
S

J
C

a

A
R
R
A

K
T
S
L
L
M

1

u
a
a
t
o
a
a
o
p
i
A
i
d
I
a
t
p
p
r
s

r
t
(

0
d

J. Non-Newtonian Fluid Mech. 160 (2009) 65–75

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

imulations of complex flow of thixotropic liquids

.J. Derksen ∗, Prashant
hemical & Materials Engineering Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G6

r t i c l e i n f o

rticle history:
eceived 10 February 2009
eceived in revised form 23 February 2009
ccepted 25 February 2009

a b s t r a c t

A procedure for detailed simulations of flow of purely viscous thixotropic liquids is outlined. The local
viscosity of the liquid relates to the level of integrity of a network in the liquid. The time-dependence of
the liquid’s rheology is due to the finite rate with which the network in the liquid builds up or breaks
eywords:
hixotropy
imulation
attice-Boltzmann
id-driven cavity

down, the latter due to fluid deformation. This concept has been incorporated in a lattice-Boltzmann
discretization of the flow equations coupled to a scalar transport solver with the scalar representing
the network integrity. It results in a computationally efficient algorithm that allows for very detailed
(three-dimensional and time-dependent) simulations of thixotropic liquid flow in complexly shaped
confinements. After verifying the numerical procedure by means of a few benchmark cases, it is applied
to study the influence of the Deborah number on the transient behavior as well as the quasi steady-state

ipped
ixing tank flow in a mixing tank equ

. Introduction

Many processing and mixing applications involve complex liq-
ids. Examples are specifically abundant in food, pharmaceutical,
nd related industries; paper and pulp, polymer processing, and
lso oil sands operations; the latter being the major motivation of
he present work. One of the many intriguing phenomena that can
ccur in complex liquids is the development of a yield stress. Usu-
lly the yield stress is the consequence of a network being generated
s a result of particle–particle or (macro-) molecular interactions
f agents dispersed in a carrier phase. For example, in oil sands
rocessing [1] clay particles get surface activated by (hot) water

njection which initiates long range interactions between them.
s a result of (ionic) transport limitations, the network is not an

nstantaneous feature; it takes time to build up, and also to break
own as a result of viscous stress and/or deformation in the liquid.

n non-homogeneous flows such time-dependent rheology (usu-
lly termed thixotropy) is closely linked to the flow dynamics as
he (also non-homogeneous) level of network integrity is trans-
orted with the flow. It is expected that, from a fluid dynamics
oint of view, interesting situations occur when the time scales
elated to the network interfere with characteristic flow time
cales.
In the applications that motivate the present work, geomet-
ical complexity of the flows is an essential feature. One should
hink of flows in agitated tanks, or tube reactors with protrusions
static mixers) and inlet nozzles, or separation devices such as
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cyclone separators. Also in case of direct simulations of liquid–solid
flows with explicit resolution of solid–liquid interfaces geometrical
complexity is an issue. In many cases process equipment operates
in turbulent or (as is often the case with relatively viscous non-
Newtonian liquids) transitional flow regimes. Realistic numerical
simulations of such flows require flexibility in setting up computa-
tional grids, and above all computational efficiency in order to be
able to resolve the flow including its flow structures to a sufficient
level of detail. Previous studies [2–4] have shown that the lattice-
Boltzmann method [5,6] is a versatile procedure for performing
highly resolved computational fluid dynamics of Newtonian fluids.
In this paper lattice-Boltzmann simulations of flows of thixotropic
liquids in complexly shaped confinements, more specifically mixing
tanks, are discussed.

Earlier work on (modeling and simulating) thixotropic liquids
has been reviewed by Mewis [7], and at a later stage by Mujum-
dar et al. [8]. If we (as in the present paper) restrict ourselves to
purely viscous liquids (no elasticity effects), Mujumdar et al. show
that thixotropy can be effectively implemented in flow solvers by
solving an additional scalar transport equation in a parameter char-
acterizing the integrity of the network, and locally coupling this
integrity parameter to the apparent viscosity.

A troubling issue regarding simulating non-Newtonian rheology
is the steep increase of the number of parameters with increasing
complexity of the model characterizing the liquid, and the need to
(experimentally and/or computationally) determine their values.

For this reason we in the first place choose to limit the number of
parameters by adopting a relatively simple thixotropy model, and in
the second place choose the thixotropic rheology such that we can
easily connect to much simpler Bingham rheology at steady-state
conditions.

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:jos@ualberta.ca
mailto:pr6@ualberta.ca
dx.doi.org/10.1016/j.jnnfm.2009.02.011
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In this paper a procedure for directly simulating thixotropic
iquid flow based on a lattice-Boltzmann viscous flow solver is pro-
osed, having in mind the necessity to apply it to turbulent and
ransitional flows in complexly shaped confinements. In order to
uild confidence, the procedure is first applied to a few bench-
ark cases and where possible results are compared to analytical

olutions. Subsequently the method is applied to laminar and tran-
itional flows in mixing tanks.

The paper is organized along the lines sketched above. First we
riefly discuss thixotropy modeling, and define the model adopted

n this paper. Then the translation of the model into a computer
lgorithm is described. The benchmark cases comprise simple shear
ow, plane Poiseuille flow, and lid-driven cavity flow. Finally we
emonstrate the feasibility of the numerical approach to simulat-

ng mixing tanks containing thixotropic liquids, and conclude this
aper.

