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Abstract: Flows of solid–liquid suspensions span a multi-dimensional parameter space, with 
coordinates such as the Stokes number, the solids volume fraction, the density ratio, and Reynolds 
numbers. We are interested in systems with appreciable inertia effects – i.e., non-zero Stokes and 
Reynolds numbers – having density ratios of the order of one (typical for solid–liquid systems) and 
solids volume fractions of at least 0.1. Additional effects include strongly inhomogeneous solids 
distributions, non-Newtonian liquids, and sticky particles that tend to aggregate. This leads to a 
rich spectrum of interactions at the scale of individual particles. To reveal these we perform direct 
simulations of collections of a few thousand of particles carried by a liquid flow with resolution 
of the solid–liquid interfaces. For this we use the lattice-Boltzmann method supplemented with an 
immersed boundary approach.
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1	 Introduction

Solid-liquid suspensions are abundant in natural and engineered 
systems. Our interest in large-scale industrial multiphase 
flows implies that we have systems with appreciable inertia 
effects, having density ratios of the order of one (solid–liquid) 
and high disperse phase loading (solids volume fractions of 
order 0.1). In such suspensions many assumptions that ease 
the life of the computational researcher do not hold, and direct 
simulations  –  including full resolution of the solid–liquid 
interfaces  –  are desired to reveal the relevant interactions 
at the scale of the particles. This necessarily limits the size 
of the systems that we are able to simulate; they typically 
contain up to a few thousand particles. In this paper, the scales 
related to particle size and multi-particle interaction will be 
termed particle-scales or (better) meso-scales, and our direct 
simulations are meso-scale simulations. Next to the ambition, 
to fully resolve meso-scale phenomena, we are faced with 
the issue as to how to incorporate insights gained at the 
meso-scale in macro-scale modelling approaches (meso-to-
macro coupling). In the opposite direction (macro-to-meso), 
the meso-scale systems need to be agitated (energised) in a 

manner that realistically represents the energy input that in 
many practical processes comes from the macro-scale; think 
of agitation by impellers, jets, distributor plates, and pumps 
(generating overall pressure gradients).

Given the variety of multiple-scale interactions in industrial 
multiphase flow systems there is not a general methodology 
or framework for establishing the macro-meso coupling. In 
this paper, I will show examples of meso-scale simulations 
in the area of mostly turbulent liquid–solid suspensions, and 
show how their results could be incorporated in macroscopic 
flow and transport modelling.

The paper is organised in the following manner: First, we 
give a short overview of our computational methodology, 
which is largely based on the lattice-Boltzmann method LBM 
for solving the flow of the interstitial liquid. We then briefly 
describe methods for generating Homogeneous, Isotropic 
Turbulence (HIT) as a basic way to excite meso-scale systems. 
Subsequently applications will be discussed. They comprise 
turbulence-particle interaction and aggregation: flow-induced 
forces in agglomerates, and coagulation, breakage and 
structuring of aggregates in mostly turbulent flow fields.
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less than the lattice spacing, the hydrodynamic interaction 
between them will not be accurately resolved by the lattice. 
Therefore, we explicitly impose lubrication forces on the 
spheres, in addition to the hydrodynamic forces stemming 
from the LBM. We use the procedure developed by Nguyen 
and Ladd (2002) to smoothly make the transition between 
resolved and unresolved hydrodynamic interactions.

In addition to the interactions via the liquid, spherical 
particles have direct interactions. In the first place the spheres 
collide. By default we use hard-sphere collisions according 
to a two-parameter model (Yamamoto et al., 2001) with a 
restitution coefficient e and a friction coefficient µ. In some 
situations where particle motion is constrained (such as with 
fibres built of strings of spheres) we – largely for reasons of 
computational efficiency – use soft-sphere collisions.

