases considered ) ) _
in this paper. In Sec. Ill, a number of specific details of theThe four experimental cases are defined in Table I.
setup of our particle simulations are discussed. A comparison  1he flow field was visualized with seeding particles illu-

between the experimental and numerical results is mad@inated with a(lase) light sheet. As the light source, a
in Sec. IV. Spectra-Physics 4W Argon-ion lasg2016-05 operating in

all lines mode was used. A cylindrical and a spherical lens
converted the laser beam into a sheet of 180 thickness.
The laser sheet entered the vessel via the bottom. Neutrally
The objective of the experiment was to accurately meabuoyant hollow glass spheres approximately 4@ in size
sure both the trajectoryi.e., the position as a function of were used as seeding particles. A continuous camera with a

206 \2
) (]

Il. EXPERIMENTAL SETUP

TABLE I. Setup of the sedimentation experiments.

Pt It U, Re St Camera frequency  Resolution
Case number  [kg/m] [Ns/n?] [m/s] [-] [-] [s7Y [-]
CaseE 1 970 373 0.038 15 0.19 60 low
Case E 2 965 212 0.060 4.1 0.53 100 low
Case E 3 962 113 0.091 11.6 1.50 170 high
Case E 4 960 58 0.128 31.9 4.13 248 high
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A 2). A raw image is given in Fig. @). As can be seen, the
(a) () leading side of the sphere was made dark to prevent overra-
diation due to reflections at the sphere surface. In each frame,
15mm¢r ; the sphere position had to be determined accurately for a
good interpretation of the flow field. Because the laser sheet
enters from the bottom and is blocked by the sedimenting
45 mm sphere, no fluid velocities could be measured behind the
P — sphere[Fig. 4@)]. The sphere’s position was determined
""""" from the colored top of the sphere. The motion blur was
32mmI 45 mm removed from the sphere by using an edge-preserving Ku-
v wahara filtet® [Fig. 3(b)] and after having applied a thresh-
old [Fig. 3(c)], they position of the sphere was determined at
FIG. 2. Measurement positions at hi¢® and low (b) resolution. pixel accuracy[Fig. 3(d)]. The resulting sphere trajectories
and velocities are given in Fig. 5.
frame rate up to 250 Hz and an array size of 512 A raw vectc_>r ir_nage_ of t_he flow at a pa_rticle Reynolds
X512 pixels was used to record the experiment. The flowUMPer of 1.5 is given in Fig.(d). Interrogation was done
field was measured on a grid of interrogation ar@as). An ~ With IAs of 32X 32 pixels with a 50% overlap, resulting in a
IA typically contained 3X 32 pixels. The fluid velocity was total of 961 vectors per image. After determination of the
determined in each interrogation area by estimating the dissPhere position, the vectors inside and behind the sphere
placement of the seeding particles between two consecutiwéere removed from the image aitfbr referenceg a sphere
frames through cross correlatioh. was placed in the figure, as can be seen in Fig).4n this
The desired spatial resolution and the maximum camerfigure, the maximum velocities are found closely underneath
frame rate set a restriction to the maximum fluid velocity thatthe sphere where tracer particle displacements of approxi-
can be accurately measured, as between two frames tmeately 7 pixels were found. Velocities far away from the
tracer particles are not allowed to shift more than 1/4 part okphere become very low, which gives particle displacements
the linear size of an interrogation aré@his limits the maxi- smaller than 0.5 pixel. Sub-pixel displacements were esti-
mum sedimentation velocity of the sphere, which can bemnated using a Gaussian peak fit estimafarhe accuracy is
taken as a measure for the maximum fluid velocity during ampproximately 0.1 pixel for displacements larger than 0.5
experiment. The required resolution depends on the Reysixe| leading to a relative error of 2% for the highest veloci-
nolds number of the flow, because at higher Reynolds nunes \yhereas the relative error is approximately 17% for par-
bers, the structures in the flow become smaller. The flow Wagq|e displacements less than 0.5 pixel. After removal of the

{Eealsured atl etl_theIr:_of thg two r:esotlﬁnons given in F'ﬁ' 2- Alectors inside and behind the sphere, approximately 10 spu-
€ low resolutior{Fig. 2b)], when the array size is chosen rious vectors remain per frame. This is about 1% of the total

to map three sphere diameters, the maximum allowed sphere L .
o S . “amount of vectors which is low compared to a typical value
velocity is 0.18 m/s, which is larger than any of the settling

velocities of the Nylon sphere as given in Table I. At the highOf 5% encquntereq n turbulgnt flow f|ela%Th|s IS dug to
resolution[Fig. 2@)], the maximum allowed velocity is 0.13 the flow being laminar and V|r'FuaIIy tWO-dlmenspnal in the
m/s, which is close to the sedimentation velocity of cade ~ C€Nter plane of the sphere, which results in practically no out
However, the sphere is expected to move at a velocity that i8f Plane motion. To test the reproducibility of the experi-
lower thanu.. due to hindrance from the container walls. ment, all measurements were done twice. In Figs) &nd
Based on the 1/4 part displacement rule, the camera franf(d), the trajectories and sedimentation velocities have been
rate was adjusted for each experiment. plotted for casd=1. The two trajectories practically coincide.
To capture the full trajectory of the particle, three over- The measurements at higher Reynolds numbers give compa-
lapping fields of view(FOV) were used at low resolution rable results. The flow fields around the sphere of dase
(casesE1l andE2) while the measurements at high resolu-are presented in Fig. 4 to demonstrate that the PIV measure-
tion (casesE3 andE4) were done in four FOV'ssee Fig. ments yields an accurately reproducible result here as well.
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A
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X

