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A procedure for detailed simulations of flow of purely viscous thixotropic liquids is outlined. The local
viscosity of the liquid relates to the level of integrity of a network in the liquid. The time-dependence of
the liquid’s rheology is due to the finite rate with which the network in the liquid builds up or breaks
down, the latter due to fluid deformation. This concept has been incorporated in a lattice-Boltzmann
discretization of the flow equations coupled to a scalar transport solver with the scalar representing
the network integrity. It results in a computationally efficient algorithm that allows for very detailed
(three-dimensional and time-dependent) simulations of thixotropic liquid flow in complexly shaped
confinements. After verifying the numerical procedure by means of a few benchmark cases, it is applied
to study the influence of the Deborah number on the transient behavior as well as the quasi steady-state
flow in a mixing tank equipped with a Rushton turbine.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many processing and mixing applications involve complex liq-
uids. Examples are specifically abundant in food, pharmaceutical,
and related industries; paper and pulp, polymer processing, and
also oil sands operations; the latter being the major motivation of
the present work. One of the many intriguing phenomena that can
occur in complex liquids is the development of a yield stress. Usu-
ally the yield stress is the consequence of a network being generated
as a result of particle-particle or (macro-) molecular interactions
of agents dispersed in a carrier phase. For example, in oil sands
processing [1] clay particles get surface activated by (hot) water
injection which initiates long range interactions between them.
As a result of (ionic) transport limitations, the network is not an
instantaneous feature; it takes time to build up, and also to break
down as a result of viscous stress and/or deformation in the liquid.
In non-homogeneous flows such time-dependent rheology (usu-
ally termed thixotropy) is closely linked to the flow dynamics as
the (also non-homogeneous) level of network integrity is trans-
ported with the flow. It is expected that, from a fluid dynamics
point of view, interesting situations occur when the time scales
related to the network interfere with characteristic flow time
scales.

In the applications that motivate the present work, geomet-
rical complexity of the flows is an essential feature. One should
think of flows in agitated tanks, or tube reactors with protrusions
(static mixers) and inlet nozzles, or separation devices such as
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cyclone separators. Also in case of direct simulations of liquid-solid
flows with explicit resolution of solid-liquid interfaces geometrical
complexity is an issue. In many cases process equipment operates
in turbulent or (as is often the case with relatively viscous non-
Newtonian liquids) transitional flow regimes. Realistic numerical
simulations of such flows require flexibility in setting up computa-
tional grids, and above all computational efficiency in order to be
able to resolve the flow including its flow structures to a sufficient
level of detail. Previous studies [2-4] have shown that the lattice-
Boltzmann method [5,6] is a versatile procedure for performing
highly resolved computational fluid dynamics of Newtonian fluids.
In this paper lattice-Boltzmann simulations of flows of thixotropic
liquids in complexly shaped confinements, more specifically mixing
tanks, are discussed.

Earlier work on (modeling and simulating) thixotropic liquids
has been reviewed by Mewis [7], and at a later stage by Mujum-
dar et al. [8]. If we (as in the present paper) restrict ourselves to
purely viscous liquids (no elasticity effects), Mujumdar et al. show
that thixotropy can be effectively implemented in flow solvers by
solving an additional scalar transport equation in a parameter char-
acterizing the integrity of the network, and locally coupling this
integrity parameter to the apparent viscosity.

A troubling issue regarding simulating non-Newtonian rheology
is the steep increase of the number of parameters with increasing
complexity of the model characterizing the liquid, and the need to
(experimentally and/or computationally) determine their values.
For this reason we in the first place choose to limit the number of
parameters by adopting a relatively simple thixotropy model, and in
the second place choose the thixotropic rheology such that we can
easily connect to much simpler Bingham rheology at steady-state
conditions.
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In this paper a procedure for directly simulating thixotropic
liquid flow based on a lattice-Boltzmann viscous flow solver is pro-
posed, having in mind the necessity to apply it to turbulent and
transitional flows in complexly shaped confinements. In order to
build confidence, the procedure is first applied to a few bench-
mark cases and where possible results are compared to analytical
solutions. Subsequently the method is applied to laminar and tran-
sitional flows in mixing tanks.

