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Numerical simulations were used to study mobilization and mixing of a bottom layer of Bingham liquid
by agitating a Newtonian liquid above the Bingham layer. The agitation is done by a pitched-blade impel-
ler at a Reynolds number of 6000. The Bingham liquid and the Newtonian liquid are miscible. The param-
eter space of the simulations has a yield stress number and a Richardson number as dimensionless
variables. The yield stress number quantifies the importance of the yield stress relative to inertial stres-
ses, the Richardson number the role of the density difference between the two liquids. The simulation
procedure is based on the lattice-Boltzmann method for the flow dynamics, and a finite volume scheme
to solve for the local and time dependent composition of the liquid mixture. Flow dynamics and liquid
composition are intimately coupled. The moderate Reynolds number tentatively allows us to directly
simulate the transitional flow, without a need for a turbulence closure model. The results quantify the

Buoyancy
Lattice-Boltzmann method

increase of mixing time with increasing yield stress and (to a weaker extent) density difference.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper a specific - though not uncommon - situation is
considered: a mixing tank that has been left un-agitated for some
time has its contents segregated into a thick, paste-like layer on the
bottom, and a lighter and less viscous portion of liquid above. The
bottom layer is considered a Bingham liquid; the liquid above is
supposed to be Newtonian. The research question is if turbulent
agitation of the less viscous Newtonian phase is an efficient means
to mobilize the Bingham liquid, and subsequently homogenize the
tank contents. Obviously, many variables determine the answer to
this question. The focus of the present study is on how the mixing
process depends on the yield stress of the bottom layer. Also the
effect of the density difference between the two liquids has been
considered.

The situation as sketched above has been approached in a com-
putational manner: we have attempted to mimic the mixing process
by performing three-dimensional, time-dependent numerical simu-
lations starting from a zero velocity and fully segregated state. The
flow system poses a few interesting numerical challenges. In the first
place we deal with turbulent flow, at least in the portion of the tank
with Newtonian liquid. We do not, however, want to revert to turbu-
lence modeling given the presence of the Bingham liquid and its
(most likely) laminar flow character. Turbulence models usually
are not designed and tested for accurately capturing (spatial or tem-
poral) laminar-turbulent transitions. Not using turbulence models
means that the flow needs to be fully resolved (“direct” simulations)
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which puts strong resolution demands. We mitigate these by con-
sidering a modest Reynolds number (Re = 6000 with Re precisely
defined in the next section), and we check for grid effects, i.e. a
significant number of cases that are physically identical have been
performed on grids with different resolution. Also the discontinuous
behavior of Bingham liquids (upon reaching the yield stress, zero
deformation in the liquid switches to non-zero deformation) is a
challenge for numerical methods.

Interesting flow physics is expected; not in the least given the
turbulent nature of the flow “attacking” the Bingham layer. The
average flow may be too weak to erode away the bottom Bingham
layer, the intermittency of the turbulent flow emerging from the
impeller may from time to time be sufficiently strong to locally
overcome the yield stress and chip away some of the Bingham
liquid. This will change the surface topology of the Bingham layer,
making it rougher (more undulated) and therefore more suscepti-
ble for further erosion. With the gradual removal of the Bingham
layer and associated changing bottom topology also the global
structure of the flow of the Newtonian liquid gradually changes
with time making this an interesting problem with a broad spec-
trum of time and length scales. Again adequate resolution of flow
structures with high viscous and/or inertial stress is a key issue
to realistically capture this process. It is anticipated that the den-
sity difference of the two liquids is not as important to the erosion
process as the yield stress. For mixing the liberated Bingham mate-
rial into the bulk flow, however, we do expect slower homogeniza-
tion with increased density differences.

The nature of this work is quite specific, and I am not aware of
similar studies in the literature. Closest comes the work by
Frigaard and co workers [1-4] who studied displacement of wall
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layers consisting of yield stress liquid by a Newtonian liquid. In
their experiments and modeling work they mainly considered lam-
inar flow in channels and pipes.

The aim of this paper in the first place is to quantify the homog-
enization of the initially segregated system. As in former papers
[5,6], we use the decay of scalar variance in the stirred vessel as
a means to monitor the mixing process and the time it takes to
reach a certain low level of scalar variance as a measure for the
mixing time. A wider ranging goal is to enhance our understanding
as to how turbulent flow interacts with yield stress material. This
goes beyond mixing tanks only. Examples of this nature are also
encountered in fouling and removal of fouling in process equip-
ment such as heat exchangers [7], or food processing devices, flow
over biofilms [8], and sediment transport in slurry pipelines [9], to
name only a few.