FIG. 3. Processing steps in detection of sphere position.
(a) Raw PIV-recording with spheréb) Part of record-

ing after a Kuwahara-filter has been appliég). Result

of thresholding imag¢b). (d) Magnification of the rear
side of the sphere.

(a) (b) (o) (d)
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FIG. 4. Measurement of the flow field BRte=1.5 (E1)

at a dimensionless gap height lofd,=0.5. Raw flow
field (a) and flow field after removal of the vectors at
and behind the sphefb) with a second measurement at
the same Reynolds number and sphere positon

IIl. SIMULATION the drag-force on the viscosity. As a consequence of this

dependency, if one wants to perform accurate dynamic simu-

periment, a lattice-Boltzmann schefhewas used. This lations Of particles with a .radlu's of a limited number of gpd
nodes,(iii) a separate calibration procedure for the particle

scheme exploits a microscopic model for fluid motion on 8radius is required. This calibration and scaling procedure of
uniform cubic lattice. Fluid masses propagate on the lattice q ’ gp

Collision rules that conserve mass and momentum guarantége s(;r(;w_lt.l_latlﬁr}stl)s_dli_cusfsed af‘d fme(Ily)ttr:je a‘;}P“rf"?‘“O” Of. d
that, in the limit of low Mach numbers, both the continuity an additional lubrication force IS presented, which IS require

equation and the Navier—Stokes equations for incompres%\-’hendt?eId'Stiﬂce betwegg the partlcle and the wall has re-
ible fluid flow are satisfied. vced fo fess than one grd spacing.

In this section, a number of issues will be addressed tha
had to be solved to make our simulation method applicabl
to freely moving particles. First, we explain the implementa-  The implementation ofmoving boundary conditions in
tion of the no-slip boundary condition at the particle surfacethe lattice-Boltzmann framework has received considerable
and then we discuss the issues(ioftreatment of the inertia attention in recent years and constitutes a field of ongoing
of the internal fluid that may affect the particle motion in a researc?~2> Most of the methods presented in these refer-
nonphysical manner an@) the nonphysical dependency of ences are adaptations of the bounce back rule for boundary

For computational simulation of the sedimentation ex-

. Boundary conditions

Re=1.l5
Re=4.1
Re=116
Re =322

o > O 0O
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e

(a) (b) FIG. 5. Experimentql data on sphere traject@yand

sedimentation velocityb) at the four measured Rey-
nolds numbers and comparison of measurement dupli-
cation of trajectory(c) and sedimentation velocityl) at
Re=1.5.
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conditions, as explained by Laddn the standard applica- imposed body forcd;(x,t) proportional to the deviation of
tion of the bounce back rule a link between two grid nodeshe local velocity. The dynamic action, accuracy, and stabil-
that crosses a no-slip boundary is cut and mass that propgy of the control scheme is determined by the relaxation
gates from the flow domain towards the solid boundary iSparameters and the topology of the control poixts The
reflected along the link of its origin. One drawback of this parametersy and 8 were obtained by trial and error as 0.95
approach is that in the straightforward implementation acand 1.8, respectively.

cording to Ladd curved solid objects are approximated by  After having updated the forces at the grid nodes, we

staircase shaped objects. calculate the hydrodynamic force and torque on the sphere
In the current application the boundary of the solid according to

sphere is implemented via the so-called adaptive force-field
technique, similar to Derksen and Van den AkkeiThe
scheme is based on a method for implementation of no-slip
boundary conditions in spectral simulaticfisThe method
locally forces the fluid velocity near the boundary and inter-
feres with the flow field not at the mesoscopic level of the szz rixXFj(x), (6)
propagating fluid mass but at the macroscopic level of the
fluid velocities. An advantage of the method is that impIe-Whererj is the relative distance between the grid npdad
mentation of curved boundary conditions is done via anthe center of mass of the particle. The summation is over all
interpolation—extrapolation scheme which produces @&oundary nodes in both the external and internal regions at
smooth surface in stead of a sharply cut staircase shapede sphere’s surface. The force and torque are used to inte-
surface. Specifically for moving surfaces this is an advantagrate the equations of motion of the sphere. This is done by
geous feature since it reduces unphysical shape changes @ing an Euler forward integration scheme where the forces
the surface due to its motion with respect to the grid. are averaged over two time steps to suppress unphysical fluc-
The sphere surface is represented by a séfl @ontrol  tyations.
points, placed at the sphere’s surface, evenly spaced at a
resolution slightly higher than the grid spacing. At each con-B. Internal mass
trol point, the local fluid velocity is forced to the surface

velociy of the sphere. The steps in the procecure are g, Tit TR B0 O e e ode
follows: First, the fluid velocity at a control point is deter- ; 9

mined via first-order Lagrange interpolation from the veloc.Shifts from the inside of an object into the exterior, it already

ity at the surrounding grid nodes. Then, the deviation pecontains fluid mass and the state of this node does not need

