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Abstract

Simulating droplet coalescence is challenging because small-scale (tens of nanometers)

phenomena determine the behaviour of much larger (micron- to millimetre-scale) droplets.

In general, liquid droplets colliding in a liquid medium coalesce when the capillary number

is less than a critical value. We present simulations of droplet collisions and coalescence in

simple shear flow using the free-energy binary-liquid lattice Boltzmann method. In previous

simulations of low-speed collisions, droplets coalesced at unrealistically high capillary num-

bers. Simulations of non-coalescing droplets have not been reported, and therefore the critical

capillary number for simulated collisions was unknown. By simulating droplets with radii up

to 100 lattice nodes, we determine the critical capillary number for coalescence and quantify

the effects of several numerical and geometric parameters. The simulations were performed

with a well-resolved interface, a Reynolds number of one, and capillary numbers from 0.01

to 0.2. The ratio of the droplet radius and interface thickness has the greatest effect on the

critical capillary number. As in experiments, the critical capillary number decreases with in-

creasing droplet size. A second numerical parameter, the interface diffusivity (Péclet number)
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also influences the conditions for coalescence: coalescence occurs at higher capillary numbers

with lower Péclet numbers (higher diffusivity). The effects of the vertical offset between the

droplets and the confinement of the droplets were also studied. Physically reasonable results

were obtained and provide insight into the conditions for coalescence. Simulations that match

the conditions of experiments reported in the literature remain computationally impractical.

However, the scale of the simulations is now sufficiently large that a comparison with exper-

iments involving smaller droplets (≈ 10µm) and lower viscosities (≈ 10−6m2/s, the viscosity

of water) may be possible. Experiments at these conditions are therefore needed to determine

the interface thickness and Péclet number that should be used for predictive simulations of

coalescence phenomena.

Introduction

Predicting and understanding the conditions for droplet coalescence are important for many appli-

cations. At a large scale, emulsions, which consist of drops of one fluid dispersed in another, may

be subjected to complex turbulent flows for example during mixing. In such a flow, droplets are

sheared and collide, causing breakup and coalescence. The result of these interactions is a particu-

lar droplet size distribution.1–3 Since macroscopic properties, such as the effective viscosity of an

emulsion, and mass transfer rates between the fluids depend on the droplet size distribution, it is

useful to predict how flow conditions change droplet sizes. To make such predictions, an under-

standing of when drops break up and coalesce is required. In addition to emulsion flows in large

vessels and process equipment, droplet interactions are also important in microfluidic devices in

which individual droplets can be formed and manipulated.4–6 For example, droplets can be formed

by injecting one liquid into another in a T-junction or the nozzle of a flow-focusing device.4,5

Microfluidic devices can be used to study coalescence directly, and Bremond et al. 7 found that

droplets coalesce when separating rather than when they are compressed.

Droplet collisions in shear flow have been studied by several authors. Guido and Simeone8

used optical microscopy to measure droplet trajectories during collisions in simple shear. They did
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not, however, determine the conditions for coalescence. Leal and co-workers9–12 used a four-roll

mill to determine the conditions for coalescence under varying system parameters. Their results

are for predominantly extensional flows (flows with streamlines towards and away from a stag-

nation point), rather than simple shear flows. More recently, Chen et al.13 studied the effect of

confinement on droplet coalescence in simple shear. The experimental results identify parameter

ranges over which the transition from coalescence to non-coalescence occurs, and they are useful

for comparisons with simulations. In general, there are two motivations for using simulations to

study coalescence. The first reason is to gain an understanding of coalescence by obtaining data

and using initial conditions that are experimentally impractical. The second reason is to verify the

accuracy of the simulation method so that simulations of coalescence in more complex systems can

be used to predict or optimize the performance of that system. For example, simulations of poly-

disperse emulsion flows must correctly model the dependence of the conditions for coalescence on

the size of the droplets.

The outcome of a droplet collision is a macroscopic event that depends on phenomena at a

much shorter length-scale.14 As two droplets approach, the fluid between them drains. If this

drainage continues long enough and the film between the droplets becomes sufficiently thin, at-

tractive intermolecular forces across the film dominate and a bridge forms between the droplets.

This bridge grows due to capillary forces, and the droplets coalesce. For a surfactant-free mixture

of two polymers, such as the polydimethylsiloxane (PDMS) and polyisobutylene (PIB) studied by

Chen et al.,13 van der Waals forces determine the minimum film thickness before a bridge forms.

An order-of-magnitude estimate of this critical thickness is 27 nm.13 In comparison, typical droplet

diameters in emulsions and microfluidic devices range from 1 to 500µm, factors of 37 to 18500

times larger than this sample critical film thickness.

The range of length scales poses significant challenges for fully resolved simulations of droplet

collisions and coalescence. When simulating such a system, one must use an exceedingly fine

uniform mesh, a non-uniform mesh with significant refinement in the vicinity of interacting in-

terfaces, or multi-scale modelling that incorporates the effects of phenomena at a small scale
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into larger more coarsely-resolved simulations. In general, simulations of droplets have been

performed using interface-tracking or interface-capturing methods.15 Interface-tracking methods

use meshes or other computational elements that lie on the interface. In these methods, the in-

terface is “sharp” because fluid properties vary discontinuously over the interface. Examples of

interface-tracking methods include the boundary integral, finite element, and immersed-boundary

methods.15 Loewenberg and Hinch16 used the boundary integral method to simulate binary drop

collisions in shear flow. They did not, however, include attractive forces in the simulations and did

not therefore simulate coalescence. The boundary integral method has also been used to study the

flow of concentrated emulsions17,18 in periodic domains and model porous media.19 Simulating

topological changes, i.e. breakup and coalescence, in interface-tracking methods is computation-

ally challenging due to the mesh transformation that must be performed. The methods also require

a somewhat arbitrary choice about the distance when two interfaces are close enough that they

should merge or pinch-off. Such a critical distance may not actually be a constant; Leal 11 notes

the critical film thickness may depend on the droplet radius. Because a length-scale must be pro-

vided as an input to the model, the use of these simulation methods requires prior knowledge of

this length, making the methods non-predictive.