In order to study aggregation we can make the spheres 
sticky by giving them an attractive Square-Well Potential 
(SqWP) interaction (Smith et al., 1997): If the centrers of 
two approaching spheres come within a distance 2(α + δ) 
they trade potential energy for kinetic energy (by an amount 
Eswp per sphere). Then, they then are within one another’s 
SqWP and are considered attached. Two attached spheres can 
only separate if they are able to overcome the energy barrier 
imposed by the SqWP with their kinetic energy. The particle 
interaction potential is thus defined by two parameters: its 
depth (Eswp) and its width (δ). Rather than working with Eswp 
we will be working with the parameter ∆u, which is the escape 
velocity of the SqWP. These parameters are related according 
to 21 ( )

2swp pE m u= ∆  with mp the mass of the (monosized) 
primary spherical particles.

2.3	 Homogeneous isotropic turbulence
In the A typical way to agitate our meso-scale systems is by 
generating turbulence in fully periodic, three-dimensional 
domains. Adding particles to the domains allows us to 
study the (two-way) coupling of solid and liquid motion. 
So far mainly HIT has been considered in our work. HIT 
is e.g., characterised by its root-mean-square velocity urms 
and a Kolmogorov length scale 3 1/4( / )K vη ε=  with ε  the 
volume and time averaged dissipation rate (which in steady 
state equals energy input) and v the kinematic viscosity of 
the liquid. If solids are added, the relevant dimensionless 
numbers are then based on the radius of the spherical particles 
involved: and rms rmsRe /u a ν=  and / .Kaη

We have been using two different strategies to make 
HIT. One is based on random forcing and was introduced 
by Alvelius (1999) in the context of spectral methods, later 
adapted for the lattice-Boltzmann method LBM by Ten Cate 
et al. (2006). This strategy has the advantages that the power 
input can be controlled accurately, and that it allows for more 
general forms of turbulence, including anisotropic turbulence 
with full control over the volume-averaged anisotropy tensor. 

The second strategy is linear forcing, where turbulence is 
sustained by a force that is proportional to the local velocity 
(Rosales and Meneveau, 2005). This method has the elegance 
of simplicity and (as a result) computational efficiency at 

2	 Computational approach

2.1	 Lattice-Boltzmann method
The continuous phase (liquid) flow we solve with the LBM. 
For flows in complexly shaped domains and/or with moving 
boundaries, this method has proven its usefulness (see for 
e.g., the review article by Chen and Doolen, 1998). In the 
LBM, the computational domain is discretised into a number 
of lattice nodes residing on a uniform, cubic grid. Fluid 
parcels move from each node to its neighbours according to 
prescribed rules. It can be proven by means of a Chapman-
Enskog expansion that – with the proper grid topology and 
collision rules – this system obeys, in the low Mach number 
limit, the incompressible Navier-Stokes equations (Chen and 
Doolen, 1998; Succi, 2001). The specific implementation 
used in our simulations has been described by Somers (1993), 
which is a variant of the widely used Lattice-BGK scheme to 
handle the collision integral (e.g., see Qian et al., 1992). We 
use the scheme due owing to Somers, as it manifests a more 
stable behaviour at low viscosities when compared to with 
standard LBGK.

2.2	 Liquid–solid and solid–solid coupling
In the Lattice-Boltzmann flow field spherical (usually 
monosised), solid particles are suspended. The solid–liquid 
interfaces are fully resolved. The fluid flow and the motion of 
the spheres are coupled by demanding that at the surface of each 
sphere the fluid velocity matches the local velocity of its surface 
(that is the sum of the linear velocity vp and Ωp × (r–rp) with Ωp 

the angular velocity of the sphere, rp the center position of the 
sphere, and r a point on its surface). In the forcing (aka immersed 
boundary) scheme that is applied here this is accomplished by 
imposing additional forces on the fluid at the surface of the solid 
sphere (which are then distributed to the lattice nodes in the 
vicinity of the particle surface). The details of the implementation 
can be found elsewhere (Goldstein et al,. 1993; Derksen and 
Van den Akker, 1999; Ten Cate et al., 2002). The collection of 
forces acting on the fluid at the sphere’s surface and its interior 
is subsequently used to determine the hydrodynamic force and 
torque acting on the sphere (action  =  –reaction) (Derksen and 
Sundaresan, 2007).