9 .
ieen the desied suace vlociy at conual pomi and 0 0¢SOS, F1 1 At aenn S s Dot
the interpolated fluid velocityu is used to determine the P ' ping

force that needs to be applied to the fluid to better approacﬁ]?c::ls t?ﬁrtl?szgeéts (t5r)1]e g%é?gn?f;herz’gsﬁées \QZ 2 %?et:'
the local surface velocity. The surface velocity is given by utl P 9.5)]. LI PP v

the translational and rotational velocity components proposed .to solve th's prc_)blem. La‘t’dsbggests_to Integrate
the equation of motion with a corrected particle mass. Al-

Ui=up+QyXr, (2)  though this is a fair approximation for systems with large
solid—fluid density ratios, for solid particles in liquid with a
density ratio typically between 1 and 2, numerical instabili-
ties can occur when integrating the equation of motion.
Other author¥?”?® have proposed methods to remove the
internal mass, but this cannot be done for the adaptive force-
field technique. Qi proposes to compensate the hydrody-
namic forceF, for contribution from nodes entering or leav-
ing the interior of a particle, which is comparable to our
approach.

The force applied to the fluid nodes influences the fluid

Fp=§j: Fj(x,t), (5)

wherer; is the position of the control point relative to the
center-of-mass of the spherg=£€x;—x.). The deviation of
the fluid velocity at a control poiritis calculated by

di:Ui_; I(riju;, 3

whereu; is the fluid velocity at grid nodg andl(r;;) is the
set of interpolation coefficients, which is a function of the
relative distances;; between the surrounding lattice nodes

_art1d th? f_ontrol pou;t. The (tj:(:efflme_ntst_that ;/\ﬁrefusedffor on both the inside and the outside of the sphere. Hence, the
Interpolation were alSo used for projection of the T0rce Iromy i) 4rce that acts on the sphere, as calculated with(&g.

the control point onto the surrounding grid nodes, where th?s the sum of the internal and external components of the
forces ) are updated with a relaxation scheme

force
Fj(X,t):a’Fj(X,t_l)+ﬁ|(rij)pd(t), (4)

wheret indicates the time step. We move to the next control

point and the procedure is repeated untilMItontrol points ~ When integrating the equation of motion, the only physical

have been updated. If desired, this procedure can be iteratecbntribution to the sphere’s motion comes from the external
The scheme of Eq4) that imposes locally the desired flow field. To determine the external contributi& ¢.;, we

boundary condition is a control scheme that is characterizedalculate the change of momentum of the internal fluid be-

by the relaxation parametesisand 8. The scheme adjusts the tween two successive time steps

Fp,tot= Fp,int+Fp,ext- (7)
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hydrodynamic radius is determined as the average of the ra-
F(t)p,int:f f fv PUn(X,) = pUindX,t=1)dV, (8)  dijus at 20 sphere positions, which were taken parallel to the
sphere flow because the settling sphere also moves along a single

and subtract this from the total forég, .. When using this ~ axis. One can ask if this low Reynolds number calibration
approach the correct physical behavior is obtained, whiclprocedure is allowed when it is our objective to simulate the
allows us to simulate particle motion at a density ratio as lowtransient motion of a sphere moving at nonzero Reynolds
as 1.15, as is demonstrated in Sec. IV. A similar correctiomumbers. Therefore, in Sec. IV D the sensitivity of the simu-

procedure is applied for the torque. lations to the hydrodynamic radius is investigated.
C. Low Reynolds number calibration D. Scaling
Results presented by Latlmhdicated that boundary con- When setting up a simulation of the sedimentation ex-