. Thixotropy model

The thixotropy model we have adopted is based on early work
ue to Storey and Merrill [9], and Moore [10], more recently
eviewed and applied by Mujumdar et al. [8], and Ferroir et al. [11].
n this purely viscous (i.e. non-elastic) model we keep track of a
calar � that varies between 0 and 1 and indicates the integrity of
he network (�= 0: no network; �= 1: fully developed network). Its
ransport equation reads:

∂�

∂t
+ ui

∂�

∂xi
= −k1�̇�+ k2(1 − �) (1)

summation over repeated indices) with ui the ith component of
he fluid velocity vector, and �̇ =

√
2dijdij a generalized deforma-

ion rate; dij = 1/2((∂uj/∂xi) + (∂ui/∂xj)) is the rate of strain tensor.
he first term on the right hand side of Eq. (1) indicates break-
own of the network due to liquid deformation; the second term is
esponsible for build-up of the network with a time constant 1/k2
ssociated to it. In the model [11], the apparent viscosity�a is linked
o the network integrity according to:

a = �∞(1 + ˛�) (2)

In a homogeneous shear field with shear rate �̇ , the steady-state
olution to Eq. (1) reads:

ss = k2

k1�̇ + k2
(3)

The associated steady-state viscosity is (combine Eqs. (2) and
3)):

ss = �∞
(

1 + ˛ k2

k1�̇ + k2

)
(4)

The parameter �∞ can thus be interpreted as the infinite shear
iscosity. The zero-shear viscosity is�∞(1 +˛). A typical representa-
ion of the steady-state rheology (Eq. (4)) is given in Fig. 1. As can be
een, it shows some similarity with the rheology of a Bingham liq-
id, and the dual-viscosity representation often used for mimicking
ingham rheology in viscous flow solvers [12].

In terms of generalized shear, time-independent Bingham rhe-
logy reads:

�ij = 2
(
�Y
�̇

+ �B
)
dij if |�|> �Y

dij = 0 if |�| ≤ �Y
(5)
ith �Y the yield stress, ((�Y/�̇) + �B) the apparent viscosity, and
�| ≡

√
(1/2)�ij�ij . In viscous numerical flow solvers (such as the

attice-Boltzmann solver we will be using here), Bingham behav-
or can be approximated by a two-viscosity model [12]: at very low
Fig. 1. Steady-state rheology. Solid straight line: Bingham liquid with yield stress �Y

and slope �B . Dashed line: in a dual viscosity model the yield stress is mimicked by
a very high viscosity (�B0) liquid for low shear. Dash-dotted curve: the steady-state
stress–strain behavior of the thixotropic liquid.

deformation rates the fluid behaves as a very (though not infinitely)
viscous fluid with viscosity �B0. At a critical deformation rate �̇B0
the slope in the � versus �̇ curve switches from �B0 to �B (see Fig. 1).
This approach introduces an additional (numerical) parameter �B0;
the critical deformation rate �̇B0 relates to �B0 and the physical
properties �Y and �B according to �̇B0 = �Y/(�B0 − �B).

The thixotropic liquid as defined by Eqs. (1) and (2) has four
parameters: k1, k2, �∞, ˛. For comparing it with time-independent
Bingham liquids we note that in steady state it has the same
�̇ → 0, and �̇ → ∞ behavior as the dual-viscosity Bingham model
if ˛= (�B0/�B) − 1, and if �∞˛(k2/k1) = �Y. Once we have chosen a
network build-up time-scale 1/k2 we can set the rest of the four
parameters of the thixotropic liquid such as to mimic a liquid that
in steady-state exhibits Bingham behavior in the �̇ → 0 and �̇ → ∞
asymptotes: k1 =�B˛(k2/�Y), �∞ =�B, ˛= (�B0/�B) − 1.

3. Flow solver and scalar transport modeling

The lattice-Boltzmann method (LBM) is a nowadays well-
established way to numerically solve the incompressible
Navier–Stokes equations. The method originates from the lattice-
gas automaton concept as conceived by Frisch et al. in 1986 [13].
Lattice gases and lattice-Boltzmann fluids can be viewed as parti-
cles moving over a regular lattice, and interacting with one another
at lattice sites. These interactions (collisions) give rise to viscous
behavior of the fluid, just as colliding/interacting molecules do
in real fluids. Since 1987 particle-based methods for mimicking
fluid flow have evolved strongly, as can be witnessed from review
articles and text books [4–6,14].

The main reasons for employing the LBM for fluid flow simula-
tions are its computational efficiency and its inherent parallelism,
both not being hampered by geometrical complexity. More recently
LBM has been applied to non-Newtonian fluid mechanics [15–17].
For an in-depth description of the LBM we refer to the excellent
monograph due to Succi [6].
In this paper the LBM formulation of Somers [18] has been
employed which falls in the category of three-dimensional, 18
speed (D3Q18) models. Its grid is uniform and cubic. Planar, no-slip
walls naturally follow when applying the bounce-back condition.
For non-planar and/or moving walls (that we have in case we are



tonian Fluid Mech. 160 (2009) 65–75 67

s
a
h
e
e

d
a
p
e
e
u
m
r
E
(
u
e
f
i
o
c
w
t
t

c
g
c
e
d

w
c
h
t
t
i

4

c
fl
fi
c
t
e
r
i
s
w
l
m
i
s

4

b
n
p

Fig. 2. Time response of a simple shear flow with constant shear rate �̇when switch-
J.J. Derksen, Prashant / J. Non-New

imulating the flow in a mixing tank with a revolving impeller) an
daptive force field technique (a.k.a. immersed boundary method)
as been used [2,19]. We have employed and validated this method
xtensively in previous studies involving (turbulent) flow in process
quipment (e.g. [2,20]).