In our simulations, the radius of each spherical particle 
is specified and input radius refers to this radius scaled 
by the lattice spacing. In the LBM simulations, as the 
spherical particle is represented by forces that are confined 
to a cubic grid, the input radius does not reflect the actual 
radius of the particle. A calibration procedure to estimate the 
effective radius of this object (commonly referred to as the 
hydrodynamic radius) was introduced by Ladd (1994). We 
apply his scheme to estimate the hydrodynamic radius of the 
particles. The hydrodynamic radius is recognised as a and is 
given in lattice units. In our work radii in the range a  =  6 – 12 
are used. Typically the input radius turns out to be some half a 
lattice spacing or less smaller than the hydrodynamic radius.

In multiple-sphere systems when two spheres are in close 
proximity, with their separation being of the order of or 
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events: once turbulence has brought two (or more) particles 
in each other’s vicinity they tend to cluster due owing to short 
range hydrodynamic interaction and undergo many (weak) 
collisions at short-time intervals. Lubrication forces play a 
prominent role in the lifetime of the clusters. Eventually, the 
particles in the cluster are separated when a strong enough 
(turbulent) eddy comes by.

In terms of macro-scale modelling, results related to 
collision statistics as a function of turbulence quantities 
and solids loading could be incorporated in (macro-scale) 
population balance modelling for predicting breakage and 
crystal size distributions.

3.2	 Flow-induced forces in agglomerates
In many processes involving solid particle formation or 
solids handling, particles have a tendency to stick together. 
Sometimes agglomeration is a wanted phenomenon to 
effectively grow particles making separation easier. It also 
is a mechanism that potentially destroys a narrow particle 
size distribution, and as a result could deteriorate product 
quality. Much effort goes into preventing or promoting 
agglomeration, and much effort goes into repairing the harm 
agglomeration has done. Regardless of whether agglomeration 
is wanted or unwanted, it is relevant to assess the stability 
and the integrity of the bond holding the primary particles 
together. Agglomerates can break as a result of a variety of 
mechanisms, one of them being the flow of fluid surrounding 
the agglomerate: velocity gradients induce forces on and in 
agglomerates that could break them.

Understanding and modelling agglomerate breakage as 
a result of fluid flow is largely based on relatively simple 
concepts involving estimating shear rates and semi-empirical 
correlations for breakage statistics. As described in recent 
papers on the broader subject of population balance modelling 
of colloidal dispersions (Soos et al., 2006), the physical 
discription of breakage due owing to flow date back quite 
some time (Delichatsios and Probstein, 1976; Kusters, 1991), 
and is prone to refinement in terms of getting the (statistics 
of the) hydrodynamic environment of agglomerates right, 

the cost of being less general than random forcing. Linear 
forcing does provide good control over the power input and 
thus (once equilibrium between power input and dissipation 
has been reached) over the Kolmogorov scales.

3	 Case studies

3.1	� DNS of turbulently agitated solid–liquid  
suspensions

With a view to applications in industrial crystallisation, 
Ten Cate et al. (2004) studied the motion of solid, spherical 
particles released in HIT. The conditions were such that Ka η  
was of the order of 10, and Rerms roughly 50. Attrition, i.e., 
breakage of crystals due owing to collisions is an important 
issue in crystallisation as it directly and indirectly influences 
the crystal size distribution. The direct influence is obvious; the 
indirect influence on the size distribution is a result of breakage 
fragments acting as a (secondary) sources of nucleation.

As is known from experimental (Elghobashi and 
Truesdell, 1993) as well as numerical work (Boivin et al., 
1998), the presence of the particles affects the turbulence 
spectrum. Figure 1 shows spectra at different solids loadings. 
As evident from the spectra, and also from a direct look into 
our simulations, the spheres generate turbulence at scales 
comparable to with and smaller than the particle diameter. 
This effect is a pronounced function of the solids volume 
fraction: the more particles, the stronger the effect.