Unlike interface-tracking methods, interface-capturing methods do not explicitly describe the

position of the interface. Instead, a scalar identifies regions of different composition and the in-

terface is located where this scalar equals a constant value that is typically zero or one half. Fluid

properties vary continuously over the diffuse interface between two fluids. Examples of such meth-

ods include lattice Boltzmann, level-set, volume-of-fluid (VoF), and phase field models.15 Changes

in interface topology are handled automatically by these methods. However, it is necessary to un-

derstand the conditions when these changes (breakup and coalescence) occur in simulations and if

the conditions match experiments. In some interface-capturing methods, the critical distance be-

tween interfaces for coalescence and breakup is determined by the grid, in contrast to the arbitrary

(but specified) critical distance for interface-tracking methods. In the VoF and level-set methods,

two interfaces connect when the chosen grid cannot resolve the gap between them (see e.g. Tryg-
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gvason et al. 20). For example, the VoF method aims at simulating non-interacting sharp interfaces.

As Zaleski et al. 21 mention, a cutoff length-scale is introduced and interfacial physics below this

length scale are ignored. The cells in the simulation domain have compositions of zero or one,

except those cells that contain an interface. In these cells, the composition varies continuously be-

tween zero and one. The interfaces of colliding droplets connect when the chosen grid resolution

can no longer resolve the two interfaces. Consequently, the conditions for coalescence are expected

to depend on the cell size, though a detailed analysis, analogous to the present lattice Boltzmann

method (LBM) work, is required to confirm the nature of the dependence. Grid-dependence is

expected because the film between two droplets is resolved better as the mesh is refined, decreas-

ing the critical thickness for rupture. As a result, a longer time is needed for the film to drain

before rupturing. Coalescence would therefore occur later in higher-resolution simulations. In

contrast, as we show in the “Interface resolution” section, we obtain grid-independent results with

high-resolution free-energy LBM simulations. Similar results are expected with other phase-field

methods, but LBMs are convenient to parallelize, making high-resolution simulations practical.

Lattice Boltzmann methods have seen much popularity for simulating microfluidic flows.22

While several multiphase and multicomponent LBMs have been proposed, we focus on the binary-

liquid free-energy method23 due to its thermodynamic treatment of fluid mixtures. Simulations

of droplet formation have been successful24 with this method, and the deformation and breakup

of droplets has been studied in detail to determine the numerical parameters that are required for

accurate simulations.25 The conditions for coalescence, however, have not been studied in detail,

though other researchers have noted that droplets coalesce too easily.26 While droplet coalescence

in microfluidic devices has been studied experimentally,6,7,27,28 it is not currently possible to pre-

dict such coalescence phenomena with simulations. The need to study simulations of droplet

coalescence in detail is underscored by the development of non-coalescing emulsion models by

several researchers.29,30 Though these models can be used for flow conditions when coalescence

does not occur, such models with suppressed coalescence cannot be used to study the transition to

coalescence. Therefore, there is a need to characterize the coalescence behaviour of existing simu-

5



lation models, investigate the previously-noted discrepancy between simulations and experiments,

and determine whether conditions can be found in which droplets do not coalesce.

Due to the thermodynamic treatment of the diffuse interface, i.e. the use of a Cahn-Hilliard

fluid model, the behaviour of fluid interfaces in the free-energy LBM can be related to van der

Waals forces. This is an important advantage over other methods in which a specified length or the

grid resolution determines the conditions for coalescence. The connection between the free-energy

model and interfacial forces has been explained, for example, by Yue et al. 31 , who studied coales-

cence after a head-on collision with a spectral phase-field method. Dupuy et al. 32 used an LBM

with a Cahn-Hilliard free-energy model to study the coalescence of liquid droplet pairs in vapour.

Premnath and Abraham33,34 also studied liquid droplets in vapour, but considered both head-on

and off-centre collisions. They showed several cases of coalescence and splitting after temporary

coalescence, but no cases where the interfaces never merged. The results agreed with experimental

findings. Their work, however, is in the high Reynolds number regime (Re ≈ 50), and the easy

coalescence noted by Jia et al. 26 occurs at low Reynolds numbers (Re < 1). Different LBMs, i.e.

other than the free-energy LBM, have also been used to study droplet collisions at high Reynolds

numbers. Inamuro et al. 35 , Lee and Lin 36 , and Sun et al. 37 focused on achieving high density

ratios between the liquid and vapour phases. Chiappini et al. 38 used a (two-dimensional) finite-

difference lattice Boltzmann method36 to study the Rayleigh-Taylor instability, droplet breakup,

and droplet coalescence, while Lycett-Brown et al. 39 studied collisions with an improved Shan-

Chen40 LBM for liquid-vapour systems. To the authors’ knowledge, studies of droplet collisions

in liquid-liquid systems that are similar to those for liquid-vapour systems have not been reported.

Perlekar et al. 41 studied large numbers of droplets (approximately 10 to 50) in turbulence using the

Shan-Chen method, but the behaviour of a colliding pair of droplets was not investigated. Inter-

estingly, simulations of droplet collisions and coalescence using the colour-model LBM,42,43 the

third LBM model that is commonly used for multiphase simulations, have not been reported. Sim-

ulations of deformation and breakup44 and droplet formation in a microfluidic channel45,46 have

been described. Due to this success, the colour-model LBM may be a good candidate for coales-
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cence simulations, but a comparison of coalescence behaviour in the colour-model and free-energy

LBMs is beyond the scope of the current work. It should be noted that a link between numerical in-

terface parameters in the color-model LBM and intermolecular forces is not immediately evident,

suggesting a disadvantage of this model in comparison to the free-energy method.

In this work, we quantify the conditions for coalescence in the free-energy LBM during col-

lisions of two liquid droplets in a liquid matrix. The Reynolds number is fixed at one, a low

value that is efficient to simulate with this explicit numerical method. We determine the effects of

droplet size, diffuse interface thickness, interface diffusivity, vertical offset between the droplets,

and droplet confinement. This information is important for knowing the conditions when simula-

tions of multiphase microfluidic flows and fully-resolved simulations of emulsions in turbulence

correctly model droplet coalescence.

Coalescence Theory

A schematic of the coalescence problem that we simulate is shown in Fig. 1. Two initially spherical

droplets of radius R are initialized with a horizontal distance ∆X and a vertical distance ∆Y between

their centres in a domain with a height H between the shear planes. A shear flow with a rate

γ̇ = 2u0
H , where u0 is the horizontal speed of the two shear planes, is started impulsively. The

interfacial tension (or energy) between the droplet liquid and the surrounding liquid is σ . We do

not currently study the effects of density or viscosity differences between the two liquids. Both

liquids therefore have the same density ρ and kinematic viscosity ν . A domain with a finite length

L and a finite depth W is used to represent a domain that is infinite in these dimensions. Thus

the domain size is chosen to be large enough that the effects of the finite size can be neglected,

and the adequacy of the choice is verified in the section “Domain size effect.” To use available

computational resources efficiently, we use symmetry boundary conditions and simulate only one

quarter of the whole system as shown in Fig. 1.