This paper is organized in the following manner: First the flow
system and the liquid properties are described. Based on these,
dimensionless numbers are defined, and the parameter range cov-
ered in this paper is identified. Subsequently the simulation proce-
dure is outlined schematically with references to the literature for
further details. We then present results. The emphasis will be on
the effect of the yield stress on the mobilization of the Bingham
layer. Conclusions are summarized in the last section.

2. Flow systems

There are two liquids present in the tank: a Newtonian liquid
with density py and dynamic viscosity pyv, and a Bingham liquid
with density pp (with p; > py), yield stress 7y and plastic (dy-
namic) viscosity pgv. This implies that the two liquids share the
same kinematic viscosity v; we made this choice to limit the
dimensions of the parameter space that we want to cover in this
study.

The tank and agitator, and the coordinate system as used in this
work are shown in Fig. 1. The tank is cylindrical with four equally
spaced baffles along its perimeter that are placed there to prevent
solid body rotation of the liquid and thus enhance mixing. The flow
is driven by four pitched (45°) blades attached to a hub that is
mounted on a shaft that enters through the top of the tank. The
tank is closed off with a lid so that at the top surface (as on all other
solid surfaces) a no-slip condition applies. The Reynolds number of
this flow system is defined as Re = N‘—L?Z, with N the impeller speed
(in rev/s), and D the impeller diameter. The impeller is operated
in the down-pumping mode.

The yield stress gives rise to an additional dimensionless num-
ber, and so does the density difference between the two liquids. A
yield stress number Y is defined as Y = %. Given the turbulent

N

(i.e. inertial) nature of the flow that is designated to erode the Bing-
ham liquid layer we have chosen to equate 7y with a measure for
the inertial stress in the mixing tank pyN°D? not with a viscous
stress. This explains the use of py (and not for instance the average
density) in the expression for Y. Density differences and buoyancy

have been quantified through a Richardson number Ri = %. In

the Richardson number g is gravitational acceleration, and p is the
tank-averaged liquid density.

The simulations start from a stable stratification and zero liquid
velocity everywhere with the heavier Bingham liquid forming a
layer on the bottom with thickness H = T/6. With this initial condi-
tion the impeller is initially fully surrounded by the (lighter) New-
tonian liquid. At moment ¢ = 0 the impeller is started and from then
on has a constant angular velocity 27N (rad/s).

The local composition of the liquid is represented by a scalar
field ¢ (with c=1 pure Newtonian liquid; c=0 pure Bingham li-
quid) for which we solve a transport equation

dc  dc d*c

i +u o r 87,2 (1)
(summation over repeated indices) with u; the ith component of the
fluid velocity vector. The two liquids are miscible and have a mutual
diffusion coefficient I" which (in a dimensionless sense) has been rep-
resented by the Schmidt number Sc = }. For the local mixture density
alinear relationship with cis assumed: p,,;, = pg + c(py — p3). Buoy-
ancy has been incorporated via a Boussinesq approximation: a liquid
element having density pn feels a body force in positive z-direction
(asdefined inFig. 1) of f; = g(p — pm)- In the Boussinesq approxima-
tion, the body force term is the only place where the density variation
enters the Navier-Stokes equations. This approximation limits the
density differences that can be simulated; for the approximation to
be valid (”B%N) < 1 (that is Ri <« £7) is required. The mixture yield

stress is assumed to be a step function of the liquid composition:

Ty.mix = Ty if ¢ < 057 Ty mix = 0 if c>0.5. (2)

As mentioned above, the two liquids share the same (plastic)
kinematic viscosity.

Of the four dimensionless groups identified (Re, Y, Ri, Sc), two (Y
and Ri) have been varied, the other two (Re and Sc) were kept con-
stant. The Reynolds number was fixed to Re = 6000. With this Rey-
nolds number we feel confident of doing well-resolved turbulence
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Fig. 1. The stirred tank geometry considered: a baffled tank with a pitched-blade impeller mounted on a shaft that enters the tank through the top. The coordinate systems
((r,z) and (x,y,z)) are fixed and have their origin in the center at the bottom of the tank. The top of the tank is closed off with a lid. The impeller rotates such that it pumps

liquid down.
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simulations on fairly modest grids [5]. This allows running a signif-
icant number of cases for a sufficient number of impeller revolu-
tions per simulation case. We do not expect the Schmidt number
to strongly influence the flow physics, as long as it is “large”, i.e.
the transport of scalar c¢ is dominated by convection, much less
by diffusion. In this study Sc=1000. In the next section (on the
numerical approach) this value will be interpreted in the light of
additional numerical diffusion.