For incorporating thixotropy, the viscosity needs to be made
ependent on the local value of the network parameter � (Eq. (2)),
nd (more importantly) the transport equation for the network
arameter (Eq. (1)) needs to be solved. Solving scalar transport
quations in a LBM context is an option (see e.g. [21]). It is, how-
ver, a relatively expensive approach in terms of computer memory
sage: in order to solve for a single scalar we need to allocate as
uch memory as for solving the Navier–Stokes equations (i.e. 18

eal values per lattice node in an 18 speed LBM). Instead we solve
q. (1) with an explicit finite volume discretization on the same
uniform and cubic) grid as the LBM. This way only two real val-
es per lattice node need to be stored. An additional advantage of
mploying a finite volume formulation is the availability of methods
or suppressing numerical diffusion. This is particularly important
n the present application since Eq. (1) does not have a molecular
r turbulent diffusion term; in order to correctly solve Eq. (1) we
annot afford to have significant numerical diffusion. As in previous
orks [3,22], TVD discretization with the Superbee flux limiter for

he convective fluxes [23] was employed. We step in time according
o an Euler explicit scheme.

The presence of a source term (i.e. the right-hand side) in Eq. (1),
ombined with the explicit nature of the time stepping sometimes
ives rise to unstable behavior. This behavior can be effectively
ountered by treating the right-hand side semi-implicitly, i.e. by
valuating it in terms of � at the new time level. In that case the
iscrete version of Eq. (1) is schematically written as

�(n+1) − �(n)

�t
+

(
ui
∂�

∂xi

)(n)

= −k1�̇
(n)�(n+1) + k2(1 − �(n+1)) (6)

ith the upper index indicating the (discrete) time level. Eq. (6)
an be written as an explicit expression in �(n+1) since the right-
and side does not contain spatial derivatives. When discussing
he simple-shear benchmark, the results with explicit and implicit
reatment of the source term will be compared, and shown to have
nsignificant differences.

. Benchmarks

In order to check our numerical approach, a few benchmark
ases have been considered: simple shear flow, plane Poiseuille
ow, and the flow in a lid driven cavity. In all three benchmarks
rst the (low Reynolds number) flow of Newtonian liquid with vis-
osity �∞ is simulated until it is fully developed. Then we switch on
he thixotropic rheology and we monitor the temporal and spatial
volution of the network parameter � and of the velocity fields as a
esult of this. This procedure is followed since it largely allows us to
solate the transient effects due to thixotropy from those related to
tart-up behavior of the flows. For simple shear and Poiseuille flow
e can compare the transient numerical results with (semi-) ana-

ytical solutions. The lid-driven cavity case illustrates how a slightly
ore complex flow responds to thixotropy. Steady lid-driven cav-

ty flow also allows for comparing our Bingham-like liquids with
imulations from the literature [24,25].

.1. Simple shear flow
We generate a simple shear flow in a two-dimensional domain
y moving two parallel plates in opposite direction. Initially the
etwork parameter � is set to zero and the liquid in between the
lates is Newtonian with viscosity �∞. Once this Newtonian simple
ing from Newtonian rheology with dynamic viscosity�∞ to thixotropic rheology. Top
panel: network parameter �; middle panel: shear stress at the plates; bottom panel
��≡�expl −�impl . Solid curves: analytical solution; dashed curves: simulations. The
flow case shown here has Re = 48, k2 = 5 · 10−3�̇ , k1 = 0.5, ˛= 100.

shear flow has fully developed we start (at t = t0) solving the trans-
port equation in � (Eq. (1)) and applying the viscosity rule (Eq. (2)).
We keep track of the shear stress by monitoring the force required
to move the plates.

In this case of homogeneous shear, the network parameter is
homogeneous as well, and Eq. (1) reduces to a linear, ordinary dif-
ferential equation: d�/dt = −k1�̇�+ k2(1 − �) with solution

� = k2{1 − exp[−(k1�̇ + k2)(t − t0)]}
k2 + k1�̇

(7)

if �= 0 at t = t0. As a result, the shear stress responds as �zx = ��̇ =
�∞[1 + ˛�(t)]�̇ , with �(t) according to Eq. (7).

Typical results are presented in Fig. 2. This specific flow sys-
tem is fully defined by the following dimensionless numbers: a
Reynolds number (here chosen as Re = ��̇H2/�∞ with H the spac-
ing between the two moving plates), k1, k2/�̇ , and ˛. The figure
shows the start-up of the Newtonian flow with liquid being accel-
erated from zero velocity giving rise to an initially high shear stress
on the plates. At t = t0 (when the Newtonian system is fully devel-
oped) the thixotropic rheology is switched on which results in an
immediate increase in the network parameter � and (as a conse-

quence) elevated viscosity and shear stress. The simulated results
of this transient behavior are in excellent agreement with the ana-
lytical solution. In the bottom panel of Fig. 2 we show to what extent
the numerical solutions obtained with an implicit treatment of the
right hand side of the scalar transport equation differ from those
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Fig. 3. Planar Poiseuille flow definition.

ith an explicit right hand side. There clearly is a systematic effect.
t is, however, very minor and only one to two orders of magnitude
arger than the accuracy with which numbers are represented in
he computer code.