ditions in lattice-Boltzmann schemes based on the bouncperiment, the scaling of mass, length, and time needs to be
back rule suffer from a nonphysical dependency of the redetermined. With respect to mass, only the ratio of fluid and
sulting drag force on the kinematic viscosity. A study by solid density enters the equations of motion of the system. At
Rohdeet al® indicated that also more advanced boundarya constant ratio, the actual values can be chosen arbitrarily
condition methods that are based on the bounce back rulgithout influencing the simulation result. Their numerical
still exhibit this behavior. A detailed analysis of this behavior values were set identical to the experimental values. Length
is given by Heetal,” who demonstrate that in lattice- and time are scaled by using the low Reynolds number cali-
Boltzmann methods, the exact position at which the no-slibration procedure. A first estimate for the length scale is
condition is obtained is a function of the kinematic viscosity.based on the input radius of the sphere. A first estimate for
Although there is a fundamental difference between thehe time scale is then determined by settingto 0.01u/ts
bounce back boundary condition and our approach, this norjin lattice-Boltzmann simulationsy,,,<cs (the speed of
physical dependency is also observed in our current apsound,cs=3v2) is required to assure incompressible flow
proach. conditiond. With these first estimates, all parameters are
An explanation for the fact that this behavior is also scaled from the physical experiment into lattice units. Based
observed in our simulations may be that due to the interpoen this first scaling, a calibration simulation is carried out to
lation and extrapolation procedure, the sphere’s surface idetermine the hydrodynamic radius. Finally, in the sedimen-
smeared out and the fluid experiences a sphere that is slighttgtion simulations, length is scaled on the basis of the hydro-
bigger than the sphere on which tiecontrol points lie. The  dynamic radius and time is scaled via the kinematic viscos-
result of this effect is that the drag force obtained from theity. In Sec. IV, calibration results of input radii between 2 and
simulation is larger than the force that would correspond t@ lattice units will be presented, and the sensitivity of the
the sphere’s given input radius. simulations to the hydrodynamic radius will be discussed.
To compensate for this effect, Latigroposed a proce-
dure for estimating the effective sphere radilereafter E. Sub-grid lubrication force
calledhydrodynamic radius Ladd demonstrated that the hy-
drodynamic radius varied with viscosity as approximately
one grid node. The calibration procedure is based on an an
lytic expression of Hasimof8 for the drag force on a fixed
sphere in a periodic array of spheres in the creeping flo

When simulating a sphere approaching a fixed wall, at
some moment in time the grid lacks resolution to resolve the
flow in the gap between the sphere and the wall. The repul-
sive forces that occur due to the squeezing motion of the
iuid in the gap can no longer be computed accurately. This

regime problem was noticed by Ladt,who proposed to include an
6mur,U, s ) explicit expression for the leading order lubrication forces,
3 =1.0-1.7601C "+ C,—1.559%, calculated with lubrication theoR?>3 In our simulations,
P when the gap has become smaller thig (set to 1 grid
4mrd spacing, the force acting on the sphere due to the lubrication
CFT;- (9)  in the unresolved gap is calculated explicitly. The additional

lubrication force at gap distandeis calculated with

wherer , is the sphere radiug, indicates the size of the unit
cell, andU, is the volumetrically averaged fluid velocity
across the periodic cell. For a given fluid velocity and drag ror
force, Eq.(9) is solved to calculate the hydrodynamic radius.  F,=— GWMerL(—p— —p> , (10)

In our simulations we use a similar calibration procedure
as proposed by Ladd. We want to stress here that this cali-
bration procedure is performed independent of the experi-
mental conditions or results. The sole purpose of this procewahereh is the gap between the wall and the sphere@ands
dure is to determined the equivalent particle diameter, givethe velocity component of the sphere perpendicular to the
a certain viscosity. A sphere is placed in the center of a fullywall. In the following section, the validity of this approach
periodic cell and the fluid is set into motion via a pressurewill be tested by comparing simulation results with experi-
gradient, such that the Reynolds number remains small. Theental data.
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TABLE Il. Overview of sedimentation simulations. The table contains the input radius and calibrated radius of
the sphere, with corresponding lendthS) and time(T.S) scaling factorsL.F. indicates the use of lubrication
theory at bottom approachy,,,,/u. is the ratio of the maximum sedimentation velocity and the theoretical
steady-state velocity of a freely moving sphere in an infinite medium. At the bottom of the table, the experi-
mentally obtained velocity ratio is included for comparison.

o rh Re L.S. T.S. L.F. Umax/ Uz
Case [lu] [lu] [-] 1073 m/lu 107* s/ts [-] [-]
S1 4 4.487 15 1.671 3.891 0.894
S2 4 4.562 4.1 1.645 2.410 0.950
S3 4 4.657 11.6 1.610 1.526 0.955
sS4 4 4.810 31.9 1.559 1.010 0.947
S5 8 8.084 15 0.928 2.398 0.857
S6 8 8.689 31.9 0.863 0.619 0.947
S7 2 2.698 15 2.780 5.381 0.889
S8 2 3.003 31.9 2.497 1.295 0.921
Ss9 4 4.000 15 1.875 4.897 0.768
S 10 4 4.400 15 1.705 4.047 0.871
S 11 4 4.600 15 1.630 3.703 0.924
S12 4 5.000 15 1.500 3.134 1.009
S 13 4 4.000 31.9 1.875 1.460 0.757
S 14 4 4.600 31.9 1.630 1.104 0.891
S 15 4 5.000 31.9 1.500 0.935 0.969
S 16 3 3.559 15 2.107 4.639 0.897
S 17 3 3.650 4.1 2.055 2.818 0.948
S 18 3 3.559 15 2.107 4.639 J 0.897
S 19 3 3.650 4.1 2.055 2.818 J 0.948