Our main interest was to quantify particle collisions, in 
terms of frequencies and intensities. In this respect it was 
revealing to study the Probability Density Function (PDF) 
of the time between two collisions of a particle (as given in 
Figure 2). For ‘long times’ this PDF is exponential indicating 
Poisson statistics; collisions after ‘long’ time intervals are 
uncorrelated events. The slopes in Figure 2 get steeper for 
denser systems, i.e., the average time between uncorrelated 
collisions gets shorter for denser systems. More interestingly, 
however, for ‘short times’ the PDF shows a peak towards zero 
time, indicating many collisions taking place shortly after one 
another. Closer inspection teaches that these are correlated 

Figure 1	 �Energy spectra of two-phase simulations compared 
to the fluid-only spectrum. The wavenumber κ is 
normalised with the particle size wavenumber κd = p/a

Figure 2	 �PDF of the time between two collisions for three solids 
volume fractions. The lines are linear fits of the tails 
of the distribution. The collision time has been made 
dimensionless with the Kolmogorov time scale τ
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applies; the flow system is periodic in streamwise direction. A 
Reynolds number characterising the flow in the channel can be 
based on the wall shear velocity. Since the average wall shear 
stress relates to f0 via an overall force balance we can write 

3/2 1/2
0

1/2

1Re .
2w

H f
vρ

=

In the liquid that fills the channel, agglomerates are released. 
They consist of equally sized spheres with radius a. Three 
types of agglomerates have been considered: 

•	 two touching spheres forming a doublet

•	 three touching spheres (triplet) forming a triangle (two 
contact points per primary sphere)

•	 four touching spheres (quadruplet) forming a tetrahedron 
(three contact points per primary sphere).

The introduction of the agglomerates in the channel gives rise 
to three additional dimensionless numbers: an aspect ratio 
a / H, a density ratio ρs / ρ, and a solids volume fraction f.

Figure 5 shows a typical flow situation with (in this case) 
quadruplets in a uniform square channel. The channel width 
H is 10 times the primary sphere diameter.

In the triplets and quadruplets considered, primary spheres 
have more than one point of contact with the other spheres 
in the agglomerate. For these special cases the simulation 
procedure allows us to determine the forces and torques 
per contact point. As examples, time series of radial contact 
forces in quadruplets are shown in Figure 6. The smooth 
parts of the fluctuations shown are dueowing to motion of the 

and in terms of estimating the actual hydrodynamic forces in 
agglomerates immersed in complex flow.

As a starting point, we here assess the role of some of the 
non-ideal factors in the flow-induced forces in agglomerates. 
For this, we first have chosen to consider the virtually simplest 
agglomerate possible: two equally sized spheres (radius a), 
rigidly constrained together at their (single) point of contact, 
i.e., a sphere doublet. The two spheres are touching, they 
have zero separation.

We release a single doublet in HIT (now generated 
through linear forcing) and monitor the forces and torques at 
the point of contact needed to keep the two spheres attached. 
The time series are highly erratic (see the example in Fig. 3), 
with the fluctuation levels usually much higher than the 
averages. The positive average normal force in Figure 3 is 
the average (always tensile) centrifugal force. Running a 
number of simulations with ( / )ka η  as the main variable 
shows an interesting scaling of the force fluctuation levels. 
As / Ka η  increases, the flow around the agglomerate gets 
more inhomogeneous, which adds to the fluctuations, see 
Figure 4. More details and results can be found in a recent 
paper (Derksen, 2008).

Small-scale (micro) devices have also been used to 
perform experiments on aggregate breakage (Zaccone et al., 
2009). In such devices the deformations in now laminar flow 
induce forces in the agglomerates. Here, we investigate these 
forces computationally.