The paper is organized along the lines sketched above. First we
briefly discuss thixotropy modeling, and define the model adopted
in this paper. Then the translation of the model into a computer
algorithmis described. The benchmark cases comprise simple shear
flow, plane Poiseuille flow, and lid-driven cavity flow. Finally we
demonstrate the feasibility of the numerical approach to simulat-
ing mixing tanks containing thixotropic liquids, and conclude this
paper.

2. Thixotropy model

The thixotropy model we have adopted is based on early work

due to Storey and Merrill [9], and Moore [10], more recently
reviewed and applied by Mujumdar et al. [8], and Ferroir et al. [11].
In this purely viscous (i.e. non-elastic) model we keep track of a
scalar A that varies between 0 and 1 and indicates the integrity of
the network (A =0: no network; A = 1: fully developed network). Its
transport equation reads:
%+ui§—2=—k1)})\+kz(l—)\) (1)
(summation over repeated indices) with u; the ith component of
the fluid velocity vector, and y = ,/2d;d;; a generalized deforma-
tion rate; dj=1/2((0u;/0x;) +(0u;/0x;)) is the rate of strain tensor.
The first term on the right hand side of Eq. (1) indicates break-
down of the network due to liquid deformation; the second term is
responsible for build-up of the network with a time constant 1/k;
associated toit. In the model [11], the apparent viscosity 74 is linked
to the network integrity according to:

Na = Neo(1 4+ a)) (2)

In a homogeneous shear field with shear rate y, the steady-state
solution to Eq. (1) reads:

kz

= 3
kiy + ko (3)
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The associated steady-state viscosity is (combine Eqs. (2) and

(3):
k2 ) (4)

= (et

The parameter 7, can thus be interpreted as the infinite shear
viscosity. The zero-shear viscosity is 17.,(1 + «). A typical representa-
tion of the steady-state rheology (Eq. (4)) is given in Fig. 1. As can be
seen, it shows some similarity with the rheology of a Bingham lig-
uid, and the dual-viscosity representation often used for mimicking
Bingham rheology in viscous flow solvers [12].

In terms of generalized shear, time-independent Bingham rhe-
ology reads:

rU:2<T.7Y+nB)dU if |T] > 1y

dj=0

(5)

if 7] <7y

with ty the yield stress, ((ty/y)+ ng) the apparent viscosity, and
Il = 1/(1/2)7;7T;. In viscous numerical flow solvers (such as the
lattice-Boltzmann solver we will be using here), Bingham behav-
ior can be approximated by a two-viscosity model [12]: at very low
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Fig. 1. Steady-state rheology. Solid straight line: Bingham liquid with yield stress ty
and slope np. Dashed line: in a dual viscosity model the yield stress is mimicked by

a very high viscosity (7o) liquid for low shear. Dash-dotted curve: the steady-state
stress—strain behavior of the thixotropic liquid.

deformation rates the fluid behaves as a very (though not infinitely)
viscous fluid with viscosity 7npg. At a critical deformation rate ygg
the slope in the 7 versus y curve switches from npg to 1p (see Fig. 1).
This approach introduces an additional (numerical) parameter 7pg;
the critical deformation rate yjp relates to ngg and the physical
properties ty and np according to ygo = ty/(ngo — 1B)

The thixotropic liquid as defined by Egs. (1) and (2) has four
parameters: k1, k2, oo, @. For comparing it with time-independent
Bingham liquids we note that in steady state it has the same
¥y — 0, and ¥ — oo behavior as the dual-viscosity Bingham model
if @=(ngo/ng)—1, and if nea(ky/k1)=1y. Once we have chosen a
network build-up time-scale 1/k, we can set the rest of the four
parameters of the thixotropic liquid such as to mimic a liquid that
in steady-state exhibits Bingham behaviorinthe y — 0and y — oo
asymptotes: kq =npa(ka/Ty), oo =B, @ =(Npo/np) — 1.