IV. RESULTS AND DISCUSSION onstrating that the flow field is not in the Stokes regime. In

Fig. 6(al), the sphere has moved one diameter below the
point of release. At this moment, the sphere has almost
In Table II, an overview of the simulations is given. reached its steady-state velocity. The rate at which the flow
CasesS1-S4 were chosen as base settings for the simulafield develops is demonstrated in Figay by the evolution
tions. In the following two sections, these simulations will be of the kinetic energy of the fluid, which keeps pace with the
used to discuss various aspects of the flow field and sedimeginetic energy of the sphere. As the sphere approaches the
tation trajectory and will be compared to experimental re-hottom, the kinetic energy of the wake again reduces in pace
sults. In case$5-S8, the input radius was varied between 2 ith the decay of kinetic energy of the particle, which decel-
and 8 grid nodes to study the influence of resolution on thgrates because of the squeezing of the liquid between the
accuracy and performance of the gimulation. S_imulaqions_t,phere and the bottom wdkig. 6@3]. This causes the flow
S9—S15 were done to study the sensitivity of the simulationsgig|q in front of the sphere to deform and generates outward

to the hydrodynamic radius. Finally, in simulatioB$8 and  fjyig motion across the bottom. Very quickly after the sphere
S19, the lubrication force was applied to explore its useful-nas come to a halt, the fluid also comes to rest.

ness for representing the bottom approach of the sphere. All 1, particle settling at a Reynolds number of 31.9 shows

simulations were executed for a physical time of approxi-gistinctively different behavior. Compared to the case of
mately 4 seconds. Re=1.5 a much larger, elongated wake develops. In Fig.
6(b3), the deflected front of the flow field at bottom approach
is again clearly visible. Another distinctive feature is that

In this paragraph, a physical interpretation of the sediwhile both the kinetic energy of the particle and the fluid
menting sphere is given based on the results of simulationécrease at the same pace initially, the particle reaches a pla-
S1 and S4, to demonstrate the characteristic differences irteau while the wake keeps on picking up kinetic energy until
behavior of the particle sedimentation between both caseifie particle reaches the tank bottom. At this stage, the kinetic
and to provide physical insight in the different flow cases. Inenergy of the fluid has not reached a steady state. Notice that
Fig. 6 the flow field is plotted at four different stages duringthe level of kinetic energy of both the fluid and the particle at
settling. In Fig. 7, the development of the kinetic energy ofthe high Reynolds number are about one order of magnitude
the sphere and the fluid is given. The intermediate results darger than that of th®e= 1.5 case. Figure(B) further dem-
Reynolds numbers of 4.1 and 11.6 have been left out. onstrates that the sphere abruptly comes to a halt when the

The velocity field of the particle settling &e=1.5is  sphere hits the bottom wall, which is in contrast with the
not symmetric in the direction of motiofFig. 6(a2], dem-  more gentle deceleration of the spherdRat=1.5. After the

A. Overview of simulations

B. Sedimentation trajectory
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sphere has come to a halt, the wake still contains a consid- Three physical time scales can be used to interpret the
erable amount of kinetic energy that slowly decays. An emflow field and transient behavior of the sedimenting sphere.
pirical time constant related to this process can be estimatethe first time scale is the particle advection time, {
by assuming an exponential function =dy/u.), which is a measure for the time it takes the par-
_t ticle to travel one sphere diameter. The second time scale is
Kf(t)=Kf,maxeXF< —) the particle relaxation time,ﬁ,,r:ppdﬁll&»fv) which is a
Td measure for the time it takes for a particle to respond to an
which is plotted in Fig. ®) with 74=0.3s]. acceleration. The third time scale is the momentum diffusion
A remark can be made on the distribution of the kinetictime (TV:de/v), which is a measure for diffusion of mo-
energy over the particle and the fluid. During settling thementum into the fluid over a distance of one particle diam-
potential energy of the particle is transferred to the fluid andeter. These three groups determine two independent dimen-
dissipated. At maximum settling velocity, the kinetic energysionless numbers, the Reynolds and Stokes number.
of the fluid is much larger than that of the particle. The The different shapes of the flow field in the high and low
volume of the moving fluid is much larger than the volume Reynolds number cases can be interpreted by regarding the
of the particle(see also Fig. band since the solid-liquid Reynolds numbers as the ratio of and 7, ,. At Re=1.5,
density ratio is small, the fluid can easily contain much morer, is 0.59 s andr, , is 0.39 s. The time it takes for the
kinetic energy than the particle. particle to travel one diameter is almost the same as the time