The physical parameters give rise to several non-dimensional parameters. Hydrodynamic sim-
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Figure 1: Schematics of the system geometry (left) and simulation domain (right). Two droplets
with radii R are located between two shear planes that are a distance H apart and move at a speed
u0 in opposite directions. The horizontal (parallel to the shear planes) distance between the centres
of the droplets is ∆X ; the vertical distance is ∆Y . The definitions of the coordinate axes and domain
dimensions are also provided. Due to the symmetry of the full system (left), only one quarter is
simulated (right). The boundary conditions on each face of the simulated domain are shown.

ilarity is specified by the Reynolds number Re, which we define using the characteristic velocity

γ̇R and the droplet radius R as the characteristic length:

Re≡ γ̇R2

ν
(1)

The effects of surface tension are captured by the capillary number Ca, which is the ratio of viscous

(µγ̇R2) and interfacial (σR) forces:

Ca≡ µγ̇R
σ

(2)

where µ = ρν is the dynamic viscosity of both fluids. The geometric parameters are the confine-

ment 2R
H , the horizontal separation ∆X

2R , and the vertical offset ∆Y
2R .

The outcome of a collision is determined by the capillary number. With increasing capillary

number, the deformation of droplets increases as the interfacial forces that keep a drop spherical

give way to the viscous forces that shear the droplet. When droplets are deformable, their interfaces

flatten when they are pushed together in a shear flow. The fluid film that forms between the droplets

must drain before the interfaces can come close enough that intermolecular forces dominate and

the interfaces merge. If the film does not thin sufficiently over the time of a collision, the drops
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slide over each other; otherwise they coalesce. As the capillary number decreases, the reduced

deformability of the droplets suppresses the formation of a flat film. In the limit of high surface

tension (Ca� 1), the drops would remain effectively spherical and a flat film could not form to

delay coalescence. Thus, droplets cannot coalesce when the capillary number is sufficiently high

and they coalesce when it is sufficiently low. There is therefore a critical capillary number Cac,

and droplets coalesce when Ca < Cac; they slide when Ca > Cac.

The outcome of a collision is determined by hydrodynamic, capillary, and geometric effects,

as well as a characteristic length scale lc at which intermolecular forces become important and

destabilize the thin film that separates colliding droplets. The dependence of these factors on the

critical capillary number can be expressed as

Cac = Cac

(
Re,

∆X
2R

,
∆Y
2R

,
2R
H

,
R
lc

)
(3)

Numerical Method

We use the free-energy lattice Boltzmann method for binary liquid mixtures.23 In this method, two

discrete density distributions fi and gi model the hydrodynamics and the evolution of a phase field,

respectively. A brief overview of the method is provided here to establish the definitions that are re-

quired for this paper; more details about the method and theory can be found elsewhere.22–24,47–50

In general, lattice Boltzmann methods solve advection-diffusion equations through a two-step pro-

cess that mimics the behaviour of molecules in a gas. In the first step, the densities at each lattice

node are propagated to adjacent nodes along a set of discrete directions ~ci, where i identifies the

discrete direction. We use a three-dimensional lattice with 19 discrete directions, i.e. a D3Q19

lattice, for both density fields. The second step imitates the effect of collisions between molecules

by relaxing the densities at each node towards an equilibrium distribution. Thus, the density dis-
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tributions fi and gi evolve according to

fi(~x+~ci∆t, t +∆t) =
(

1− 1
τ f

)
fi(~x, t)+

1
τ f

f eq
i (~x, t) (4)

gi(~x+~ci∆t, t +∆t) =
(

1− 1
τg

)
gi(~x, t)+

1
τg

geq
i (~x, t) (5)

where τ f and τg specify the relaxation rates. By relating macroscopic values to the density distribu-

tions and appropriately choosing the equilibrium distributions f eq
i and geq

i , the simulations model

the required continuum equations. For the fi field, the macroscopic density and momentum are

ρ = ∑
i

fi (6)

ρ~u = ∑
i

fi~ci (7)

and the equilibrium distribution is

f eq
i = Ai +Bi~u ·~ci +Ci~u ·~u+Di(~u ·~ci)

2 +Gi,αβ ci,αci,β (8)

where index notation has been used for the last term and summation over repeated Greek indices

is implied. The coefficients Ai, Bi, Ci, Di and Gi must satisfy conservation constraints, but these

constraints do not determine the coefficients uniquely. We use coefficients that minimize spurious

currents.51 With these definitions of the macroscopic variables and equilibrium function, the fi

field simulates the mass conservation (continuity) equation

∂ρ

∂ t
+∇ · (ρ~u) = 0 (9)

and the incompressible Navier-Stokes equation

∂~u
∂ t

+(~u ·∇)~u =− 1
ρ

∇P+ν∇2~u (10)
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where the pressure is determined with the equation of state P = 1
3ρ and the kinematic viscosity is

related to the relaxation rate by ν = 1
3

(
τ f − 1

2

)
. To simulate incompressible flow, flow speeds must

be kept low, and we achieve this by limiting the shear speed to approximately 0.02 lattice units per

timestep.

For the phase field, the scalar φ specifies the composition of the fluid, and it varies between−1

(continuous phase) and 1 (droplet phase). It is determined from the density distribution gi by

φ = ∑
i

gi (11)

The continuum equation for φ is

∂φ

∂ t
+∇ · (φ~u) = M∇2

µ (12)

In this advection-diffusion equation for φ , M is the diffusivity of the chemical potential µ . This dif-

fusivity is determined by the relaxation time τg and a free parameter Γ according to M =Γ
(
τg− 1

2

)
,

while the chemical potential is determined by the free-energy of the system. The free-energy func-

tional F [φ(~x)] is23

F =
∫

V

[
1
3

ρ lnρ +
1
2

φ
2
(
−A+

B
2

φ
2
)
+

κ

2
(∇φ ·∇φ)

]
dV (13)