3. Flow solver and scalar transport modeling

The lattice-Boltzmann method (LBM) is a nowadays well-
established way to numerically solve the incompressible
Navier-Stokes equations. The method originates from the lattice-
gas automaton concept as conceived by Frisch et al. in 1986 [13].
Lattice gases and lattice-Boltzmann fluids can be viewed as parti-
cles moving over a regular lattice, and interacting with one another
at lattice sites. These interactions (collisions) give rise to viscous
behavior of the fluid, just as colliding/interacting molecules do
in real fluids. Since 1987 particle-based methods for mimicking
fluid flow have evolved strongly, as can be witnessed from review
articles and text books [4-6,14].

The main reasons for employing the LBM for fluid flow simula-
tions are its computational efficiency and its inherent parallelism,
both not being hampered by geometrical complexity. More recently
LBM has been applied to non-Newtonian fluid mechanics [15-17].
For an in-depth description of the LBM we refer to the excellent
monograph due to Succi [6].

In this paper the LBM formulation of Somers [18] has been
employed which falls in the category of three-dimensional, 18
speed (D3Q18) models. Its grid is uniform and cubic. Planar, no-slip
walls naturally follow when applying the bounce-back condition.
For non-planar and/or moving walls (that we have in case we are
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simulating the flow in a mixing tank with a revolving impeller) an
adaptive force field technique (a.k.a. immersed boundary method)
has been used [2,19]. We have employed and validated this method
extensively in previous studies involving (turbulent) flow in process
equipment (e.g. [2,20]).

For incorporating thixotropy, the viscosity needs to be made
dependent on the local value of the network parameter A (Eq. (2)),
and (more importantly) the transport equation for the network
parameter (Eq. (1)) needs to be solved. Solving scalar transport
equations in a LBM context is an option (see e.g. [21]). It is, how-
ever, a relatively expensive approach in terms of computer memory
usage: in order to solve for a single scalar we need to allocate as
much memory as for solving the Navier-Stokes equations (i.e. 18
real values per lattice node in an 18 speed LBM). Instead we solve
Eq. (1) with an explicit finite volume discretization on the same
(uniform and cubic) grid as the LBM. This way only two real val-
ues per lattice node need to be stored. An additional advantage of
employing a finite volume formulation is the availability of methods
for suppressing numerical diffusion. This is particularly important
in the present application since Eq. (1) does not have a molecular
or turbulent diffusion term; in order to correctly solve Eq. (1) we
cannot afford to have significant numerical diffusion. As in previous
works [3,22], TVD discretization with the Superbee flux limiter for
the convective fluxes [23] was employed. We step in time according
to an Euler explicit scheme.

The presence of a source term (i.e. the right-hand side) in Eq. (1),
combined with the explicit nature of the time stepping sometimes
gives rise to unstable behavior. This behavior can be effectively
countered by treating the right-hand side semi-implicitly, i.e. by
evaluating it in terms of A at the new time level. In that case the
discrete version of Eq. (1) is schematically written as

(n+1) _ 3.(n) m

A N A n (uigi\i) _ *kl )-/(n))\.(TH—]) + k2(1 _ )\(n+1)) (6)
with the upper index indicating the (discrete) time level. Eq. (6)
can be written as an explicit expression in A(™*1) since the right-
hand side does not contain spatial derivatives. When discussing
the simple-shear benchmark, the results with explicit and implicit
treatment of the source term will be compared, and shown to have
insignificant differences.