(11)

gizrtgcle D gizrtgcle o
ut o ut o
=~ 8t =~ el Fluidgs
7 7
< 6l m@ﬂm% <
I_S‘ o?g@ﬂ ® I_S‘ ; P
2 al & ° 2 FIG. 7. Simulated result of the kinetic energy of sphere
K s o K and fluid vs time atRe=1.5, caseSl, (a) and Re
) ) =31.9, case34, (b). The dashed line iiib) is an expo-
2k o nential fit to the decay of the fluid kinetic energy.
[0}
o]
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it takes for momentum to diffuse one diameter into the fluid. = The second dimensionless number is the Stokes number
This explains the penetration of the flow field into the fluid in [ st= (8)ppdpUs/ piv=(5)Repy/ps~ Ty /7y 4], Which is a
front of the sphere and sideways to the sphere over a lengieasure for the ratio of particle inertia to viscous forces.
comparable to the size of the wake. In contrast to this, th&yith a practically constant density ratio throughout the ex-
shape of the wake @e=31.9 is completely different. The periment, the Stokes number is proportional to the Reynolds

characteristic time scales arg=3.72s andr, ,=0.12S. ;mper and was not varied independently. The Stokes num-
Thus, momentum diffusion goes at a much slower rate thae, characterizes the transient behavior of the particle at ac-

particle advection, resulting in an elongated wake and a VelYaleration and bottom approach. At the low Reynolds num-

limited extension of the flow field in front of the sphere. cEer, the particle starts to decelerate at some distance from the

'The time §cale for momentum dlffu5|9n can also be US€4ottom while at high Reynolds number, the particle hardly
to interpret Fig. 7. AtRe=1.5, the diffusion time scale is decelerates prior to contact

much shorter than the time it takes for the particle to reach
the bottom, thus allowing the wake to develop into a stead
state. AtRe=31.9, the particle reaches the bottom after ap-
proximately 1.3 seconds while, is 3.72 seconds, which A first comparison is made in terms of the maximum
explains why the wake was not fully developed before thevelocity of the particle during sedimentation. In Table II, the
bottom was reached. It is interesting to note that the timeatios up,,/u., from the experiments and simulations are
constant for decay of the kinetic energy is much shorter thagiven. The experimental results demonstrate that the particle
the time constant for momentum diffusion. The decay of ki-reaches a maximum velocity of approximately 95% of the
netic energy is associated with the dissipation due to viscousteady-state value in an infinite medium. The experimental
effects that originate from gradients in the fluid. This procesglata indicate a maximum of the velocity ratio value for case
is apparently much faster than the momentum diffusion. E3. An explanation for this observation is that the sphere

. Comparison of numerical and experimental results

(a)Re=1.5 (b) Re =4.1 (c)Re=11.6 (d)Re=31.9
=y N ; o 1.00
— W L
"
0.00

FIG. 9. Comparison of the simulatétbp, casesS1-S4) and measuretbottom, E1-E4) flow field of the sphere at a dimensionless gap heigHt/df,
=0.5. Contours indicate the normalized velocity magnitude, the vectors indicate the direction of the fluid flow only.
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YA flow field is obtained but also the temporal behavior. Figure
9 shows the flow field of the sphere at positiotd,= 0.5 at

- > the four Reynolds numbers considergblotice that Figs.

| 9(c) and 9d) are at a higher resolution than FiggaPand

;G 9(b).] At the sphere position in question, the flow in front of

: the sphere interferes with the bottom surface, while the wake

X is still seemingly undisturbed. The correspondence in posi-

tion of the velocity magnitude contours is indicative of a

good agreement between the numerical and experimental

flow field. At the side of the sphere a clear vortex is found

moving at the lowest Reynolds number experiences the lar hat changes shape and POS'“O” W'th an increase in Reynolds
umber. The center of this vortex is found at the same posi-

est resistance due to the container wall. At increasing Rey- ) .
nolds number, the lateral extension of the sphere inducelon for the numerl.calland experlmentgl resuI'F.

flow reduces, thus reducing the wall hindrance effect on the ~Another (quantitative assessment is obtained by com-
sphere. The lowe, . /u. ratio at the highest Reynolds paring the time series of the fIL_nd veI_omty in a part|cul_ar
number (i.e., caseE4) is likely caused by the fact that the POIntin the flow domain. As monitor point we chose a point
sphere was still accelerating when it arrived at the bottomfxed in place, positioned one diameter from the bottom of

FIG. 10. Measurement position of the time series of fluid flow.