The first term provides an ideal gas equation of state, the second term is a double-well potential

that causes phase separation at minima with compositions of φ0 =±
√

A
B , and the third term creates

interfacial energy by associating energy with changes in φ . The parameters A and B specify the

shape of the double-well potential. To have two phases with φ0 =±1, we use A = B. The magni-

tude of the energy due to concentration gradients is determined by the parameter κ . The chemical

potential for this free energy is

µ =
δF
δφ

=−Aφ +Bφ
3−κ∇2

φ (14)
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The one-dimensional steady-state solution for φ between two infinite domains provides important

information about the interface, specifically its characteristic thickness and excess energy. The

solution is23

φ(x) = φ0 tanh
x
ζ

(15)

The length scale ζ =
√

2κ

A characterizes the thickness of this diffuse interface. Though 96.4% of

the total change in φ across an interface occurs over a distance 4ζ , the length ζ is often called the

interface thickness. The excess interfacial energy of this interface profile is

σ =
2
√

2
3

√
κA (16)

For the large droplet sizes that are used in this work (R > 20 lattice nodes), the interfacial energy

for a planar interface provides a good estimate of the energy of a spherical interface.26

In this first detailed characterization of the coalescence of droplets in LBM simulations, we

keep several parameters constant and leave studying their effects as future work. To minimize

spurious currents and enhance stability, we keep the two relaxation rates fixed (τ f = τg = 1).

Consequently, ν = 1
6 and M = Γ

2 . The Reynolds number is fixed at one, and we consider pairs of

fluids with equal densities and viscosities. In earlier work,52 the critical capillary number for film

rupture was found to be independent of the Reynolds number over the range 0.2 < Re < 1.4 in

simulations with R = 25.

To maximize the droplet size that can be simulated with available computational resources,

we take advantage of the symmetry in the full domain and simulate only one quarter of it. As

shown in Fig. 1, the quarter-domain has two periodic boundaries, two symmetry boundaries, a

rotational symmetry condition at the bottom (y = 1
2H), and a shear plane on top (y = H). The shear

velocity condition ~u|y=H = (u0,0,0) on this plane was implemented using the method of Ladd 53 .

This method was chosen because it ensures mass conservation (unlike e.g. the method of Zou and

He 54), an important feature for the long simulation times that are used to study droplet collisions.

The central results of this paper are the effects of the parameters in the free-energy model on
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the outcome of a simulated droplet collision. The model provides a convenient choice for the

characteristic length lc: the characteristic length ζ of the diffuse interface thickness. The Péclet

number

Pe =
γ̇Rζ

MA
(17)

is the ratio of the time scales of advection and chemical potential diffusion over a length scale

given by ζ .24 Using lc = ζ and including the Péclet number, we write

Cac = Cac

(
Re,

∆X
2R

,
∆Y
2R

,
2R
H

,
R
ζ
,Pe
)

(18)

We study the effects of the droplet size relative to the interface thickness R
ζ

, the interface Péclet

number Pe, the confinement 2R
H , and the vertical offset ∆Y

2R on Cac at constant Re and ∆X
2R to deter-

mine whether free-energy LBM simulations can be used to accurately model the physical problem.

Other numerical factors that may affect the results, such as the relaxation rate, are kept constant.

We study a parameter range in which the effects of the parameters on the critical capillary number

can be determined with the computational resources that are currently available to us. We hypoth-

esize that the model parameter ζ can be related to a physical lc so that the simulations represent

the physical situation when R
ζ

and R
lc

are matched. If this is correct, the effective physical size of

the simulated droplets can be determined from the experimental size of a droplet system with the

same Cac, Re, and geometry.

Implementation

A highly-parallel code was used to simulate the large domains that are required to discern the

effects of the parameters on the outcome of a collision. The smallest (R = 25 lattice nodes) sim-

ulations were performed on a single graphics processing unit (GPU). The largest (R = 100 lattice

nodes) simulations were parallelized over nine GPUs (NVIDIA Tesla M2070), with three GPUs

per computational node. For these multi-GPU simulations, only one CPU core (Intel Xeon E5649)

was used on each node for communication. This communication was implemented with a Mes-
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sage Passing Interface (MPI) library. Sample performance data for the simulations are listed in

Table 1. All computations were performed with double (64 bit) precision. The memory bandwidth

that is shown is an effective bandwidth that includes only memory transfers that are required by

the LBM calculations; memory transfers for communication are excluded. The speed is measured

in million lattice updates per second (Mlups). For the largest domain size, 232 Mlups is approxi-

mately 300000 timesteps per day. The corresponding non-dimensional strain for 300000 timesteps

at Re = 1 and R = 100 is γ̇t = 5.

Table 1: Performance of the simulation software with different domain sizes and types of paral-
lelization

Nodes GPUs Domain Size Drop Radius, R GPU Memory Bandwidth Speed
(lattice nodes) (lattice nodes) (GB) (GB/s) (Mlups)

1 1 256×64×64 25 0.5 75 40.8
1 3 256×64×64 25 0.5 132 72.8
3 9 1024×256×256 100 34 426 232

Results and discussion

Many parameters remain constant for all the simulations that are presented in this section, unless

specified otherwise. These parameters are: Re = 1, ζ = 2, Pe = 10, ∆X
2R = 1.26, ∆Y

2R = 0.86, and

2R
H = 0.39.

Interface resolution

Before studying the conditions that determine when colliding droplets coalesce, we first examine

whether the simulation results are sensitive to the resolution of the interface and the size of the

periodic domain. To determine if the interface is adequately resolved with ζ = 2, simulations

with twice this resolution were also performed. As illustrated in the upper portion of Fig. 2, the

transition from φ = −1 to φ = 1 occurs over a distance of about 8 nodes when the characteristic

length ζ of the diffuse interface is 2. With ζ = 4, the distance is 16 nodes. Since the higher-
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resolution interface profile is effectively identical to the lower-resolution profile, the interface is

judged to be well-resolved at the lower resolution.