4. Benchmarks

In order to check our numerical approach, a few benchmark
cases have been considered: simple shear flow, plane Poiseuille
flow, and the flow in a lid driven cavity. In all three benchmarks
first the (low Reynolds number) flow of Newtonian liquid with vis-
Cosity 1 is simulated until it is fully developed. Then we switch on
the thixotropic rheology and we monitor the temporal and spatial
evolution of the network parameter A and of the velocity fields as a
result of this. This procedure is followed since it largely allows us to
isolate the transient effects due to thixotropy from those related to
start-up behavior of the flows. For simple shear and Poiseuille flow
we can compare the transient numerical results with (semi-) ana-
lytical solutions. The lid-driven cavity case illustrates how a slightly
more complex flow responds to thixotropy. Steady lid-driven cav-
ity flow also allows for comparing our Bingham-like liquids with
simulations from the literature [24,25].

4.1. Simple shear flow

We generate a simple shear flow in a two-dimensional domain
by moving two parallel plates in opposite direction. Initially the
network parameter A is set to zero and the liquid in between the
plates is Newtonian with viscosity 7.,. Once this Newtonian simple

0.015

A Yz
0010} | / t=ho
v X

0.005¢

T/MoY

T p———e

0 ' 40 ty 80

Fig.2. Time response of a simple shear flow with constant shear rate y when switch-
ing from Newtonian rheology with dynamic viscosity 1., to thixotropic rheology. Top
panel: network parameter A; middle panel: shear stress at the plates; bottom panel
AN = dexpt — Aimpl- SOlid curves: analytical solution; dashed curves: simulations. The
flow case shown here has Re=48, k, = 5- 107y, k; =0.5, a=100.

shear flow has fully developed we start (at t=tg) solving the trans-
port equation in A (Eq. (1)) and applying the viscosity rule (Eq. (2)).
We keep track of the shear stress by monitoring the force required
to move the plates.

In this case of homogeneous shear, the network parameter is
homogeneous as well, and Eq. (1) reduces to a linear, ordinary dif-
ferential equation: dA/dt = —kq A + ka(1 — A) with solution

_ k{1 —exp[—(kiy + ko )(t — to)]}
k2 + k])/

A (7)
if A=0 at t=tp. As a result, the shear stress responds as t,x = ny =
Nool1 + aA(t)]y, with A(t) according to Eq. (7).

Typical results are presented in Fig. 2. This specific flow sys-
tem is fully defined by the following dimensionless numbers: a
Reynolds number (here chosen as Re = pyH? /1, with H the spac-
ing between the two moving plates), ki, kz/7, and «. The figure
shows the start-up of the Newtonian flow with liquid being accel-
erated from zero velocity giving rise to an initially high shear stress
on the plates. At t=ty (when the Newtonian system is fully devel-
oped) the thixotropic rheology is switched on which results in an
immediate increase in the network parameter A and (as a conse-
quence) elevated viscosity and shear stress. The simulated results
of this transient behavior are in excellent agreement with the ana-
lytical solution. In the bottom panel of Fig. 2 we show to what extent
the numerical solutions obtained with an implicit treatment of the
right hand side of the scalar transport equation differ from those
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Fig. 3. Planar Poiseuille flow definition.

with an explicit right hand side. There clearly is a systematic effect.
It is, however, very minor and only one to two orders of magnitude
larger than the accuracy with which numbers are represented in
the computer code.

4.2. Plane Poiseuille flow

Compared to simple shear, plane Poiseuille flow is a slightly
more complex benchmark. We now have a flow between two fixed
parallel plates at mutual distance H driven by a body force (force per
unit volume) f in the wall-parallel direction (see Fig. 3 for a defini-
tion of the flow and its coordinate system). The body force results in
a linear shear stress profile in the liquid: 7,x = —fpz. In zero-inertia
flow this directly translates in a shear rate y = [(—foz)/(n4(z, t))I.
Since 1q=1-(1+aA), and since the system is homogeneous in x-
direction the transport equation in the network parameter (Eq. (2))
can be written as

A folz|
o = R an)

In the center of the channel (z=0), Eq. (8) implies that A depends
on time according to an exponential function with time constant
1/k;,. In order to compare the implications of Eq. (8) for the way
the network parameter and the velocity field depend on space (z)
and time, Eq. (8) was integrated numerically (with a fourth-order
Runge-Kutta scheme) for zin the range —H/2 <z < H/2.This provides
us with arepresentation of A(z,t) that subsequently is used to deter-
mine 74(z,t) (with help of Eq. (2)) and integrate the velocity profile
from the notion that duy/0z = —(foz/ne) with uy =0 at z= +(H/2). The
results of this semi-analytical exercise can be directly compared
with out numerical simulations.