The Richardson number has been varied in the range 0 < Ri
< 0.5. Previous simulations on mixing of Newtonian liquids with
density differences [5] point at strongly increased mixing times
(by a factor of up to 6) for the higher end of this Ri-range. The
yields stress number was in the range 0 < Y < 0.8. To interpret this

range of Y, we revert to the physical system of a lab-scale mixing
tank with diameter T=0.3 m, filled with a moderately viscous
Newtonian liquid with vy=10">m?/s and py= 1000 kg/m>. In or-
der to achieve Re = 6000, the impeller speed is N =6 rev/s. Then
Y =0.8 (the largest value of Y considered) implies Ty ~ 300 N/m?.

3. Modeling approach

The lattice-Boltzmann method (LBM) has been applied to
numerically solve the incompressible flow equations [10,11]. Lat-
tice-Boltzmann fluids can be viewed as collections of (fictitious)
fluid particles moving over a regular lattice, and interacting with
one another at lattice sites. These interactions (collisions) give rise

Fig. 2. Instantaneous realizations of the scalar concentration in the mid-baffle plane at tN = 5, 25, and 100 (left to right), and for Y = 0.025, 0.1, 0.2, and 0.8 (bottom to top).

Ri=0.25.
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to viscous behavior of the fluid, just as colliding/interacting mole-
cules do in real fluids. The main reasons for employing the LBM for
fluid flow simulations are its computational efficiency and its
inherent parallelism, both not being hampered by geometrical
complexity. Lattice-Boltzmann approaches are gaining traction in
applications involving non-Newtonian liquids [12-16].

The basis for the LBM formulation as used in this paper has been
put forward by Somers [17], also see [18]. It falls in the category of
three-dimensional, 18 speed (D3Q18) models. Its grid is uniform
and cubic. In order to allow for Bingham rheology, the Somers-
scheme has been extended with a stress formulation as the one
Vikhansky [13] proposed for lattice-Boltzmann schemes. In the
Somers-scheme, the collision operation is formulated in terms of
the primitive flow variables density p (which is equivalent to pres-
sure via an equation of state), momentum pu;, and deviatoric stress
7. In the collision operation first the magnitude of the stress

|t| = /1775 is determined. If for a certain location and time instant

|T| < Tymix the liquid is locally unyielded and the deformation ten-

sord; =1 (% + g—;’;) is set explicitly to zero in the collision operation.

If on the other hand |t| > Ty mi, the apparent viscosity can be deter-
i . Ty, mix : o

mined: v, = v+ 52 with the now non-zero j = \/2d;d;;, and we

proceed with a normal (viscous) collision operation according to

the apparent viscosity v,. It is important to note that this is not a vis-
cosity regularization approach [4]. In the latter, the unyielded part

of the Bingham rheology is approximated by a very high (however
finite) viscosity. Regularization introduces this zero-shear viscosity
as an arbitrary numerical parameter and (therefore) allows for finite
deformation for essentially unyielded liquid. These are undesirable
features [4].

Vikhansky [13] showed that his procedure provides excellent
agreement with analytical results for planar channel flow. He also
compared results for more complex flow systems with finite
element solutions again showing favorable agreement. In addition
to two variants of planar channel flow, we performed simulations
of two-dimensional lid-driven cavity flow and compared results to
the numerical results due to Yu and Wachs [19], that were based
on a finite difference based projection method. Results of our
benchmarks are detailed in Appendix A and convincingly show
that Bingham rheology is well represented by the numerical
procedure.

In the LBM, planar no-slip walls naturally follow when applying
the bounce-back condition [11]. For non-planar and/or moving
walls (that we have since we are simulating the flow in a cylindri-
cal, baffled mixing tank with a revolving impeller) an adaptive
force field technique (a.k.a. immersed boundary method) has been
used [20,21].