This trend is also observed in the simulated results, althougl{'® tank and one diameter out of the center of the spisee
more pronounced. The maximum sedimentation velocity preF19- 1_0)- . ) o ) )
dicted by the simulations is generally within 1% of the ex- ~ 1ime series of the fluid velocity in this point are given
perimental result, except at the lowest Reynolds numbefor Re=1.5 (Fig. 11 and Re=31.9 (Fig. 1. At the low
where the difference is approximately 5%. Increased resoluReynolds number, the fluid flow in thedirection is mainly
tion does not result in an improvement. The calibration pro-£ffected by the squeezing action of the sphere. A distinctive
cedure has a strong impact on the terminal velocity. Its senPOsitive peak is observed, due to the outward motion of the
sitivity will be further discussed in Sec. IV D. fluid. The fluid velocity drops almost back to zero at the
For comparison of numerical and experimental findingsmoment the sphere touches the bottom of the container. At
as to the dynamic behavior of the sphere, the trajectory ange=31.9, the sphere settling velocity is much higher; as a
velocity of the sphere versus time have been plotted in Figgesult, thex velocity starts rising much earlier in time. After
8(a) and 8b). At the lowest Reynolds number, the spherethe vortex has passed the monitor point, the velocity de-
decelerates at a larger distance from the bottom than at thefeases again. As the sphere comes to rest, the fluid motion
higher Reynolds number. Along with the resultsRat=4.1  in the wake still contains a considerable amount of inertia
andRe=11.6(not shown, these results demonstrate that theand passes over the sphere, giving rise to the slight increase
complete trajectory of the sphere is captured accurately bin x velocity, followed by the decay to zero.
the simulation procedure. At Re=1.5, the flow in they direction is directed down-
The simulated fluid motion has been compared in detailvards, indicated by the negative value of the velocity com-
with the flow fields from the PIV experiment. With the use of ponent. The experimental data shows a steep decay to a
a continuous camera, not only the spatial structure of theninimum y velocity, after which the velocity rises again.

U, U, U.
Re=1.5
~ d =8
Y d, =16

FIG. 11. Time series of the fluid velocity in a point Re=1.5. The lines indicate the normalized velocityxrandy direction and velocity magnitude of
simulationsS1 (top) andS5 (bottom). The dots indicate the experimental resul&df. The arrow indicates the moment the sphere comes to rest at the bottom.
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FIG. 12. Same as Fig. 11, now f&e=31.9.

With careful observation, a second, smaller decay can be At Re=1.5, they velocity shows the largest difference
observed in the data before returning to zero, although thibetween simulation and experimental result. At low resolu-
decay is barely visible since the magnitude of the decay ision of the simulation, a clear mismatch is observed between
comparable to the noise in the data. This behavior is relatethe numerical and experimental curve. Apparently, at lower
to both the position of the vortex center relative to the moni-Reynolds number, the position of the vortex is very sensitive
tor point and the decreasing velocity of the sphere. At thigo the resolution. The fluid velocity becomes positive, which
Reynolds number the flow field extends the furthest sideis indicative of the monitor point being at the outer side of
ways into the fluid and the monitor point is positioned be-the vortex. As the resolution is increased, the position of the
tween the sphere and the vortex center. As a resultythe vortex is predicted more accurately and the simulated time
velocity does not change sign. Since theelocity is smaller  series of they velocity is in much better agreement with the
near the core of the vortex, an increase in velocity may bexperimental result. The simulations at the high Reynolds
found as the center passes the monitor point, after which aumber are in good agreement with the experimental data,
velocity decrease is anticipated. However, since the particlalthough at this Reynolds number too, an increase in resolu-
decelerates, the magnitude of this decrease is smaller thaion improves the predictions. The curves that represent the
the main negative peak. velocity magnitude vs time demonstrate that at the low Rey-
At Re=31.9 the monitor point is positioned on the right nolds number, the fluid velocity is underpredicted by a few
side of the vortex. Thus, thevelocity initially gets negative, percent only, which is in agreement with the contour plots of
but as the vortex passes the monitor point, yheelocity  Fig. 9.
changes sign because the flow on the right side of the vortex
center is directed upward. Eventually the vortex has passed. Hydrodynamic radius dependency
and what follows is the wake of the sphere, resulting in a
downward velocity that again slowly decays after the spher%ari
has come to rest.

In simulationsS9-S15, the hydrodynamic radius was
ed deliberatelyi.e., without applying the calibration pro-
cedurg to study its impact ornu,,,/U.. . Without calibration
the velocity ratio is underpredicted some 20%. The simula-
tions further show that the velocity ratig,,,/u., is strongly
dependent on the hydrodynamic radius. When varying the
hydrodynamic radius on purpose, bath,, andu,, change,

TABLE llI. Influence of the hydrodynamic radius on the maximum sedi-
mentation velocity.