.2. Plane Poiseuille flow

Compared to simple shear, plane Poiseuille flow is a slightly
ore complex benchmark. We now have a flow between two fixed

arallel plates at mutual distance H driven by a body force (force per
nit volume) f0 in the wall-parallel direction (see Fig. 3 for a defini-
ion of the flow and its coordinate system). The body force results in
linear shear stress profile in the liquid: �zx = −f0z. In zero-inertia
ow this directly translates in a shear rate �̇ = |(−f0z)/(�a(z, t))|.
ince �a =�∞(1 +˛�), and since the system is homogeneous in x-
irection the transport equation in the network parameter (Eq. (2))
an be written as

∂�

∂t
= −k1�

f0|z|
�∞(1 + ˛�)

+ k2(1 − �) (8)

In the center of the channel (z = 0), Eq. (8) implies that� depends
n time according to an exponential function with time constant
/k2. In order to compare the implications of Eq. (8) for the way
he network parameter and the velocity field depend on space (z)
nd time, Eq. (8) was integrated numerically (with a fourth-order
unge–Kutta scheme) for z in the range −H/2 < z < H/2. This provides

s with a representation of�(z,t) that subsequently is used to deter-
ine �a(z,t) (with help of Eq. (2)) and integrate the velocity profile

rom the notion that ∂ux/∂z = −(f0z/�a) with ux = 0 at z = ±(H/2). The
esults of this semi-analytical exercise can be directly compared
ith out numerical simulations.

ig. 4. Profiles of the network parameter � and velocity in plane channel flow. Drawn c
oments (tu0/H = 1.6, 3.3, 13, 52, and 210; � increases with time) after switching on thix

ecreases with time). Right: velocity profiles at tu0/H = 1.6 for four different Reynolds nu
1 = 1.0, ˛=40.
n Fluid Mech. 160 (2009) 65–75

In the simulations we again start from a zero flow field of New-
tonian liquid. Once that flow has fully developed (to a parabolic
velocity profile in this case) the thixotropic rheology is switched
on and we monitor the development of the network and associated
apparent viscosity and velocity field. As the velocity scale we take
the centerline velocity of the Newtonian liquid: u0 = (1/8)(f0/�∞)H2;
the Reynolds number has been defined as Re =�u0H/�∞. The results
in Fig. 4 show very good agreement of the simulations and the semi-
analytical solution. The time scales over which the flow switches
from the Newtonian steady state to the non-Newtonian steady
state, as well as the profiles of � and ux are well represented by
the simulations. We see the development of the �-profile in time:
starting from zero � increases quickest in the center of the chan-
nel where there is no deformation. Roughly at t = 50(H/u0) = 2.5/k2
after switching on the thixotropic rheology the � profile is close
to steady. In the same time range the velocity profile has adapted
itself to the new rheology; it has evolved from parabolic to more
plug-flow like.

The assumption of zero-inertia as inferred to obtain the semi-
analytical solution appears critical. In the right panel of Fig. 4 we
compare (at a single moment in time) the semi-analytical solution
with simulation results at different Reynolds numbers. The trend
is that the agreement clearly benefits from reducing the Reynolds
number in the simulations. The results with Re < 1 can hardly be
distinguished and are close to the semi-analytical solution.

4.3. Lid-driven cavity flow

The geometry of two-dimensional lid-driven cavity (LDC) flow
is given in Fig. 5. The choice for benchmarking our computational
approach with LDC flow was partly instigated by simulations of LDC
flow of Bingham liquids [24,25]. The results in these papers show
clear effects of the liquid’s rheology on easily observable quanti-
ties such as the location of the vortex center. For Bingham liquids
two dimensionless numbers define the flow system: the Reynolds
number Re =�u0H/�B, and a Bingham number Bn = �YH/�Bu0. For
the LDC simulations with thixotropic liquids we apply defini-
tions of dimensionless numbers based on the liquid’s asymptotic,
steady-state analogy with Bingham liquids (see Section 2). In this
analogy, the yield stress relates to thixotropy parameters accord-
ing to �Y =�∞˛(k2/k1), so that the (pseudo) Bingham number
becomes Bn =˛(k2/k1)(H/u0). We define the Reynolds number as
Re =�u0H/�∞. In addition to Re and Bn, a third dimensionless num-

ber is the liquid time scale divided by the flow time scale: the
Deborah number Db = u0/Hk2. It should be noted that having a Deb-
orah number does not imply having viscoelastic effects; in this
paper Db purely denotes a ratio of time scales. A fourth dimension-
less number is the ratio between the zero-shear and infinite-shear

urves: semi-analytical solutions; symbols: simulations. Left: � profiles at various
otropic rheology. Middle: velocity profiles (tu0/H = 0, 1.6, 3.3, 13, and 52; velocity
mbers. The left and middle panel have Re = 0.73. Furthermore: k2 = 5 × 10−2u0/H,
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Fig. 7. Transient behavior of LDC flow after switching (at t = 0) from Newtonian to
thixotropic liquid for three values of Db. Upper panel: vertical position of the vor-
tex center zc; lower panel: shear stress at the moving plate �w . Re = 0.5, Bn = 10,
˛+ 1 = 250.
Fig. 5. Definition of the LDC geometry and coordinate system.

iscosity: ˛+ 1. In order to focus on the liquid rheology (and not on
nertial flow effects) we set the Reynolds number to a fixed, low
alue: Re = 0.5 throughout the LDC simulations.