The basic flow geometry for this is a square channel with 
width H. The flow in the channel is driven by a body force f0 
acting in the x (=streamwise) direction mimicking a pressure 
gradient. At the four side walls a no-slip boundary condition 

Figure 3	 �Time series of the flow-induced normal force at the 
point of contact of a sphere doublet. Time has been 
normalised with the Kolmogorov time scale τ

Figure 4	 �Root-mean-square nF ′  normal force in the sphere 
doublet at various turbulence conditions, characterised 
by the ratio Ka h  along with a trend line

Figure 5	 �Cross sections through a uniform channel with 
quadruplets in terms of absolute liquid velocity 
contours. Rew = 2.6, ρs/ρ = 2.5, φ  = 0.062, a / H = 0.05 
(see online version for colours)

Figure 6	 �Time series of the dimensionless normal force in 
one sphere-sphere contact point in a quadruplet. 
Comparison for different slurry densities. Blue: solids 
volume fraction 9.3%; red: 6.2%; green: 3.1%. Uniform 
channel (see online version for colours)
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uniformly sized, spherical primary solid particles are released. 
The solids typically occupy 10% of the total volume.

The particles are made sticky (i.e., they have a tendency 
to aggregate) by means of a SqWP (see Smith et al. (1997) 
and the section on solid–liquid and solid-solid-coupling 
earlier in this paper). Next to interacting through the SqWP, 
the particles interact via the interstitial fluid and through  
hard-sphere collisions. The combination of turbulence and 
the SqWP produces a solid-liquid system in which bonds 
between primary spheres are continuously formed and 
broken, and an Aggregate Size Distribution (ASD) evolves 
naturally to a dynamically stationary state. Our main interest 
is how the ASD depends on turbulence properties on one 
side, and the interaction potential on the other.

An important question is how large the (cubic) domain 
needs to be to get representative results that are independent 
of the domain size. This is particularly relevant since our 
solid–liquid systems aggregate and not only the primary 
sphere size should be much smaller than the domain size, 
but also the aggregate size should be (much) smaller than the 
size of the domain to avoid the unphysical situation that an 
aggregate strongly interacts with itself through the periodic 
boundaries. Apart from aggregation and self-interaction 
between aggregates, the turbulence imposes demands on the 
domain size: it should have sufficient room to develop its wide 
spectrum of length scales to be representative for the strong 
turbulence in large scale process equipment. Obviously, 
the domain size is limited by the finite computational 
resources (time and memory) available. To investigate 
domain size effects, cubic domains with four different vertex 
lengths L  =  128 = 21.3a, L  =  192  =  32a, L  =  256  =  42.7a, 
L  =  384  =  64a (the sphere radius a has not been varied and 
corresponds to 6six lattice spacings) have been considered.

Since in the larger flow domains the turbulence is allowed 
to generate larger structures, the time to steady state (as 
measured in viscous time units a2 / v) gets longer for larger 
L (see Fig. 8). Three variables have been tracked in Figure 
8: the ratio ηk / a; a turbulence Reynolds number based on 
the volume-average root-mean-square velocity in the liquid 

rmsRe ,a au ν=  and the number of attachment points per 
sphere (nc) as a metric for the level of aggregation. The stable 
time series (after reaching steady state) of the ratio ηk / a, and 
the good agreement between its pre-set and actual values 
shows that the linear forcing procedure is able to maintain 
a constant, desired dissipation rate; also in the presence of 
solids. The dissipation rate is independent of the size of the 
computational domain, which it should be. 

The steady state level of Rea does depend on domain size 
L; if the domain gets larger Rea gets larger which means 
that the Turbulent Kinetic Energy (TKE) per unit fluid mass 
increases. This is dueowing to the larger, energy containing 
structures that fit in the larger domains. To quantify this, 
TKE spectra are shown in Figure 9. The spectra for different 
domain sizes more or less overlap for the higher wave 
numbers 2 / .κ π λ=  This is because the simulations with 
different domain sizes have the same dissipation rate and, 
therefore, develop the same small-scale turbulence. If we 
discard the simulations in the smallest domain (L  =  128) 

rotating agglomerate through the channel thereby sampling 
variations in the local liquid deformation rate. The spikes 
and discontinuities are dueowing to encounters with other 
agglomerates; the denser the suspension, the more encounters. 
One way of summarising the detailed information provided 
by the simulations is in the form of PDF’s of contact forces 
and torques. In Figure 7 we show that the radial force PDF 
gets wider for denser agglomerate slurries.