+ka(1=2) (8)

In the simulations we again start from a zero flow field of New-
tonian liquid. Once that flow has fully developed (to a parabolic
velocity profile in this case) the thixotropic rheology is switched
on and we monitor the development of the network and associated
apparent viscosity and velocity field. As the velocity scale we take
the centerline velocity of the Newtonian liquid: ug = (1/8)(fo/1e0 JH?;
the Reynolds number has been defined as Re = pugH/7 . The results
in Fig. 4 show very good agreement of the simulations and the semi-
analytical solution. The time scales over which the flow switches
from the Newtonian steady state to the non-Newtonian steady
state, as well as the profiles of A and uy are well represented by
the simulations. We see the development of the A-profile in time:
starting from zero A increases quickest in the center of the chan-
nel where there is no deformation. Roughly at t=50(H/ug) =2.5/k>
after switching on the thixotropic rheology the A profile is close
to steady. In the same time range the velocity profile has adapted
itself to the new rheology; it has evolved from parabolic to more
plug-flow like.

The assumption of zero-inertia as inferred to obtain the semi-
analytical solution appears critical. In the right panel of Fig. 4 we
compare (at a single moment in time) the semi-analytical solution
with simulation results at different Reynolds numbers. The trend
is that the agreement clearly benefits from reducing the Reynolds
number in the simulations. The results with Re<1 can hardly be
distinguished and are close to the semi-analytical solution.

4.3. Lid-driven cavity flow

The geometry of two-dimensional lid-driven cavity (LDC) flow
is given in Fig. 5. The choice for benchmarking our computational
approach with LDC flow was partly instigated by simulations of LDC
flow of Bingham liquids [24,25]. The results in these papers show
clear effects of the liquid’s rheology on easily observable quanti-
ties such as the location of the vortex center. For Bingham liquids
two dimensionless numbers define the flow system: the Reynolds
number Re = pugH/ng, and a Bingham number Bn=tyH/ngug. For
the LDC simulations with thixotropic liquids we apply defini-
tions of dimensionless numbers based on the liquid’s asymptotic,
steady-state analogy with Bingham liquids (see Section 2). In this
analogy, the yield stress relates to thixotropy parameters accord-
ing to ty=n.a(ka/ky), so that the (pseudo) Bingham number
becomes Bn=a(ky/k1)(H[ug). We define the Reynolds number as
Re = pugH/7. In addition to Re and Bn, a third dimensionless num-
ber is the liquid time scale divided by the flow time scale: the
Deborah number Db = uy/Hks. It should be noted that having a Deb-
orah number does not imply having viscoelastic effects; in this
paper Db purely denotes a ratio of time scales. A fourth dimension-
less number is the ratio between the zero-shear and infinite-shear
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Fig. 4. Profiles of the network parameter A and velocity in plane channel flow. Drawn curves: semi-analytical solutions; symbols: simulations. Left: A profiles at various
moments (tug/H=1.6, 3.3, 13, 52, and 210; X increases with time) after switching on thixotropic rheology. Middle: velocity profiles (tug/H=0, 1.6, 3.3, 13, and 52; velocity
decreases with time). Right: velocity profiles at tug/H= 1.6 for four different Reynolds numbers. The left and middle panel have Re=0.73. Furthermore: k, =5 x 10~2ug/H,

ki =1.0, «=40.
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Fig. 5. Definition of the LDC geometry and coordinate system.

viscosity: « + 1. In order to focus on the liquid rheology (and not on
inertial flow effects) we set the Reynolds number to a fixed, low
value: Re = 0.5 throughout the LDC simulations.