The LDC simulations are set up as follows: the default grid con-
ists of 81 × 1 × 81 (xyz) cells. There are no-slip conditions at the
our planar walls, and periodic conditions in the third (y) direc-
ion (making the simulation effectively two-dimensional). Starting
rom a zero flow field, the lid is set to move with velocity u0. Ini-
ially the liquid is Newtonian with viscosity �∞. Once the flow
f Newtonian liquid is fully developed the thixotropic rheology is
witched on. We then monitor the location of the vortex center,
nd the force required to move the plate as a function of time. The
ortex center is determined by calculating the stream function  
hrough integration of the velocity field (ux =∂ /∂z, uz = −(∂ /∂x))
nd subsequently finding the location of its minimum. Through
nterpolation we can do that with sub-lattice level accuracy (the
ccuracy approximately is 0.1�≈ 10−3 H with � the lattice spac-
ng). The force to move the lid follows from the momentum added
o the liquid to maintain the no-slip condition at the lid.

For a typical situation, the initial (Newtonian) flow and the
ltimate (i.e. steady) LDC flow of thixotropic liquid are shown in

ig. 6 in terms of velocity vectors. The differences are apparent.
he thixotropic flow has its vortex center much closer to the mov-
ng wall. As compared to the Newtonian flow, the shear thinning
ehavior of the thixotropic liquid makes the regions away from the

Fig. 6. Steady-state LDC flow in terms of velocity vectors. Left: Newtonian liquid, Re = 0.5. Right: thixotropic liquid, Re = 0.5, Bn = 10, Db = 0.25, ˛+ 1 = 250.
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Table 1
Steady-state vortex core position as a function of Db. Re = 0.5, Bn = 10, ˛+ 1 = 250.

Db zc,steady/H

0 0.867
0.25 0.868
0.5 0.869
1.0 0.872
2.0 0.876
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ig. 8. Vertical position of the vortex center zc as a function of the time after
witching on thixotropic rheology; effect of the Bingham number Bn. The other
imensionless numbers were kept constant: Re = 0.5, Db = 0.25, ˛+ 1 = 250.

oving wall much less active, essentially limiting the flow to a small
olume close to the moving wall.

In Fig. 7 we compare cases with different Deborah number (and
or the rest the same parameters) in terms of the flow’s response

o switching on thixotropy. The higher Db, the larger the liquid’s
ime scale and the slower the flow responds to the changed rhe-
logy. A less obvious observation is that also the steady state is a
unction of Db. There are slight but significant differences between
he steady-state solutions at different Deborah numbers, e.g. in

ig. 10. Stirred tank geometry and (r,z) coordinate system. Left: side view, right: top view.
lades and disk amount to 0.035D, the thickness of the baffles to 0.02T.
Fig. 9. Vertical position of the vortex center zc as a function of the time after
switching on thixotropic rheology; effect of the viscosity ratio˛+ 1. The other dimen-
sionless numbers were kept constant: Re = 0.5, Db = 0.25, Bn = 10.

the steady-state z-component of the vortex center position; the
higher Db, the closer the vortex core gets to the moving lid (also
see Table 1). The dependence of the steady flow on the liquid’s time
scales can be appreciated when inspecting the transport equation
for the network parameter (Eq. (1)). In steady state ∂�/∂t = 0. How-
ever, the liquid time scales still interfere with the flow time scales
(e.g. the circulation time in the cavity). The steady-state version of
Eq. (1) clearly shows the coupling between velocity field and the
time-dependent rheology parameters.

In Fig. 7 it is also worthwhile observing that the vortex core posi-
tion is a more critical parameter for assessing steady state than the
wall shear stress. The latter much quicker stabilizes and is appar-
ently not very sensitive to (subtle) evolutions in the flow in the
cavity.

As is known from earlier numerical work [24,25], increasing the
Bingham number brings the vortex core closer to the moving lid.

We also observe this, see Fig. 8. An increased Bingham number also
gives rise to a slower response. This can be understood when the
set of dimensionless numbers defining the flow (Re, Bn, Db, and
˛) and the way they are expressed in the primary parameters is

The vessel content is covered with a lid (no-slip wall). The thickness of the impeller
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onsidered. The only way to vary Bn and keeping the rest of the
imensionless numbers constant (as we do in Fig. 8) is by reducing
1. Reducing k1 implies reducing (in an absolute sense) the term
k1�̇� in the network parameter transport equation which impacts

he rate-of-change of �making the flow evolution slower.
Finally, in Fig. 9 we show how the viscosity ratio˛ influences the

ynamics of switching to a thixotropic liquid. Again both the steady
tate and the evolution of the flow are impacted. A higher value of
makes the regions further away from the moving lid (even) less