We solve the transport equation in the liquid composition c (Eq.
(1)) with an explicit finite volume discretization on the same (uni-
form and cubic) grid as the LBM. A clear advantage of employing a

Fig. 3. Instantaneous realizations of the scalar concentration in the mid-baffle plane at tN = 5, 25, and 100 (left to right), and for Y = 0.025, 0.1, and 0.2 (bottom to top). Ri = 0.0.
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0.25 05

Fig. 4. Instantaneous realizations of concentration field cross sections (left) and deformation rate in the Bingham portion of the liquid (right) for the case with Y =0.05 and

Ri=0.25 at tN=5.

finite volume formulation is the availability of methods for sup-
pressing numerical diffusion. As in previous works [22,23], TVD dis-
cretization with the Superbee flux limiter for the convective fluxes
[24,25] was employed. We step in time according to an Euler explicit
scheme. This explicit finite volume formulation for scalar transport
does not hamper the parallelism of the overall numerical approach.

The large value (10%) of the Schmidt number makes the micro-
scalar-scales (Batchelor scale) a factor of v/Sc ~ 30 smaller than the
Kolmogorov length scale and quite impossible to resolve in our
numerical simulations. In the simulations - although we as much
as possible suppress numerical diffusion - diffusion will be con-
trolled by the grid spacing and the precise value of Sc based on
molecular diffusivity I" will have marginal impact on the computa-
tional results. In order to assess to what extent numerical diffusion
influences the outcomes of our simulations, grid effects have been
assessed and will be discussed later in the paper.

It is emphasized here that the scalar concentration field c is
two-way coupled to the flow field, i.e. ¢ is advected by the flow
(see u; in Eq. (1)) and at the same time it affects the flow since ¢
determines the local yield stress (Eq. (2)) and the local density of
the liquid mixture that in turn determines the (net) gravity force
locally felt by the liquid.

3.1. Numerical settings

Given Re = 6000 we expect mildly turbulent flow in the Newto-
nian part of the mixing tank. The micro-scale of turbulence (Kol-
mogorov length scale #) relates to a macroscopic length scale
(say the tank diameter T) according to 1 = TRe 3. The criterion
for sufficiently resolved direct numerical simulations of turbulence

is A4 < 7n [26,27]. Our default grid is such that the tank diameter is
spanned by 180 lattice spacings: T =1804. According to the above
resolution criterion, this grid slightly under-resolves the flow
(mn =~ 0.84). As discussed above, full resolution of the Bachelor
scale () is not an option as it is a factor of 30 smaller than the Kol-
mogorov scale. The consequences of not fully resolving #, and not
resolving 1 have been assessed through grid refinement: A num-
ber of simulations have been performed on a finer grid with
T =3304. In addition, in previous work [6] on mixing of Newtonian
liquids a more extensive grid study (with grids up to T =552 4) was
performed at Reynolds and Schmidt numbers and in a geometry
comparable to the present one. There we observed an effect (albeit
weak) of grid resolution on scalar mixing time: from the coarsest
T=1804 grid to the finest T=5524 grid, mixing times differed
by 10% at maximum.

The number of time steps to complete one impeller revolution
is 2000. In this manner the tip speed of the impeller is
7iND = 0.094 in lattice units (with the impeller diameter D = T/3)
which keeps the flow velocities in the tank well below the speed
of sound of the lattice-Boltzmann system thus achieving incom-
pressible flow. Due to the explicit nature of the lattice-Boltzmann
method and its (in)compressibility constraints, the finer grid with
T=3304 requires more time steps per impeller revolution: 3600.

4. Results
4.1. Flow and scalar field impressions

The qualitative discussion of the results of our simulations first
focuses on the vertical plane through the center of the tank, in
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Fig. 5. Instantaneous realizations of the scalar concentration overlaid with velocity
vectors in the part of the mid-baffle plane below the impeller. Two typical
situations. Top: Y =0.2 and Ri = 0.25 at tN = 100. Bottom: Y =0.05 and Ri=0.25 at
tN = 10. Resolution is T=1804; the resolution of the simulation is twice as high in
each direction as the resolution of the velocity vector field shown.

between two baffles (the xz-plane in the coordinate system defined
in Fig. 1). We show velocity vector fields, contours of liquid compo-
sition ¢, and contours of liquid deformation 7 in this plane. As the
default Richardson number we chose Ri = 0.25.