The LDC simulations are set up as follows: the default grid con-
sists of 81 x 1 x 81 (xyz) cells. There are no-slip conditions at the
four planar walls, and periodic conditions in the third (y) direc-
tion (making the simulation effectively two-dimensional). Starting
from a zero flow field, the lid is set to move with velocity ug. Ini-
tially the liquid is Newtonian with viscosity 7. Once the flow
of Newtonian liquid is fully developed the thixotropic rheology is
switched on. We then monitor the location of the vortex center,
and the force required to move the plate as a function of time. The
vortex center is determined by calculating the stream function ¥
through integration of the velocity field (uy = 0v/0z, u; = —(0v/0x))
and subsequently finding the location of its minimum. Through
interpolation we can do that with sub-lattice level accuracy (the
accuracy approximately is 0.1A ~10-3 H with A the lattice spac-
ing). The force to move the lid follows from the momentum added
to the liquid to maintain the no-slip condition at the lid.

For a typical situation, the initial (Newtonian) flow and the
ultimate (i.e. steady) LDC flow of thixotropic liquid are shown in
Fig. 6 in terms of velocity vectors. The differences are apparent.
The thixotropic flow has its vortex center much closer to the mov-
ing wall. As compared to the Newtonian flow, the shear thinning
behavior of the thixotropic liquid makes the regions away from the
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Fig. 7. Transient behavior of LDC flow after switching (at t=0) from Newtonian to
thixotropic liquid for three values of Db. Upper panel: vertical position of the vor-
tex center z.; lower panel: shear stress at the moving plate 7,,. Re=0.5, Bn=10,
a+1=250.
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Fig. 6. Steady-state LDC flow in terms of velocity vectors. Left: Newtonian liquid, Re =0.5. Right: thixotropic liquid, Re=0.5, Bn=10, Db=0.25, « +1=250.



70 J.J. Derksen, Prashant / J. Non-Newtonian Fluid Mech. 160 (2009) 65-75

Table 1
Steady-state vortex core position as a function of Db. Re=0.5, Bn=10, o + 1 =250.
Db Zc,steady /H
0 0.867
0.25 0.868
0.5 0.869
1.0 0.872
2.0 0.876
0.90
z./H
0.85
----------- 20
—10
Bn
0.80
0.75 L
0 0.5

tuyH

Fig. 8. Vertical position of the vortex center z. as a function of the time after
switching on thixotropic rheology; effect of the Bingham number Bn. The other
dimensionless numbers were kept constant: Re=0.5, Db=0.25, «+1=250.

moving wall much less active, essentially limiting the flow to a small
volume close to the moving wall.

In Fig. 7 we compare cases with different Deborah number (and
for the rest the same parameters) in terms of the flow’s response
to switching on thixotropy. The higher Db, the larger the liquid’s
time scale and the slower the flow responds to the changed rhe-
ology. A less obvious observation is that also the steady state is a
function of Db. There are slight but significant differences between
the steady-state solutions at different Deborah numbers, e.g. in

0.90
z./H
0.85
' 250
— 1250
: o+1
0.80F
0.75 s s . J
0 1 2 3 5

Fig. 9. Vertical position of the vortex center z. as a function of the time after
switching on thixotropic rheology; effect of the viscosity ratio « + 1. The other dimen-
sionless numbers were kept constant: Re=0.5, Db=0.25, Bn=10.

the steady-state z-component of the vortex center position; the
higher Db, the closer the vortex core gets to the moving lid (also
see Table 1). The dependence of the steady flow on the liquid’s time
scales can be appreciated when inspecting the transport equation
for the network parameter (Eq. (1)). In steady state dA/0t=0. How-
ever, the liquid time scales still interfere with the flow time scales
(e.g. the circulation time in the cavity). The steady-state version of
Eq. (1) clearly shows the coupling between velocity field and the
time-dependent rheology parameters.