ctive, driving the vortex center more towards the lid. In terms of
ow dynamics, Fig. 9 quite clearly shows the occurrence of two
ime scales. A “fast” one relates to the initially steep rise of zc, i.e.
he z-location of the vortex core. At some stage in time (at about
u0/H = 0.5 if ˛+ 1 = 250; at tu0/H = 0.15 if ˛+ 1 = 1250) a slower time
cale takes over. The slower time scale is (roughly) the same for the
wo cases shown in the figure and can be traced back to 1/k2 (since
b = 1, 1/k2 = H/u0) being the same for both cases considered in
ig. 9. Next to the 1/k2 time scale, Eq. (1) contains a second time scale
elated to k1. The faster time we now try to interpret in terms of the
k1�̇� term in Eq. (1): a higher˛ at the same Bingham and Deborah
umber (and the same Re) implies a higher k1. The time scale 1/k1�̇
e may write as 1/k1�̇ = H/k1Cu0 = Bn/C˛k2 where the shear

ate is written as some effective shear rate that scales with u0/H:
˙ = Cu0/H. Then, with Bn = 10, the fast time scale 1/k1�̇ relates to
he slow time scale 1/k2 according to 1/k1�̇ = (10/C˛)(1/k2). If we
quite speculatively) set to C = 0.25, the coefficient 10/C˛ is 0.16 for
+ 1 = 250, and 0.03 for ˛+ 1 = 1250. If one realizes that the 0.16

nd 0.03 actually are dimensionless e−1 decay times, the observed
alues of 0.5 and 0.15 for ˛+ 1 = 250 and ˛+ 1 = 1250 respectively
an be tentatively traced back to the −k1�̇� term in the � transport
quation.

The intermediate conclusions from the benchmark results are
hat thixotropy effects are indeed accurately resolved with the sim-
lation procedure and that interpretation of results quickly gets
ore intricate with increasing flow complexity (from simple shear,

o plane Poiseuille, to LDC flow).

. Thixotropic liquids in mixing tanks

We now turn to flows of thixotropic liquids in mixing tanks. The
eometry of the mixing tank and the impeller are given in Fig. 10,
long with a definition of the coordinate system. The impeller, a
ushton turbine, is a de facto standard impeller in mixing research
nd therefore allows for comparison with a large body of numer-
cal and experimental data regarding Newtonian and (to a lesser

xtent) non-Newtonian liquids. It consists of a round disk with
ix flat blades mounted on its perimeter. The tank has baffles at
ts perimeter that enhance mixing as they prevent the liquid from
otating largely as a solid body under the influence of the revolv-
ng impeller. In this standard configuration all tank and impeller

ig. 11. Time series of the tank-averaged � for three values of Db when starting up
rom a zero flow, and zero � field.

Fig. 12. Velocity vectors in a vertical cross-section midway between baffles of single
realizations of flows with three different Deborah numbers (from top to bottom:
Db = 1, 10, and 100). The snapshots were taken after each flow system reached quasi
steady state.
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imensions can be derived from the tank diameter T (see Fig. 10),
.g. the impeller diameter D = T/3.

In mixing of Newtonian liquids in stirred tanks the Reynolds
umber is traditionally defined as Re =�ND2/�with N the impeller
peed (in rev/s). In analogy we here define the Reynolds number
s Re∞ =�ND2/�∞. The additional three dimensionless numbers if
hixotropic liquid mixing is being considered are chosen in analogy
ith the lid-driven cavity benchmark: Db = N/k2, Bn =˛(k2/k1)(1/N),

nd ˛.
The mixing tank flow cases we are interested in would

e mildly turbulent if the liquid is Newtonian with viscos-
ty �∞ (Re∞ = O(104)), and laminar if the viscosity is �∞(1 +˛)
Re∞/(1 +˛) = O(102)). As for Re∞, we do not want to go beyond 104

n order to keep in a Reynolds number range amenable to direct
umerical simulations (DNS) and avoid the use of turbulence mod-
ling.

The tanks to be simulated are of lab-scale size with a tank
olume of typically 10 l. A 10-l tank with geometrical layout as
iven in Fig. 10 has a diameter T = 0.234 m. The impeller diam-
ter D = T/3 = 0.078 m. With a liquid having �∞ = 10−2 Pa s and
= 103 kg/m3 we generate mildly turbulent flow if the impeller

pins with N = 10 rev/s: Re∞ = 6·103. Commonly used thixotropic liq-
ids have time constants in the range of 0.1–10 s (see e.g. Dullaert
nd Mewis [26]), so that the Deborah numbers fall in the range
to 100. To end up with laminar flow if the network would be

ully developed (�= 1 everywhere) we set ˛+ 1 = 100. Furthermore,
e set the Bingham number to the fixed value of Bn = 100. Under

he conditions sketched above (tank size, impeller speed, other liq-
id properties) this would correspond to a (pseudo) yield stress of
Y = 10 N/m2. To summarize the physical settings of the simulations:

hree of the four dimensionless numbers are fixed: Re∞ = 6·103,
n = 100, ˛+ 1 = 100. The Deborah number we vary by considering
hree values: Db = 1, 10, 100.

As mentioned above, the liquid flow dynamics was resolved
sing the lattice-Boltzmann method. In its basic implementation

ig. 13. Time averaged velocity field in the vertical plane midway between baffles. Aver
ight: Db = 1, 10, and 100.
n Fluid Mech. 160 (2009) 65–75

(as used in this study) the method applies a uniform, cubic grid.
The spatial resolution of the grid was such that the tank diameter T
equals 180 grid spacings�. The time step is such that the impeller
revolves once in 2000 time steps. The rotation of the impeller in
the static grid is represented by an immersed boundary technique.
The spatial resolution of �= T/180 is sufficient to fairly accurately
capture the main features of (Rushton) stirred tank flow. Higher
resolutions would have been feasible and to a certain extent bene-
ficial [27]. Given the explorative nature of this study, the long runs
(in terms of numbers of impeller revolutions) that we expect, and
the desire to do parameter variation it was decided to apply this
relatively modest spatial resolution.