3.3	 Aggregation of spherical particles in turbulence
In the recent literature, modelling of aggregates in 
homogeneous deformation fields has received considerable 
attention (Bäbler et al., 2008; Zaccone et al., 2009; Soos et al., 
2010; Higashitani et al., 2001; Becker et al., 2009; Harshe 
et al., 2011). The – in such cases – small size of the aggregates 
compared towith the fluid dynamic micro-scales allows for a 
Stokes flow approximation at the particle level and thus for 
the use of e.g., Stokesian dynamics (Brady and Bossis, 1988) 
to describe the interactions between the primary particles 
(spheres in case of Stokesian dynamics) forming aggregates, 
and the surrounding fluid. In such simulations, the overall 
deformation field that agitates the Stokesian dynamics is an 
input condition.

Here, we remove the assumption of aggregates being 
small compared to with the Kolmogorov scale. This has 
a few consequences. In the first place it implies that the 
Reynolds numbers based on aggregate size and even on 
primary particle size (the latter defined as 2Re a γ ν=   
with γ  the magnitude of the deformation rate tensor, a the 
primary particle radius, and v the kinematic viscosity of the 
liquid) are not necessarily (much) smaller than unity and that 
inertial effects (of fluid as well as of the particles) need to 
be resolved (and Stokesian dynamics can not be applied). 
It also implies that there is no clear length-scale distinction 
between Kolmogorov-scale flow and aggregate-scale flow 
anymore. Both scales overlap in an order-of-magnitude sense 
and directly interact. Therefore, a direct, two-way coupling 
between the turbulent micro-scales and the inhomogeneous 
fluid deformation experienced by, and generated by the 
moving, rotating, and continuously restructuring aggregates 
needs to be established.

In our simulations, HIT is generated in a cubic, fully 
periodic, three-dimensional domain through linear forcing 
(Rosales and Meneveau, 2005). In the turbulent field, 

Figure 7	 �PDF of the normal force in sphere-sphere contact points 
in quadruplets. Same colour coding as Figure 6 (see 
online version for colours)
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deviate over larger portions of the wave number space (Fig. 9) 
and we conclude that such a domain is too small. In the case 
with µ→∞ a stationary state is actually not reached if L = 128; 
the number of contacts per sphere keeps increasing. Closer 
inspection teaches that the spheres keep on aggregating and 
tend to form a single, big aggregate. If (for L ≥ 192) steady 
state nc values are compared between µ = 0 and µ→∞, friction 
induces higher levels of attachment of spheres and thus 
probably larger aggregates.

We now turn to the structure and size of the aggregates 
that are continuously formed and broken as a result of the 
turbulent flow. In Figure 10 instantaneous realisations of 
particle configurations are given. From the panel related to 
L = 128 it may be more clear that – as argued above –  this 
domain is too small for a domain-size-independent 
representation of the turbulence-aggregation interaction; 
larger domains are clearly needed. The bottom panels of 
Figure 10 show the largest aggregates at a certain (arbitrary) 
moment in time, suggesting larger aggregates when 
collisions between primary spheres are frictional. They also 
suggest a fairly open aggregate structure, i.e., relatively low 
fractal dimensions.