The way the concentration field c¢ in the xz-plane evolves in
time is shown in Fig. 2 for four different values of Y. It shows -
as expected - that the impact of Y on the mobilization and mixing
of the Bingham layer is profound. Mobilization of the bottom Bing-
ham layer gets increasingly harder with increasing Y. Previous
work [5] on Newtonian liquid mixing with density differences sug-
gests a time to homogenization (this “mixing time” has been de-
fined in detail in [5]) at Ri=0.25 and Re = 6000 of 140 impeller
revolutions. Fig. 2 shows that homogenization times of such order
are to be expected for Y = 0.025 as well; for higher values of Y mix-
ing gets much slower and for Y=0.8 the Bingham layer is not
mobilized (let alone mixed) at all. At this high value of Y the pri-
mary effect of the turbulent Newtonian liquid flow above the Bing-
ham layer is an indentation of the top surface of the layer there
where the downward stream emerging from the impeller hits it.
The depth of the indentation slowly increases in time. A secondary
effect of the Newtonian liquid flow is some erosion of Bingham li-
quid as a result of a shear flow of Newtonian liquid over the inter-
face with the Bingham liquid. This erosion gets more traction with
the increase of the dents with time. The processes (indentation
and erosion) are similar (albeit stronger) for Y = 0.2. True mobiliza-
tion (i.e. significant flow) of the Bingham layer only occurs if
Y < 0.1. The physical picture hardly changes if the Richardson
number is reduced from Ri=0.25 to Ri=0; compare Figs. 3 and
2. This suggests that the yield stress dominates gravity-induced
stresses in the mobilization process. This is not necessarily obvious
given that gravity-stress is definitely not negligible compared to

0 0.5 1

Fig. 6. Instantaneous realizations of the scalar concentration in the mid-baffle plane; qualitative comparison between grids. Each large panel has T=3304; each inset has
T=1804. Top row: Y=0.2 and Ri = 0.25 at tN =25 (left), and 100 (right). Bottom row: Y =0.05 and Ri = 0.25 at tN = 10 (left) and 20 (right).
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Fig. 7. Time series of the volume fraction Bingham liquid ¢g, for various Y (as
indicated) at Ri = 0.25. Resolution is T=1804.
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0.04

Fig. 8. Time series of the volume fraction Bingham liquid ¢g,. Effect of the Ri as

indicated. The three groups of curves have (from highest to lowest) Y=0.2, 0.1, and
0.05. Resolution is T=1804.

yield stress: gAT—’Y’D ~& > 0.3 for all cases shown in Fig. 2 (that all
have Ri = 0.25).

The three-dimensional nature and the level of detail contained
in the simulations are illustrated in Fig. 4. In addition to concentra-
tion fields the figure shows deformation levels in the Bingham por-
tions of the liquid. The horizontal cross sections show the influence
of the impeller and the baffles at the perimeter of the tank on the
structure of the liquid mixture. As can be seen, the baffles help sus-
tain for some time a layer of essentially unyielded liquid at the
perimeter of the tank. The impeller pumps down Newtonian liquid
and creates strong deformation so that Bingham liquid first gets re-
placed by Newtonian liquid underneath the impeller blades. That
the concentration field c is truly two-way coupled with the flow
dynamics is shown in Fig. 5. In that figure we combine concentra-
tion contours with velocity vectors. It shows a strong flow above,
and virtually no flow inside the Bingham layer.

In a qualitative sense, the refined grid with T=3304 does not
seem to display significantly more or fundamentally different

31
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Fig. 9. Time series of the volume fraction Bingham liquid ¢g, for two values of Y (as

indicated) at Ri=0.25. Effects of spatial resolution of the simulations: T=1804
(standard = std); T=3304 (fine).

features compared to the standard grid of T=1804, see Fig. 6.
The results for Y=0.05 in Fig. 6, however, hint at the finer grid
being able of capturing more small pockets of Bingham liquid dis-
persed in the Newtonian phase after they got detached from the
bottom layer. Results on different grids will be compared quantita-
tively in the next section.

4.2. Mobilization and mixing time analyses

To quantitatively compare different physical and numerical
(grids) cases we monitor the evolution of the amount of Bingham
liquid (liquid having c < 0.5) in the tank. Most simulations were
run over 100 impeller revolutions after start-up from the zero-
velocity and fully stratified initial condition. Fig. 7 compares case
with different yield stress number Y at a fixed Richardson number
of Ri=0.25. A clear decay only occurs if Y <0.2. If Y=0.4 the
amount of Bingham liquid stays virtually constant over the time
period of 100 revolutions; if Y=0.8 the total amount of Bingham
liquid even slightly increases. The latter is the result of the forma-
tion of a thin erosion boundary layer above the Bingham bottom
layer with in the lower portion of the boundary layer ¢ < 0.5.
Fig. 7 also shows that only for Y < 0.05 the Bingham layer gets re-
moved within 100 impeller revolutions. For three of the time series
in Fig. 7 (Y =0.2, 0.1, and 0.05) we show in Fig. 8 that buoyancy has
only slight impact on the mobilization process. The minor trends
with respect to Ri follow our intuition: a larger Ri (i.e. a larger den-
sity difference between the liquids) slows down the removal of the
Bingham layer.