Three capillary numbers were considered to see the effect of the interface resolution on the out-

come of a collision. All the simulations, shown in Fig. 2, were performed with the same geometry,

Reynolds number (1), Péclet number (10), and R/ζ = 18.75. The simulation at the lower resolution

had a droplet radius of 37.5, a domain size of 384×96×96, and an interface thickness of ζ = 2;

the simulation with R = 75 was in a 768×192×192 domain and had ζ = 4. At both resolutions,

the transition from coalescence to sliding occurs over the range of capillary numbers from 0.08 to

0.1. At the higher resolution and Ca = 0.09, a bridge between the two drops is visible in the fourth

frame of the sequence in Fig. 2. Such a bridge also forms and breaks at the lower resolution, but it

breaks sooner and is not visible in the frames chosen for Fig. 2. These results show that doubling

the resolution does not change the critical capillary number significantly. As will be described in

“Droplet size effect,” keeping the interface thickness constant at ζ = 2 in simulations with R= 37.5

and R = 75 lowers the critical capillary number by almost a factor of three. Due to the absence

of a significant change in the critical capillary number when doubling the resolution, the interface

is judged to be adequately resolved with ζ = 2. This choice for ζ agrees with the findings of van

der Graaf and van der Sman,24,25 who used this interface thickness because it provided the correct

critical capillary number for droplet breakup in a shear flow. They found that the critical capillary

number for breakup was too low with ζ = 1. Since ζ = 2 provides adequate resolution, all further

simulations were performed with this interface thickness. This choice allows us to simulate larger

droplet sizes relative to the interface thickness with less computational resources.

Domain size effect

Since the simulated domain is periodic in the two directions that are perpendicular to the height

of the domain (i.e. the x and z axes in Fig. 1), we evaluated the effect of the domain size in these

directions. The results for two domain sizes with R = 37.5 and Ca = 0.08, 0.09, and 0.10 were

compared. The larger domain was 768× 192× 384, which has twice the length and width of the
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Figure 2: Effect of resolution on droplet collision simulations. The upper portion shows the value
of φ along the x direction through the middle of the domain. Profiles are shown for the two
resolutions (R = 37.5 and 75) at an early time when a smooth profile has been established but
before significant shear has occurred (γ̇t = 0.13). The profiles were visually identical for the three
capillary numbers considered in the lower portion. The lower portion shows time series of the
interface shape in cross-sections through the middle of the domain with R = 37.5 (dashed red) and
R = 75 (solid black) at Ca = 0.08 (left), 0.09 (middle), and 0.1 (right). Time progresses from top
(γ̇t = 0) to bottom (γ̇t = 6.67) in increments of γ̇t = 1.33.
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smaller 384×192×192 domain. Doubling these two dimensions did not change the shape of the

droplets or the outcome of a collision at the three capillary numbers. A domain with L≈ 10R and

W ≈ 5R is therefore large enough that the effects of periodicity are minor. However, the effect of

confinement, which is the ratio of the domain height and droplet diameter, is important, and this

effect is discussed in the section “Confinement effect.”

Droplet size effect

The effect of the droplet size on the outcome of a collision was studied by increasing the droplet

radius and domain size in proportion while keeping the interface thickness (ζ , expressed as a

number of lattice nodes) constant. This is in contrast to the simulations used to study the effects

of the interface resolution (Fig. 2) in which the interface thickness was also scaled up by the

same factor as the droplet radius and domain size. In the simulations used to study the effect

of the droplet size, the Reynolds number, Péclet number, and geometry were kept constant at

the previously-listed values. The simulations with different droplet sizes but the same interface

thickness represent the physical situation of studying collisions of differently-sized droplets of

the same pair of liquids. When the same liquid pair is used, the intermolecular interactions that

determine the critical film thickness remain constant.

Figure 3 shows how the capillary number and the size of the droplet relative to the interface

thickness determine the outcome of a collision. A bisection search method was used to find the

critical values when the transitions between different outcomes occur. In general, droplets slide un-

less the capillary number is below a critical value. This critical capillary number decreases as the

droplet becomes larger relative to the interface thickness, or equivalently, the interface thickness

becomes smaller relative to the droplet radius. Considering previous discussion, this decreasing

trend occurs because reducing the critical thickness for film rupture delays coalescence by increas-

ing the time required for the film to drain. If the observed decreasing trend in the critical capillary

number with increasing droplet size continues beyond the parameter range we studied, it is ex-

pected that droplets will not coalesce in the limit of a sharp interface, i.e. as R/ζ → ∞. Thus, to
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simulate a physical system in which droplets coalesce, a finite R
ζ

value is required.

As illustrated in Fig. 3, there are three possible outcomes of a simulated droplet collision for

the parameter ranges that we consider. For every droplet size, there is a critical capillary number

above which the droplets slide over each other and their interfaces remain distinct. There is also a

critical capillary number below which the droplets coalesce. These two critical capillary numbers,

however, are not necessarily the same.

0.01

0.02

0.04

0.06
0.08

0.1

0.2

C
ap

ill
ar

y
nu

m
be

r,
C

a

10 20 30 40 50 60
Droplet size, R

ζ

Cac ∼ (
R

ζ
)
−1.6Cac ∼ (

R
ζ

)−0.9

droplets coalesce

droplets slide

temporary bridge

Ca = 0.095

Ca = 0.085

Ca = 0.080

R/ζ = 18.75

Figure 3: The effect of the droplet size (left) on the critical capillary numbers that separate the three
possibilities (right) for the outcome of a simulated droplet collision. The open circles show the
simulations with the lowest capillary number for a given droplet radius at which the two droplets
remained separate. The filled circles show the highest capillary number at which the droplets
coalesce. Solid lines show fitted scaling laws. The time sequences on the right show sample
collisions with R/ζ = 18.75 in which the droplets slide (top), a temporary bridge forms (middle),
and the droplets coalesce (bottom). Cross-sections of the φ field are shown in the x-y plane through
the middle of the domain with colours ranging from white (φ = −1) to blue (φ = 1). The φ = 0
contour is shown in red. Animations are included as online supplementary information.

The effect of the droplet size relative to the interface thickness
(

R
ζ

)
on the two critical capillary

numbers is shown in Fig. 3. When R
ζ
> 22, there is only one critical capillary number that separates

the regions of sliding and coalescence. When R
ζ
< 22 the situation is more complex. The higher

critical capillary number specifies when the interfaces come close enough for the film to rupture.

The newly-formed bridge is pulled apart by the shear flow. This happens until the capillary num-

ber falls below the lower critical capillary number that specifies when the outcome of a collision

is coalescence. Both critical capillary numbers follow a simple scaling rule Cac ∼
(

R
ζ

)−n
with
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different values of n (with n > 0). Since n for the lower Cac is smaller than n for the higher Cac,

the two capillary numbers eventually become the same, and then the critical capillary number for

film rupture becomes the critical value that determines if drops coalesce. This result is consistent

with experiments13 in which only one critical Ca for coalescence was observed. This suggests that

the droplets in the experiments are sufficiently large that only one Cac exists. Experiments with

smaller droplets are not available to verify if temporary bridges would be observed with smaller

droplets.