To make the observations in Figure 10 regarding the 
aggregates more quantitative and also to further investigate 
domain-size effects, time-averaged ASD’s were determined. 
The ASD’s presented in this paper are by aggregate mass 
(which is the same as by aggregate volume or by aggregate 
size in terms of the number of primary spheres nagg given the 
monodisperse primary spheres). To determine ASD’s we 
took a large number of instantaneous realisations during the 
stationary portion 2( (5( / )))t a v≥  of the time series shown 

the spectra only deviate significantly for the smaller wave 
numbers with 10log(κa) < – 0.5, i.e., for flow structures with 
sizes larger than 

0.5

2 20 .
10

a aπ
− ≈

 

As a result of this, the turbulent environment of the primary 
particles and also of small aggregates can be considered 
(statistically) similar for the simulations at different domain 
size, as long as L ≥ 192. This is more likely the reason why 
the average number of contacts per sphere (bottom panels 
of Fig. 8) is approximately independent of the domain size, 
again as long as L ≥ 192.

For the smallest simulations (L = 128), the number of 
contacts per sphere is clearly different, and also the spectra 

Figure 8	 �Time series of key variables of aggregating spheres in 
homogeneous isotropic turbulence. From top to bottom: 
Kolmogorov length-scale over particle radius, particle-
size-based Reynolds number Rea rmsu a ν≡ , number 
of sphere-sphere contacts per sphere. Left: frictionless 
collisions (µ = 0), right: µ → ∞. The colours indicate 
domain size (see online version for colours)

Figure 9	 �Power spectral density of turbulent kinetic energy as a 
function of dimensionless wave number κa after steady 
state has been reached. The same solid-liquid systems 
as in Figure 8 (see online version for colours)

Figure 10	 �Single realisations of aggregates in cubic domains. Top: 
primary spheres coloured by the size of the aggregate 
they are part of (red: nagg < 4; yellow: 4 ≤ nagg < 7; 
green: 7 ≤ nagg < 10; blue: nagg ≥ 10). Top-left: L = 128; 
top-right L = 384. Cases with µ → ∞. Bottom: the four 
biggest aggregates for cases with L = 384; left µ → ∞ 
(red: nagg = 60, yellow: nagg = 150, green nagg = 65, blue: 
nagg = 105; the red aggregate connects through the 
periodic boundaries); right µ = 0 (red: nagg = 32, yellow: 
nagg = 46, green nagg = 31, blue: nagg = 41; the yellow 
aggregate connects through the periodic boundaries) 
(see online version for colours)
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Apart from the unstable nature of some of the aggregating 
solid-liquid systems, the results in terms of ASD’s follow 
expected trends: For a given primary particle size, a decrease 
in ηK / a means a decrease in the Kolmogorov length scale 
as a results of an increasing energy dissipation rate. Since 
(unless stated otherwise) the ASD’s were obtained during a 
stationary time window, dissipation is in equilibrium with 
power input, and higher dissipation implies higher power 
input and thus stronger turbulence. The results in the top 
panel of Figure 12 therefore show a shift towards smaller 
aggregate sizes if the power input is increased. Starting 
at the highest value of ηk / a, from one case to the next the 
power input increases by a factor of 4. For ηk / a = 0.181, 
0.129, 0.091 the respective mass-average aggregate sizes 

aggn  are 3.99, 2.27, and 1.71. The average aggregate size 
is approximately linear in ηk / a in the (fairly narrow) range 
considered here.

It was discussed above that the denser suspensions 
(f = 0.16) we investigated got unstable. The more dilute 
suspension with f = 0.04 develops much smaller aggregates 
compared to the f = 0.08 base-case, largely because collisions 
are much less frequent in the dilute suspension (middle 
panel of Figure 12). Also the influence of the depth of the 

in Figure 8 (except for the case with L = 128 and µ→∞ that 
did not become steady; for this case, we also started building 

an ASD from 
2

5 at
v

 =  
 on). The size distributions for the 

same cases for which we showed the time series in Figure 8 
are given in Figure 11. Note that these are normalised size 
distributions; i.e., the area under each curve is the same. 
Also, note the logarithmic ordinate. For µ = 0 the ASD is 
fairly independent of L as long as L ≥ 192; the case with 
L = 128 deviates strongly. The mass-averaged aggregate sizes 
are aggn  = 2.60, 2.07, 1.97, 1.88 for L = 128, 192, 256, 384, 
respectively, which (beyond L = 128) shows a weak trend 
towards smaller aggn  for larger domains. This may be due 
to the stronger turbulence (albeit at the larger scales only) 
for the larger domains. Also, for µ→∞ ASD’s are similar if 
L ≥ 192. The average aggregate sizes are (in the order small 
to large domain) 4.63, 2.42, 2.27, and 2.22, i.e., slightly but 
significantly larger than for µ = 0.