In Fig. 7 itis also worthwhile observing that the vortex core posi-
tion is a more critical parameter for assessing steady state than the
wall shear stress. The latter much quicker stabilizes and is appar-
ently not very sensitive to (subtle) evolutions in the flow in the
cavity.

As is known from earlier numerical work [24,25], increasing the
Bingham number brings the vortex core closer to the moving lid.
We also observe this, see Fig. 8. An increased Bingham number also
gives rise to a slower response. This can be understood when the
set of dimensionless numbers defining the flow (Re, Bn, Db, and
«) and the way they are expressed in the primary parameters is

M
L pi4 |
w=D/5] 4+t T
D=T13 = |R
; Il
ZF» O
— <> ’
0.017T |7/10 T

Fig. 10. Stirred tank geometry and (r,z) coordinate system. Left: side view, right: top view. The vessel content is covered with a lid (no-slip wall). The thickness of the impeller

blades and disk amount to 0.035D, the thickness of the baffles to 0.02T.
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considered. The only way to vary Bn and keeping the rest of the
dimensionless numbers constant (as we do in Fig. 8) is by reducing
k1. Reducing k; implies reducing (in an absolute sense) the term
—kq yA in the network parameter transport equation which impacts
the rate-of-change of A making the flow evolution slower.

Finally, in Fig. 9 we show how the viscosity ratio « influences the
dynamics of switching to a thixotropic liquid. Again both the steady
state and the evolution of the flow are impacted. A higher value of
o« makes the regions further away from the moving lid (even) less
active, driving the vortex center more towards the lid. In terms of
flow dynamics, Fig. 9 quite clearly shows the occurrence of two
time scales. A “fast” one relates to the initially steep rise of z, i.e.
the z-location of the vortex core. At some stage in time (at about
tug/H=0.5if ¢ +1=250; at tug/H=0.15if « + 1 =1250) a slower time
scale takes over. The slower time scale is (roughly) the same for the
two cases shown in the figure and can be traced back to 1/k; (since
Db=1, 1/k; =HJug) being the same for both cases considered in
Fig.9.Next to the 1/k, time scale, Eq.(1) contains a second time scale
related to k;. The faster time we now try to interpret in terms of the
—kiyA terminEq.(1): a higher « at the same Bingham and Deborah
number (and the same Re) implies a higher k. The time scale 1/k;y
we may write as 1/k;y = H/kiCug = Bn/Cak, where the shear
rate is written as some effective shear rate that scales with ug/H:
y = Cug/H. Then, with Bn =10, the fast time scale 1/k;  relates to
the slow time scale 1/k; according to 1/k1y = (10/Ca)(1/k3). If we
(quite speculatively) set to C=0.25, the coefficient 10/Cx is 0.16 for
a+1=250, and 0.03 for o +1=1250. If one realizes that the 0.16
and 0.03 actually are dimensionless e~! decay times, the observed
values of 0.5 and 0.15 for ¢ +1=250 and «+1=1250 respectively
can be tentatively traced back to the —k; A term in the A transport
equation.

The intermediate conclusions from the benchmark results are
that thixotropy effects are indeed accurately resolved with the sim-
ulation procedure and that interpretation of results quickly gets
more intricate with increasing flow complexity (from simple shear,
to plane Poiseuille, to LDC flow).