In Fig. 9 a weak grid dependency is observed with on average a
little less decay of the amount of Bingham liquid for the finer
(T=3304) grid. This is in line with the observation in Fig. 6 where
it was noticed that portions of Bingham liquid removed from the
bottom layer and traveling through the bulk of the tank were bet-
ter resolved on the finer grid.

Homogenization of the tank contents not only requires deform-
ing and mobilizing the Bingham layer. Once mobilized the Bingham
liquid needs to get mixed with the rest of the tank content. As in pre-
vious papers [5,6], we have quantified homogenization by observing
the scalar concentration variance in a vertical plane (the xz plane) as

afunction of time: o%(t) =1 [, [cz (x,y=0,z,t) - ((c)(t))z] dxdz with
(c)(t) the average scalar concentration in the mid-baffle plane at
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Fig. 10. Scalar variance ¢ in the xz-plane as a function of time. From left to right: Y =0.025, 0.05, and 0.1. Ri as indicated. For reference the decay of ¢ for a single-liquid

Newtonian system (Y =0 and Ri = 0) has been given.
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Fig. Al. One-dimensional channel flow driven by a body force f, in the positive x-
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function of z for% =0.25,0.5, and 1.0 (as indicated). Bottom: j (which is 2 for this
one-dimensional flow) as a function of z. Symbols: numerical solution; lines:
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moment t. At time zero the liquids are fully segregated with c=1 in
the upper 5/6th of the cross section, and ¢ = 0 in the lower 1/6th, and
(c)(t=0) = 5/6 so that the starting value of the standard deviation is
o(t = 0) = v/5/6 ~ 0.373. The decay of ¢ as a function of Y and Ri is
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Fig. A2. One-dimensional channel flow with Bingham liquid in the bottom half
(-H/2 < z<0) and Newtonian liquid in the top half (0 <z < H/2). The flow is
driven by a body force f, in the positive x-direction (see the inset). Velocity in x-

direction u as a function of z for % =0.25,0.5, and 0.75 (as indicated). Symbols:

numerical solution; lines: analytical solution.

shown in Fig. 10. For reference we show in the left panel of Fig. 10
how ¢ would decay if the tank was filled with a single Newtonian
liquid that was tagged with a passive scalar concentration ¢ =0 in
the T/6 bottom layer and c =1 in the rest of the tank. Comparison
with the reference case shows that non-zero Y and Ri slow down
the mixing process. This effect is minor for Y = 0.025 (Fig. 10, left pa-
nel) but gets progressively stronger for increasing Y and Ri. As al-
ready observed when analyzing the decay of the amount of
Bingham liquid, the dominant parameter is Y.

5. Summary

This paper discussed the practically relevant, though quite spe-
cific situation of mobilization and mixing of a layer of Bingham li-
quid at the bottom of a mixing tank through agitation with an
impeller of Newtonian liquid above. The two liquids have been
considered miscible. The main dependencies that have been inves-
tigated relate to the yield stress of the Bingham liquid, and the den-
sity difference between the Bingham liquid and the Newtonian
liquid. The yield stress has been non-dimensionalized through

the group Y = #. the density difference through a Richardson
N

number Ri = %. In addition to Y and Ri, the flow problem is
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Fig. A3. Lid-driven cavity flow as defined in the left panel. The contour plots are for Bn =5, 20, and 50 (left to right). Black indicates j = 0 (i.e. unyielded); white indicates

7 > 0.01up/H; the in-between grey scale is linear. Re = 0.05.

defined by the tank’s and impeller’s geometrical layout, an impel-
ler Reynolds number Re =" and the Schmidt number Sc = J.

v
Geometry, Re, and Sc were constant in this study, with Re = 6000
indicating weakly turbulent flow in the Newtonian portion of the
tank, and Sc = 1000 which is typical for diffusion in liquids. The
tank layout involved a pitched-blade impeller and a baffled tank.