Based on the basis of what was learned so far, a number of 
simulations were performed all having L = 256 and µ→∞. The 
settings for ηk / a, f, and Δu / v were varied. Note that changing 
one dimensionless number and keeping the rest the same 
sometimes implies changing more than one physical parameter. 
For instance, a decrease in the ratio ηk / a was achieved by 
increasing the energy dissipation rate, thus reducing the 
Kolmogorov length scale. At the same time the Kolmogorov 
velocity scale v increases. In order to keep Δu / v constant, we 
increase ∆u (and thus the binding energy) by the same factor 
as v increases.

The resulting ASD’s are presented in Figure 12. A 
striking observation is that the turbulent and aggregating 
solid–liquid systems can quickly get unstable. If the depth 
of the square well Δu / v is increased from 0.30 to 0.35 (an 
increase by a factor of 1.36 in the binding energy which 
is proportional to (∆u)2 the system slowly but consistently 
keeps on aggregating without reaching a steady ASD; see the 
lower panel of Figure 12 and its inset. If the solids volume 
fraction is increased from f = 0.08 (base-case) to 0.16 a large 
aggregate consisting of the order of two thousand primary 
spheres is formed (the total number of primary spheres in 
this simulation is 2960), surrounded by a number of smaller 
aggregates and primary spheres; see the middle panel of 
Figure 12 plus inset.

Figure 11	 �Aggregate size distributions by mass for the cases 
defined in Figure 8. Comparison between frictionless 
(left) and frictional (right) collisions, and effects of 
system size (see online version for colour)

Figure 12	 �ASD’s by mass for L = 256 domains, averaged over the 
time-interval (see online version for colours)
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square-well follows our intuition: the shallower interaction 
potential leads to smaller aggregates; the deeper well to larger 
aggregates (bottom panel of Figure 12).

4	 Summary and perspective

This paper presents a few case studies of mesoscopic 
modelling of solid–liquid flows, with underlying topics such 
as momentum transfer, turbulence modulation, aggregation, 
and flow-induced forces in and on agglomerates. Except for 
lubrication modelling, the simulations are direct, meaning 
that no (empirical) closures or empirical correlations for e.g., 
forces on particles enter the simulations. 

From an industrial standpoint the flow systems studied 
are (still) very simple: monosized spherical, solid particles 
in Newtonian carrier fluids. The choice for monodispersed 
systems is not fundamental; the simulation strategy easily allows 
for size distributions. The extension towards non-spherical 
particles would be much less straightforward. Specifically in 
dense systems, handling collisions of non-spherical particles 
would get (computationally) more complicated.

The reason for the relative simplicity at the mesoscale was to 
keep the parameter space limited. Adding complications (at the 
mesoscale) strongly adds to the dimensionality of the parameter 
space (then size distributions, particle shape characterisation, 
and rheological parameters would enter). It would be useful 
though to add complexity to the mesoscale, the challenge 
being to directly mimic the interactions there and for instance 
see how particle shape impacts momentum transfer in dense 
suspensions. The price to pay for this is getting less general (i.e., 
work towards more and more specific applications); results 
only apply to the specific systems of choice; the (general) link 
to the macro-scale would be harder to establish.

Relating with real processes and industry in this respect 
is essential. Zooming in on practical systems and making 
choices regarding the physics to be incorporated there 
only pays off if it helps in solving practical problems with 
economical and environmental impact.

This paper is a revised and expanded version of a paper 
entitled ‘Dense suspensions – the richness of solid–liquid 
interactions at the particle scale’ that was presented at the 
CFD2011 Conference (Trondheim, Norway, June 2011).
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