ro rh Re Unax u, as can be seen in Table Ill.
Case [lu] [lu] [-] [1072 lu/ts] [102 lu/ts] First, increasing the hydrodynamic radius may increase
So 4 4.000 15 7678 10.000 Umax- Thg forcede'input drives the sphere during sedimenta-
S 10 4 4.400 15 7.920 9.091 tion and is determined from the balance between drag force,
S1 4 4.487 1.5 7.968 8.914 gravity and buoyancy
S 11 4 4.600 15 8.034 8.696
S 12 4 5.000 15 8.074 8.000 [ =S S P _ 12
S 13 4 4000 319 7.573 10.000 ainput=3Th(P1~Pp) (12
S14 4 4.600 319 7.749 8.696 When the sphere movesat,,,, this force is balanced by the
sS4 4 4810 319 7.877 8.315 . :
s 15 4 5000 319 7.754 8.000 hydrodynamic forces that act on the sphere and which are

obtained from the simulatiorFq j,o, is independent of the
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hydrodynamic radius. With a changing hydrodynamic radiusJowest Reynolds number is striking for two reasons. One, the
length scales proportional tb, while time scales with the deviation is independent of the resoluticsee Table . If
length squared, ?, because time is scaled via the kinematicthe deviation decreases with an increase in resolution, one
viscosity. Thus, when scaling EGL2) from physical quanti- would anticipate the simulations to eventually match the ex-
ties to simulation quantities, the equation is independent operimental data at high resolution, which is not the case.
the scaling factors, becaupés kept constant,; scales at®  Two, one would expect that the calibration procedure would
while g scales as 1£. At the same time, the input radius of work best at the lowest Reynolds number, since it is based on
the sphere and the viscosity are kept constant. Thereforereeping flow conditions. The simulation Re=1.5 comes
Umax Can only vary because a change in the container geontiosest to this situation.

etry occurs. By increasing the hydrodynamic radius, the scal-

ing factor for length decreases and the container geometry &. Lubrication force

represented by a larger number of grid nodes. Consequently,
because of the larger domain, the sphere experiences a When the sphere approaches the bottom wall, the gap

smaller resistance due to the parallel walls ang, in- between the sphere and the bottom may become too narrow

creases. The sensitivity of this effect depends on the Re);-Or a proper resolution of the flow on the original grid. As a

nolds number at which sphere settles, as can be observed fiSult: the hydrodynamic force on the sphere will be under-
Table Ill. At Re=1.5, u,,, increases by 5.2% when varying predicted. In Fig. 13, the sedimentation velocities of the

the hydrodynamic radius from 4 to 5 grid units whileRe sphere at Reynolds numbers of 1.5 and 4.1, respectively, are
=31.9,u,,,, increases by 2.4% only. given at the final stage of bottom approach. In the simula-
Se,conr%( when increasing the hydrodynamic radius tions, the particle velocity is set to zero at the moment of

decreases as!1/ which can be observed in Table Il where bottom contact. This moment is clearly visible in both fig-
u.. is recalculated to lattice units. Thus, decreases by 20% Ures, where the dotted line indicates the sedimentation veloc-

for both the low and the high Reynolds number when in-ity of the sphere in simulation§16 andS17. This abrupt

creasing the hydrodynamic radius from 4 to 5 lattice units. Stop indicates that the sphere velocity was not reduced to
For the cases studied, these dependencies show thatZg0 at the moment contact was established between the

variation in radius of the order of one lattice unit mainly SPhere and the bottom wall. The dotted line further shows
affects the reference state,. In our base caseswith r,  unphysical fluctuations in the velocity of the sphere when the
=4lu), increasing the hydrodynamic radius with 1 lattice bottom of the sphere passes the first nodes above the bottom
unit resulted in a variation of the ratia,,,,/u,. of approxi-  Wwall. Simulations at higher resolution showed that an in-
mately 30%. Increasing the resolution may decrease this sefirease in resolution reduces the fluctuations but the abrupt
sitivity. A variation of one lattice unit on an input radius of, Stop remains.
e.g., 8 lattice nodes causes to vary by 11% while the When applying the sub-grid scale lubrication force ac-
relative increase im,,, is expected to be smaller. cording to Eq.(10), the velocity of the sphere reduces more
The calibration procedure proposed in Sec. lll is used tg@radually although some fluctuations are still observed. The
determine the hydrodynamic radiaspriori. Table Il dem- use of the lubrication force improves the velocity decay ini-
onstrates that using this calibration method results in a 19%ally, which is demonstrated by an improved correspondence
accurate match between the numerical and experimental vabetween the experimental and numerical data. Due to the
ues of the velocity ratio is found for the simulationsR¢  dissipative action of the lubrication force, however, at a
=4.1. At the lowest Reynolds number, a systematic undersmall separation from the bottom the settling velocity has
prediction of the velocity ratio of approximately 5% is almost reached zer@f the order of the numerical accuracy
found. This difference corresponds to the deviations oband the sedimentation time series extends further for an un-
served in Fig. 8. These deviations are considered acceptablealistically long time(not in the figure. Application of a
since without calibration an underprediction of more thanforce based on lubrication theory is valid for separations that
20% is obtained. However, the systematic deviation at thexceed either the molecular mean free path length of the
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molecules of the fluitf (although this effect is negligible for interactive force at bottom approach, but this apparently
solid—liquid suspensiofs or that exceed the surface overpredicts the time to contact with the bottom.
roughness of the particle and the tank wall. For detailed

simulations or experiments either of the two limits can be

used as a cut-off measure for the final separation at which a’?\‘CKNOWLEDGMENTS
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