As the default situation, the simulations were started with a zero
liquid velocity field and a uniform network parameter�= 0 (no net-
work). Our primary interests are in how the flow develops towards a
(quasi) steady state, what flow structures can be observed in (quasi)
steady state, and what the influence of the Deborah number is on
all this.

5.1. Flow development

In Fig. 11 we show the development of the tank-average struc-
ture parameter 〈�〉 after starting from a zero flow, and zero � field.
Clearly, the higher Db the slower the network develops. In addi-
tion, the path along which the three cases approach quasi steady
state is very different. At Db = 1 the network builds up quicker than
the flow that starts around the impeller can penetrate the bulk of
the tank. This results in an initial overshoot of 〈�〉 with � quickly
increasing in the still quiescent parts of the tank. In a later stage
the flow erodes the networked zones in the tank and 〈�〉 decreases

again after which a quasi steady state is reached. For Db = 10 the
development towards steady state has a relatively fast stage (with
a time scale associated to it of the order of k−1

2 ) and a slow stage
taking of the order of 150 impeller revolutions. At the highest Db
(Db = 100) the system very gradually goes towards steady state.

ages taken in quasi steady state over at least 20 impeller revolutions. From left to
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cosity ultimately gets of the order of 20�∞ throughout the tank
which corresponds to a Reynolds number of Rea =�ND2/�a ≈ 300,
indicating laminar flow indeed.
ig. 14. Snapshots of the apparent viscosity �a relative to �∞(˛+ 1) in a vertical cro
b = 100 at tN = 250. Bottom row: Db = 10 and (from left to right) tN = 50, 100, 210.

Before looking into this development more closely, e.g. in terms
f the spatial distribution of the network parameter in the tank,
rst the overall structure of the flow under quasi steady conditions

s examined. In Fig. 12 snapshots (i.e. single realizations) of ver-
ical cross-sections through the flows in terms of velocity vectors
re displayed; all three snapshots were taken at moments the flow
ad become quasi steady, as identified via Fig. 11. As we already
aw for lid driven cavity flow, liquids that have the same steady-
tate rheology and are only different in terms of their network
ime scale develop different flow structures, not only in transi-
ional (unsteady) stages, also in quasi steady state. At Db = 1 the
mpeller outstream has some level of turbulence. The circulation
attern, however, extends only into part of the tank, with large inac-
ive zones specifically in the upper part of the tank. The result of
he Db = 10 simulation is peculiar, with a circulation stream only
resent in the region below the impeller, and an inactive region
bove. The route towards this situation will be discussed in more
etail below. The case with Db = 100 is again very different. The trail-

ng vortex system in the impeller outstream so typical for the flow
riven by a Rushton turbine [2] has completely disappeared here;
he flow clearly being dominated by viscous forces everywhere.

To make clear that the snapshots of Fig. 12 are representative
or the steady state at each of the Deborah numbers, time-averages
ectors fields collected during (at least) 20 impeller revolutions in
teady state are shown in Fig. 13. In terms of the average flow, the
istinction between the Db = 1 and Db = 100 case has largely dis-
ppeared since the trailing vortex structures emerging from the

mpeller and moving in radial direction towards the tank wall get
veraged out.

The above sketched development and eventual stages can be
etter understood by monitoring the way the network parameter
, or (since they are one-on-one related via Eq. (2)) the apparent
tion through the tank. Top row from left to right: Db = 0 at tN = 60, Db = 1 at tN = 60,

viscosity gets distributed in the mixing tank. If Db = 100, the liq-
uid’s time scales are much longer than almost all relevant flow
time scales. In other words, the mixing is very fast compared to
the build-up and breakdown of the network which leads to a fairly
uniform (well-mixed) distribution of the apparent viscosity, see
Fig. 14 (upper right panel). This situation is comparable to a very
slow chemical reaction taking place in a vigorously mixed tank.
Under such conditions the tank can be considered ideally mixed
with approximately uniformly distributed concentrations. At the
specific settings of this simulation, the level of the apparent vis-
Fig. 15. Time series of the tank-averaged � for Db = 10, with three different initial
conditions. Solid line: fully developed Newtonian flow with Re = 6000 and �= 0;
long-dashed line: zero flow and �= 0 (same as Fig. 11); short dashed line: zero flow
and �= 1.
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Fig. 16. Vertical profiles at a radial position of r = T/4 of the time-average k

The Db = 1 case gives rise to a very inhomogeneous distribution
f the apparent viscosity in the tank, with low levels close to the
mpeller and in the stream emerging from the impeller where the
etwork is destroyed continuously due to liquid deformation, and
igh levels in the dead zones in (for instance) the upper corners
see Fig. 14, upper center panel). This distribution creates active and
elatively inactive regions in the tank. For comparison we also show
n Fig. 14 (upper left panel) a distribution of the apparent viscosity
f Db = 0, which we get if instead of a thixotropic liquid we have a
ime independent liquid with the steady-state rheology of Eq. (4).
he apparent viscosity distributions with Db = 1 is very similar to
he one with Db = 0 indicating that for Db = 1 (and the rest of the
urrent conditions: flow geometry, other dimensionless numbers)
he time dependence of the liquid is not strongly felt.