The approach to this problem was purely computational. We
solve the three-dimensional, time dependent flow in the tank by
means of the lattice-Boltzmann method that was equipped with
Bingham rheology according to an approach due to Vikhansky
[13]. In addition a transport equation for an active scalar concen-
tration c that represents the (local and time dependent) composi-
tion of the liquid in the tank has been solved. For the latter a
finite volume method was used.

This hybrid LB/FV method provides an efficient numerical pro-
cedure that allows for (at this modest Reynolds number) sufficient
resolution of the flow dynamics and for running long time series
(typically 100 impeller revolutions starting from a quiescent stably
stratified state) so as to monitor the mixing process. However, the
high Schmidt number makes that we do not resolve the finest sca-
lar length scales. This issue has been dealt with in a heuristic man-
ner by studying the effect of grid refinement on the mixing process.
The observed grid effects are relatively weak and thereby suggest
that full resolution of the scalar field is not critical for the global
behavior of the flow system.

The simulations provide a detailed view of the mobilization of
the Bingham liquid and the way it gets mixed with the Newtonian
liquid. If Y exceeds 0.4, the Newtonian liquid is unable to mobilize
the Bingham layer. If Y = 0.025 the Bingham rheology is hardly felt
and the liquids mix almost as fast as a Newtonian liquid mixture
would. In between these two values the length of the homogeniza-
tion process is a strong function of Y, and to a lesser extent of Ri.

This work clearly needs experimental validation. Ideally such
experiments aim at directly observing the mixing process inside
the tank by means of e.g. laser sheet visualization. It may be a chal-
lenge to select sufficiently transparent liquids having the desired
rheological behavior for this. The simulation procedure is, how-
ever, not restricted to the precise rheology as described in the cur-
rent paper. It would for instance be very well possible to
implement Herschel-Bulkley rheology in the computer code.

Appendix A
A.1. Benchmark 1: planar channel

We consider the laminar flow driven by a body force f; of Bing-
ham liquid between two parallel flat plates a distance H apart (see
the inset in Fig. A1). The liquid has a yield stress 7y and a plastic
viscosity pv. In the numerical solution H has been discretized by
21 lattice spacings 4. In Fig. A1 numerical results for velocity
and deformation rate are compared with the analytical solution
for three values of the yield stress. lfi,if; > 1 the body force cannot

mobilize the liquid; for % < 1 it can. Numerical and analytical re-

sults are in good agreement.

A.2. Benchmark 2: one-dimensional layered channel

Since we have a Bingham liquid and a Newtonian liquid in the
mixing tank we here consider the similar but much simpler situa-
tion of a layered laminar channel flow (see Fig. A2). The flow is
again driven by a body force fy and the channel has a width H.
The lower half of the channel contains the Bingham liquid with
yield stress ty and a plastic viscosity pv; the upper half contains
Newtonian liquid with dynamic viscosity pv. As long as
Ty = 0.75Hf, the Bingham liquid is not yielded and the Newtonian
liquid sees it as a solid wall. This gives rise to a parabolic profile in
the Newtonian part of the channel with maximum velocity gl’zi’f‘ For
Ty < 0.75Hfy the Bingham liquid gets yielded, starting at the wall.

In Fig. A2 numerical solutions on a grid such that H = 50A are
compared with analytical solutions. The agreement between ana-
lytical and numerical results is very good. It is particularly encour-
aging to see that the Bingham liquid stays unyielded at the
demarcation point ty = 0.75Hf,.

A.3. Benchmark 3: two-dimensional lid-driven cavity

Consider the two-dimensional flow in a square lid-driven cavity
with side length H and top-wall velocity ug in the positive x-direc-
tion (see Fig. A3). For this flow we define the Bingham number as
Bn = 2 and the Reynolds number as Re = %, The spatial resolu-

pvig

tion is such that H = 161A. In Fig. A2 we show this flow in terms of
the unyielded and yielded portions of the liquid (in a view inspired
by Yu and Wachs [19]) for three values of Bn. These results can be
directly compared to results in [19] (their Fig. 3). Good agreement
is observed.

References

[1] S.M. Taghavi, K. Alba, M. Moyers-Gonzalez, L.A. Frigaard, Incomplete fluid—fluid
displacement of yield stress fluids in near-horizontal pipes: experiments and
theory, J. Non-Newton. Fluid Mech. 167 (2012) 59.