To interpret the existence of a temporary bridge in simulations, we can compare the charac-

teristic time scales of shear and bridge growth. The shear time scale is τs = γ̇−1. The growth of

the liquid bridge between drops is a complex phenomenon and only a brief discussion is presented

here. There are two regimes for the growth of the bridge radius Rb over time (see e.g. Paulsen

et al. 55): a viscous and an inertial regime. Fig. 4 shows the growth of the bridge as a function of

time for a simulation with R = 37.5, ζ = 2, and σR
ρν2 = 10.8. The bridge radius Rb is proportional to

the square root of time scaled by the inertial time scale τi =

√
ρR3

σ
, indicating that our binary-liquid

simulations, like the liquid-vapour simulations by Lee and Fischer,56 are consistent with modelling

for the inertial regime.57 The proportionality factor of 0.7, however, is lower than the 1.2 found by

Lee and Fischer.56 An important difference between the modelling discussed here and the liquid-

liquid coalescence experiments and simulations is that the modelling considers liquid drops in a

vapour whose effects are often neglected. The slower growth of the bridge in liquid-liquid simula-

tions may be due to the increased inertia of a liquid film compared to a lower-density vapour film.

Having shown that the inertial time scale determines the rate of bridge growth in the simulations,

we can consider the ratio of the shear and inertial bridge growth time scales

τs

τi
=

γ̇−1
√

ρR3

σ

=
1√

ReCa
(19)

to determine the outcome of the competition between growth and shear that starts when the film

ruptures and the bridge forms. When τs/τi � 1, the shear time scale is smaller than the bridge
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growth time scale, and we expect the slowly-growing bridge to be pulled apart; when τs/τi� 1,

the bridge grows faster than shear pulls it apart, allowing the droplets to coalesce. A critical value

of the ratio τs/τi must be exceeded for the droplets to coalesce. The value of this critical ratio may

depend on various parameters. Based on the lower Cac values in Fig. 3, the critical value of τs/τi for

the conditions of these simulations is slightly higher than 3. If this critical time scale ratio remains

constant, the critical capillary number for bridge destruction scales as Cac∼Re−1 based on Eq. 19.

At low Re, the dynamics switch to a viscous regime, and the Re−1 scaling is not applicable (by

using the viscous time scale τv =
µR
σ

instead of τi, the time scale ratio Eq. 19 becomes the inverse

of the capillary number and is therefore independent of Re). Thus in addition to the difference in

droplet size relative to intermolecular length scales, the absence of experimental observations of a

regime where a bridge forms and breaks may be also due to the difference in Reynolds numbers:

the experiments of Chen et al. 13 had Re < 1×10−7 compared with Re = 1 in the simulations.
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Figure 4: The radius of the bridge between two initially separate droplets in a simulation, which is
illustrated on the right, grows with the square root of time scaled by the inertial time scale τi. The
solid line shows the slope estimated at t = τi.

Interface diffusivity effect

The chemical potential diffusivity, or mobility M (defined in Eq. 12), affects the critical capillary

number for coalescence. Qualitatively, if the diffusivity is low, the φ profile over an interface

responds slowly to changes in local conditions. As diffusion speeds up compared to advection,

the interaction time between two interfaces that is required for sufficient diffusion to cause film
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rupture decreases. The critical capillary number increases, i.e. coalescence becomes “easier,” as

the mobility increases (Pe decreases).

Previous studies of the effect of the interface diffusivity in multiphase flow simulations with

the free-energy method have not considered coalescence. Van der Graaf et al.24 performed three-

dimensional simulations of droplet formation in a microfluidic T-junction. They verified that the

critical capillary number for droplet breakup in a simple shear flow was correct for their choice of

resolution and Péclet number. Van der Sman and van der Graaf25 systematically studied droplet

deformation and breakup in two-dimensional simulations with the free-energy method. Yue and

Feng 58 discuss diffuse-interface modelling of contact line motion on solid surfaces, a problem

with features that are relevant to simulations of coalescence. In the limit of a sharp interface (a

non-diffusing interface with zero thickness), contact lines remain unphysically pinned. The sharp-

interface limit is also unphysical for simulations of coalescence. Reducing the interface thickness

relative to the droplet size delays coalescence because the thickness of the film between the drops

must thin to a greater extent before coalescence, as was shown in the section “Droplet size effect”.

Zero diffusivity is also undesirable because, in the absence of diffusivity, adjacent interfaces would

not merge to cause coalescence. In simulations of contact line motion, the limit of zero thickness

and non-zero diffusivity is desired,58 while both a non-zero interface thickness and diffusivity (and

therefore a finite Péclet number) are required for coalescence. In fact, van der Sman and van der

Graaf 25 found that the critical capillary number for droplet breakup in shear is correct when the

rates of interface advection and diffusion balance, i.e. the Péclet number is near one. In three-

dimensional simulations, van der Graaf et al. 24 obtained the correct critical capillary number for

breakup in shear with Pe = 10. Droplet breakup and coalescence, however, involve topologically

and hydrodynamically different interactions between two interfaces. As a result, the correct choice

of the Péclet number for simulations of breakup and coalescence may not be the same. We therefore

study the effect of the Péclet number on coalescence in this section. In the other sections, Pe = 10

was used.

The effect of the Péclet number on the collision outcome map (Fig. 3) is shown in Fig. 5. All
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dimensionless parameters were kept constant except the interface Péclet number that was varied

between 1 and 100. Numerical instability prevented simulations with Pe = 100 and R/ζ > 25. In

general, as the Péclet number decreases, the critical capillary numbers increase and the area of the

region where temporary bridges form increases. The critical capillary numbers as a function of

the Péclet number for R/ζ = 18.75 are also shown in Fig. 5. As expected, increasing the Péclet

number lowers Cac. Compared to the effect of R/ζ on Cac, the effect of the Péclet number is

weaker: Cac decreases by a factor of four as the Péclet number increases by a factor of 100, while

doubling R/ζ reduces Cac by a factor of three. In the advection dominated region with Pe > 50,

a temporary bridge does not form, and both Cac values become constant at about 0.05. As the

Péclet number decreases, both critical capillary numbers increase and the difference between them

also increases. If both breakup and coalescence can be simulated correctly with the same Péclet

number, the results with Pe = 10 (with which van der Graaf et al. 24 obtained breakup at the correct

capillary number) may be considered predictive. A region of temporary bridge formation is thus

expected to exist in experiments, but experimental evidence is not presently available to assess this

prediction. The existence and size of the parameter range for temporary bridge formation is highly

sensitive to the Péclet number.