The most intriguing case is the one with Db = 10. Some 40 rev-
lutions after start-up the system tends to steady state. However,
eyond 50 revolutions 〈�〉 starts slowly but systematically increas-

ng again until it levels off after 150 revolutions after start-up.
his behavior is quite insensitive for the initial conditions as can
e appreciated from Fig. 15: in addition to the simulation starting
rom zero flow and zero network, also simulations starting from
ero flow and fully developed network, and fully developed New-
onian flow (with viscosity �∞) were preformed, showing similar
ong-time behavior. What happens in the slow part of the flow’s
evelopment (between 50 and 150 revolutions) is a slow build-up
f the network in the upper part of the tank which gradually pushes
he impeller stream down until the liquids only recirculates under-
eath the impeller, see Fig. 14 (lower three panels). This is the steady
tate as also identified in Figs. 12 and 13.

.2. Quasi steady-state flow

In order to compare the different stirred tank cases in a more
uantitative manner, profiles of the kinetic energy contained in the
elocity fluctuationsu′

i
(turbulent and deterministic due to impeller

otation) k = (1/2)u′
i
u′
i
, and time-averaged apparent viscosity have

een determined, see Fig. 16. A few qualitative observations made

bove are confirmed by these profiles. In the first place we note
he small difference between the flow at Db = 1 and Db = 0. Both the
iscosity and kinetic energy profiles show strong resemblance. The
onclusion is that a thixotropic liquid with a network time scale of
he same order of magnitude as the time needed for one impeller
energy k, and the apparent viscosity �a for the various Deborah numbers.

revolutions effectively behaves as a time-independent liquid. In the
second place, the profiles show that in all cases considered velocity
fluctuations (as expressed in kinetic energy) are confined to the
impeller region, and the liquid stream emerging from the impeller.
In the rest of the tank fluctuation levels are negligible (note the
logarithmic scale of the k-profiles). In the third place there is the
sharp division between an active (underneath the impeller) and an
inactive volume if Db = 10.

6. Summary and outlook

In this paper a procedure for flow simulations involving vis-
cous thixotropic liquids has been outlined. Thixotropy enters via
a scalar quantity � that represents the level of integrity of a struc-
tural network in the liquid. A highly developed network (� close to
1) implies high viscosity, � close to zero implies low viscosity. The
network can be given a characteristic time to build-up, and gets
disintegrated due to fluid deformation. The simulation procedure
is based on the lattice-Boltzmann method for solving the flow equa-
tions, and an explicit finite volume method for solving the transport
equation in �. It is numerically very efficient and therefore allows
for highly resolved simulations that we use to study flows in com-
plexly shaped confinements at relatively high Reynolds numbers
(transitional and turbulent flows).

The simulation method has been verified by applying it to three
benchmark cases: simple shear flow, planar Poiseuille flow, and
lid-driven cavity flow. In the former two cases very good agree-
ment between numerical results and (semi-) analytical solutions
has been obtained. The lid-driven cavity case highlights the inter-
esting interactions between flow time scales (circulation time in
this case), and time scales related to thixotropy; also in steady flows
the time scale of the liquid matters.

The full potential of the algorithms has been utilized by per-
forming direct numerical simulations of the flow in a mixing tank
in the laminar and transitional regime with a focus of the role
of the Deborah number (the ratio of the liquid time scale and
impeller revolution period). A high Deborah number (Db = 100 in

this paper) results in an almost uniform distribution of the network
parameter in the mixing tank. If Db = 1, the thixotropic liquid effec-
tively behaves as a time-independent liquid and develops (with the
steady-state rheology as chosen here) flow structures reminiscent
of Bingham liquids in agitated tanks. The case with Db = 10 shows



tonia

p
f
s
t
s
i
b
o
t
l

T
c
r

p
i
m
t
l
d
t
o
o

R

[

[

[

[

[

[

[

[

[

[

[
[

[

[

J.J. Derksen, Prashant / J. Non-New

eculiar behavior. Its transient has two time scales of which the
aster can be directly traced back to the time scale of the liquid. The
lower has to be due to an intricate interaction between flow condi-
ions and liquid properties. The global quasi-steady flow structure
hows a sharp distinction between an active part underneath the
mpeller, and an inactive part above. In practical situations such
ehavior would be highly undesirable since it leaves a large part
f the tank’s volume (and mixing capacity) unused. The simula-
ion results call for experimental work on similar flow systems and
iquids.

The simulations presented here were run in sequential mode.
he procedure, however, can be trivially extended to allow for
omputationally very efficient parallel simulation so that higher
esolution and/or computation speed can be achieved.

The work presented is mainly motivated by the challenges
osted by processing waste streams in oil sands processing (tail-

ngs). We plan to perform simulations of dense solid–liquid
ixtures with direct resolution of the solid–liquid interfaces, as

o predict mobility of solid particles in thixotropic liquids. The
attice-Boltzmann method allows for such simulations as has been
emonstrated for solids in Newtonian liquids [28]. The results with
hixotropic liquids could provide useful insights in the consistency
f tailings which is important for land reclamation at the end of the
il sands production cycle.
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