[2] S. Hormozi, K. Wielage-Burchard, L.A. Frigaard, Entry, start up and stability
effects in visco-plastically lubricated pipe flows, ]. Fluid Mech. 673 (2011) 432.

[3] K. Wielage-Burchard, I.A. Frigaard, Static wall layers in plane channel
displacement flows, J. Non-Newton. Fluid Mech. 166 (2011) 245.

[4] M. Allouche, L.A. Frigaard, G. Sona, Static wall layers in the displacement of two
visco-plastic fluids in a plane channel, J. Fluid Mech. 424 (2000) 243.

[5] J.J. Derksen, Blending of miscible liquids with different densities starting from
a stratified state, Comput. Fluids 50 (2011) 35.

[6] J.J. Derksen, Direct simulations of mixing of liquids with density and viscosity
differences, Ind. Eng. Chem. Res. 51 (2012) 6948.

[7] E.A. Ishiyama, F. Coletti, S. Macchietto, W.R. Paterson, D.I. Wilson, Impact of
deposit ageing on thermal fouling: lumped parameter model, AIChE J. 561
(2010) 531.

[8] C. Picioreanu, J.-U. Kreft, M.CM. van Loosdrecht, Particle-based
multidimensional multispecies biofilm model, Appl. Environ. Microbiol. 70
(2004) 3024.

[9] K.C. Wilson, R.S. Sanders, R.G. Gillies, C.A. Shook, Verification of the near-wall
model for slurry flow, Powder Technol. 197 (2010) 247.



34 JJ. Derksen /Journal of Non-Newtonian Fluid Mechanics 191 (2013) 25-34

[10] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev.
Fluid Mech. 30 (1998) 329.

[11] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,
Clarondon Press, Oxford, 2001.

[12] 1. Ginzburg, K. Steiner, A free-surface lattice-Boltzmann method for modeling
the filling of expanding cavities by Bingham fluids, Philos. Trans. Roy. Soc.
Lond. A 360 (2002) 453.

[13] A. Vikhansky, Lattice-Boltzmann method for yield-stress liquids, J. Non-
Newton. Fluid Mech. 155 (2008) 95.

[14] ]J. Derksen, Prashant, simulations of complex flow of thixotropic liquids, J.
Non-Newton. Fluid Mech. 160 (2009) 65.

[15] O. Malaspinasa, N. Fiétier, M. Deville, Lattice Boltzmann method for the
simulation of viscoelastic fluid flows, J. Non-Newton. Fluid Mech. 165 (2010)
1637.

[16] N. Goyal, ].J. Derksen, Direct simulations of spherical particles sedimenting in
viscoelastic fluids, J. Non-Newton. Fluid Mech., in press, http://dx.doi.org/
10.1016/j.jnnfm.2012.07.006.

[17] J.A. Somers, Direct simulation of fluid flow with cellular automata and the
lattice-Boltzmann equation, Appl. Sci. Res. 51 (1993) 127.

[18] J.G.M. Eggels, J.A. Somers, Numerical simulation of free convective flow using
the lattice-Boltzmann scheme, Intl. J. Heat Fluid Flow 16 (1995) 357.

[19] Z. Yu, A. Wachs, A fictitious domain method for dynamic simulation of particle
sedimentation in Bingham fluids, ]. Non-Newton. Fluid Mech. 145 (2007) 78.

[20] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an
external force field, ]. Comput. Phys. 105 (1993) 354.

[21] J. Derksen, H.E.A. Van den Akker, Large-eddy simulations on the flow driven by
a Rushton turbine, AIChE ]. 45 (1999) 209.

[22] H. Hartmann, J.J. Derksen, H.E.A. Van den Akker, Mixing times in a turbulent
stirred tank by means of LES, AIChE ]. 52 (2006) 3696.

[23] ]J. Derksen, Scalar mixing by granular particles, AIChE ]J. 54 (2008) 1741.

[24] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic
conservation laws, SIAM ]. Numer. Anal. 21 (1984) 995.

[25] Y. Wang, K. Hutter, Comparisons of numerical methods with respect to
convectively dominated problems, Int. J. Numer. Meth. Fluids 37 (2001) 721.

[26] P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research,
Annu. Rev. Fluid Mech. 30 (1998) 539.

[27] V. Eswaran, S.B. Pope, An examination of forcing in direct numerical
simulations of turbulence, Comput. Fluids 16 (1988) 257.