Offset effect

To study the effect of the vertical offset, we performed additional simulations with a lower offset

∆Y between the droplets. Simulations with capillary numbers exceeding 0.2 were not performed

because the deformation of the droplets became significant, and the periodicity of the domain

began to influence the outcome of the simulations. The non-dimensional vertical offset for the

second set of simulations was 0.6. All other parameters were kept constant. The results of these

simulations are compared with the previous simulations with an offset of 0.86 in Fig. 6. As the

vertical offset decreases, the geometry approaches that of a head-on collision, and the Cac for

coalescence increases. Simulations with R= 100 were also performed at ∆Y
2R = 0.3 and 0.4. Results

for ∆Y
2R = 0.4 are shown in Fig. 7. At these offsets, critical capillary numbers between 0.1 and 0.25
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Figure 5: Effect of the Péclet number on the collision outcome map (left). The results for Péclet
numbers of 1 (blue), 10 (red), 50 (orange) and 100 (green) are shown. The solid and dashed
lines show fitted scaling laws. The dashed lines are for the high Ca at which the droplets remain
coalesced; the solid lines are for the lowest Ca at which the droplets slide. At capillary numbers
between these lines, a bridge forms then breaks. The effect of the Péclet number on the two critical
capillary numbers at a constant droplet size of R/ζ = 18.75, indicated by the vertical dash-dotted
line on the left, is shown on the right.

are expected. Precise values were not obtained due to the computational requirements of the large

domains. At these lower offsets, the droplets switch to coalescing in the compression stage (i.e.

before sliding over each other) rather than the extension stage (when they move apart after sliding

over). Comparing Figs. 3 and 7, the change in the critical capillary numbers and the relative

orientation at coalescence (compression versus extension) can be seen. Complex behaviour is seen

at Ca = 0.15. An internal droplet is present in the bridge and multiple drops form when the bridge

breaks. Simulations at low offsets will be studied in greater detail in the future. Significantly larger

droplets (and therefore simulation domains) are needed to determine the critical capillary number

at the vertical offset of 0.16 for the droplets in the experiments of Chen et al.13

Confinement effect

The effect of confinement was studied using simulations with the same range of radii as previously

but in a domain with a constant size. In Fig. 8, the results of these simulations with a fixed domain

size of 1024×256×256 are compared to the previous simulations that had a constant confinement.
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Figure 7: Sample collisions between droplets with ∆Y
2R = 0.4 and R

ζ
= 50. The time increments are

not uniform, differ between the three cases, and were chosen to illustrate the different stages of the
collisions well.
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Numerical instability prevented the completion of simulations at 2R
H = 0.29 with Ca < 0.008. The

critical capillary number is therefore not known for this confinement, but must be below 0.008.

The open circle indicates this lowest capillary number that could be simulated. Comparing with

the constant high-confinement
(2R

H = 0.39
)

simulations, reducing the confinement first decreases

the critical capillary numbers, then increases them until they eventually exceed those for the highly-

confined case. The reason for the reduction in the critical capillary numbers at R
ζ
= 25 is illustrated

in Fig. 8. In the larger domain, the droplets are more free to move vertically and slide over each

other. As a result, a lower shear rate (and therefore Ca) is needed to prevent sliding and cause

coalescence.
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Figure 8: (left) Effect of confinement on the critical capillary numbers for coalescence. The red
lines are for a constant confinement 2R

H = 0.39. The blue lines are for a constant domain size and
varying droplet sizes (and therefore confinements). (right) Sample collisions between droplets with
confinements of 2R

H = 0.20 (top) and 0.39 (bottom) and the same capillary number (Ca = 0.06) and
droplet size (R/ζ = 25). The images have been scaled so that the domains are the same size; the
domain for 2R

H = 0.20 is double the size of the domain for 2R
H = 0.39.

Comparison with Experimental Results

While detailed experimental results are available for droplet coalescence in the extensional flow

of a four-roll mill,9–12 few experimental results are available for simple shear flow. Early work

by Guido and Simeone8 did not determine critical capillary numbers. Recently, Chen et al. 13
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reported critical capillary number ranges for confined and unconfined droplets in simple shear.

Though these results are the most relevant to our simulations, they cannot be compared quantita-

tively. Considering the increasing trend in the critical capillary number with decreasing droplet

size, the high critical values for the simulations indicate that the effective physical sizes of the sim-

ulated droplets are smaller than those used in the experiments (radii 50 to 150 µm). Furthermore,

the vertical offsets produced by breaking a drop are lower (0.16) than the lowest offset for which

critical capillary numbers could be estimated in the simulations (0.3). Chen et al. 13 also present re-

sults for effectively unconfined droplets and droplets with varying confinement, while simulations

with constant high confinement are most practical to obtain from simulations. Finally, the small

difference in horizontal offset likely has a minor effect, while the difference in Reynolds number

(1 in simulations vs. 10−7 in experiments) may be important. This Reynolds number is based on

the droplet radius, and a Reynolds number based on the film thickness would be one to two orders

of magnitude smaller in the simulations. The flow in the draining film is therefore likely in the

Stokes regime for both the simulations and experiments. Due to the differences in the parame-

ters between the simulations and experiments, we can only compare the results qualitatively. The

simulation results are nonetheless useful because they indicate how different numerical parameters

affect the critical capillary number and therefore how experiments and simulations can be matched

by choosing the parameters correctly.

One key difference between the simulations and the experiments of Chen et al. 13 is the stage of

the collision process in which coalescence occurs. Chen et al. obtained critical capillary numbers

between 0.001 and 0.008 and always saw coalescence during the compression stage of the colli-

sion when the shear flow pushes the droplets together. In contrast, Guido and Simeone8 observed

coalescence during extension at Ca = 0.13, but with a viscosity ratio of 0.36 (droplet phase over

continuous phase; the ratio is 1.1 for the experiments by Chen et al. 13 and 1 in the LBM simula-

tions). The coalescence of droplets in the extension stage of the simulations is likely due to the

high capillary numbers at which the droplets coalesce and the large vertical offset.

To understand the differences in fluid and interface parameters between the experiments and
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simulations better, we re-visit the bridge growth phenomenon. By differentiating the equation

describing the growth rate of the bridge, Rb
R = 0.7

(
t
√

σ

ρR3

)1/2

, a Reynolds number Reb that

characterizes the speed of the interface can be defined. Taking the growth rate of the bridge radius

Rb at time t = τi as the characteristic speed and the droplet radius as the characteristic length, this

Reynolds number is

Reb ≡
R
ν

dRb

dt

∣∣∣∣
t=τi

=
1
2

√
σR
ρν2 (20)

The proportionality factor of order one has been omitted. In the limit of high Reb, the momentum

generated at the growing bridge cannot diffuse over the radius of the droplet in the time it takes

the bridge to grow. If Reb is low, momentum diffusion is fast, and the inertial growth model is

invalid. This Reynolds number is related to the non-dimensional quantity σR
ρν2 , called the Suratman

number Su.59 With this definition of Su, Reb = 1
2

√
Su. For the shear flow simulations, Su = Re

Ca

and is between 5 and 100. In contrast, σR
ρν2 ≈ 10−6 for the experiments by Chen et al. 13 due

to the high viscosity of the polymers they used. The growth of bridges between their polymer

droplets is therefore not in the inertial regime, but rather in the viscous regime. If experiments

are possible with a fluid pair that has a viscosity similar to water, the results could be compared

with the simulations. Using σ = 2 mN/m, ρ = 1000 kg/m3, R = 10 µm, and ν = 10−6 m2/s, the

value of σR
ρν2 is 20, which is within the range that is feasible for simulations. While the difference

in Suratman number between the experiments and simulations clearly affects the post-coalescence

growth of the bridge, its effect on the pre-coalescence shape and trajectory of the droplets remains

to be studied in greater detail.

In both experiments and simulations, the critical capillary number decreases as the droplet

size increases. Due to the differences in parameters between the simulations and experiments,

comparing the rate of the decrease is difficult. For reference, the experimental data of Chen et al. 13

for unconfined droplets are provided in Fig. 9. The experimental data do not follow a simple power

law scaling, but the slope for simulations with Pe= 10 is shown for comparison. The exponent was

determined for simulations at a constant confinement of 0.39, while the experimental results are

for unconfined droplets (2R/H < 0.1). Considering Figs. 5 and 8, the rate of decrease is higher for
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low confinement and increases with increasing Péclet number. The apparent agreement between

the exponent for unconfined experimental droplets and the confined droplet simulations at Pe = 10

is likely coincidental. Further experiments or simulations at matching parameters are required

to evaluate the results. Due to the effect of the Péclet number on the exponent in the scaling

law, the correct Péclet number for simulations could be determined by matching the exponent to

experimental data.

It is worth noting that experimental results and scaling laws for the effect of the droplet size on

the capillary number are presented by showing the capillary number (a dimensionless quantity) as a

function of the droplet radius (a dimensional quantity).9–13 Ideally, one would non-dimensionalize

the droplet size by an appropriate physical length scale, but the correct choice is not clear. If

simulations and experiments with equal values for all dimensionless parameters were feasible,

it would be possible to determine the effective physical length that corresponds to the interface

thickness ζ in simulations. This length, however, would likely not be universal and would depend

on the specific liquid pair being considered.

As the vertical offset is decreased from 0.86 to 0.3 in the simulations, the critical capillary

numbers increase by about one order of magnitude. The collision stage in which the droplets

coalesce changes from being the extension stage at high offsets to the compression stage at low

offsets. Coalescence during compression at low offsets and extension at high offsets is qualitatively

consistent with the observations of Yoon et al. 12 for extensional flows.

The trend in the critical capillary numbers for constant domain size qualitatively matches the

experimental results of Chen et al. 13 . Chen et al. found that the critical capillary number decreases

monotonically as the droplet size increases in a fixed domain height when the confinement is

low (< 0.2). The critical capillary number then rises once the confinement exceeds 0.2. In the

simulations, a decrease in the critical capillary number was seen until a confinement of about 0.3,

after which the critical capillary number increases.
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Conclusions

Highly-resolved, three-dimensional simulations of equal-size liquid droplets colliding in the sim-

ple shear flow of another liquid were performed using the free-energy lattice Boltzmann method.

In such a shear flow, the droplets coalesce unless a critical capillary number is exceeded. While the

droplets in previous simulations were too small to determine the critical capillary number, we used

a highly-parallel code to simulate sufficiently large domains. With these large-scale simulations,

we determined the critical capillary number and explained why droplets coalesced at unrealisti-

cally high capillary numbers in previous simulations. The most important factor that determines

the critical capillary number in the simulations is the relative size of the droplets with respect to

the thickness of the diffuse interface. The critical capillary number decreases as the size of the

droplets increases. When the droplet radius is 25 lattice nodes and the characteristic thickness of

the interface is 2, which are typical values for droplet simulations, the critical capillary number is

0.16. Our largest simulations had droplets with radii of 100 lattice nodes; with these large droplets,

the critical capillary number was 0.016. The interface diffusivity, expressed as a Péclet number,

also affects the critical capillary number. With faster diffusion (lower Péclet number), droplets

coalesce at higher capillary numbers. A parameter range was found where small droplets tem-

porarily coalesce until shear pulls the newly-formed droplet apart. Two geometric parameters, the
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vertical offset and confinement, were also considered. As the vertical offset between the droplets

is decreased, the critical capillary number increases and the time of coalescence switches from the

extension stage to the compression stage of the collision. If the domain size is kept constant and

the droplet size is increased (thereby increasing the confinement), the critical capillary number first

decreases then increases, as in experiments.

The results of the simulations appear to be physically reasonable. However, simulations at

the scale required to match experimental work reported in the literature remain computationally

impractical. If experiments were instead performed with smaller droplets and less viscous fluids

than the previously-used polymers, a direct comparison with simulations may now be possible due

to the feasibility of sufficiently large-scale simulations. For such a direct comparison, we estimate

that 1 to 50µm diameter droplets are required together with a fluid for which σR
ρν2 ≈ 20. This value

could be achieved with a fluid whose viscosity is approximately that of water. Such experiments

are needed to determine the interface thickness and diffusivity (Péclet number) that should be

used in simulations to correctly model physical systems. Experiments and simulations at matched

conditions would also reveal the physical length scale that corresponds to the numerical interface

thickness. Future work will involve simulations of larger droplets relative to the interface thickness

and lower offsets to further explore the parameter space. The results presented in this paper are

not only relevant to free-energy LBM simulations and likely also apply to simulations with other

phase-field Cahn-Hilliard methods, such as those of Ceniceros et al. 60
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