5. Thixotropic liquids in mixing tanks

We now turn to flows of thixotropic liquids in mixing tanks. The
geometry of the mixing tank and the impeller are given in Fig. 10,
along with a definition of the coordinate system. The impeller, a
Rushton turbine, is a de facto standard impeller in mixing research
and therefore allows for comparison with a large body of numer-
ical and experimental data regarding Newtonian and (to a lesser
extent) non-Newtonian liquids. It consists of a round disk with
six flat blades mounted on its perimeter. The tank has baffles at
its perimeter that enhance mixing as they prevent the liquid from
rotating largely as a solid body under the influence of the revolv-
ing impeller. In this standard configuration all tank and impeller
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Fig. 11. Time series of the tank-averaged A for three values of Db when starting up
from a zero flow, and zero A field.
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Fig. 12. Velocity vectors in a vertical cross-section midway between baffles of single
realizations of flows with three different Deborah numbers (from top to bottom:
Db=1, 10, and 100). The snapshots were taken after each flow system reached quasi
steady state.
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dimensions can be derived from the tank diameter T (see Fig. 10),
e.g. the impeller diameter D =T/3.

In mixing of Newtonian liquids in stirred tanks the Reynolds
number is traditionally defined as Re = pND? /5 with N the impeller
speed (in rev/s). In analogy we here define the Reynolds number
as Rey, = ,oNDZ/r]oo. The additional three dimensionless numbers if
thixotropic liquid mixing is being considered are chosen in analogy
with the lid-driven cavity benchmark: Db = N/ky, Bn =a(k;/k1)(1/N),
and o.

The mixing tank flow cases we are interested in would
be mildly turbulent if the liquid is Newtonian with viscos-
ity e (Res=0(10%)), and laminar if the viscosity is 1.(1+a)
(Rewo/(1 +a)=0(102)). As for Re,,, we do not want to go beyond 10*
in order to keep in a Reynolds number range amenable to direct
numerical simulations (DNS) and avoid the use of turbulence mod-
eling.

The tanks to be simulated are of lab-scale size with a tank
volume of typically 101. A 10-1 tank with geometrical layout as
given in Fig. 10 has a diameter T=0.234m. The impeller diam-
eter D=T/3=0.078 m. With a liquid having 7, =10"2Pas and
0=103kg/m3 we generate mildly turbulent flow if the impeller
spins with N=10rev/s: Re,, = 6-103. Commonly used thixotropic lig-
uids have time constants in the range of 0.1-10s (see e.g. Dullaert
and Mewis [26]), so that the Deborah numbers fall in the range
1 to 100. To end up with laminar flow if the network would be
fully developed (A =1 everywhere) we set « + 1 =100. Furthermore,
we set the Bingham number to the fixed value of Bn=100. Under
the conditions sketched above (tank size, impeller speed, other lig-
uid properties) this would correspond to a (pseudo) yield stress of
Ty =10N/mZ2. To summarize the physical settings of the simulations:
three of the four dimensionless numbers are fixed: Re, =6-103,
Bn=100, o +1=100. The Deborah number we vary by considering
three values: Db=1, 10, 100.

As mentioned above, the liquid flow dynamics was resolved
using the lattice-Boltzmann method. In its basic implementation

(as used in this study) the method applies a uniform, cubic grid.
The spatial resolution of the grid was such that the tank diameter T
equals 180 grid spacings A. The time step is such that the impeller
revolves once in 2000 time steps. The rotation of the impeller in
the static grid is represented by an immersed boundary technique.
The spatial resolution of A =T/180 is sufficient to fairly accurately
capture the main features of (Rushton) stirred tank flow. Higher
resolutions would have been feasible and to a certain extent bene-
ficial [27]. Given the explorative nature of this study, the long runs
(in terms of numbers of impeller revolutions) that we expect, and
the desire to do parameter variation it was decided to apply this
relatively modest spatial resolution.

As the default situation, the simulations were started with a zero
liquid velocity field and a uniform network parameter A =0 (no net-
work). Our primary interests are in how the flow develops towards a
(quasi) steady state, what flow structures can be observed in (quasi)
steady state, and what the influence of the Deborah number is on
all this.

5.1. Flow development

In Fig. 11 we show the development of the tank-average struc-
ture parameter (1) after starting from a zero flow, and zero A field.
Clearly, the higher Db the slower the network develops. In addi-
tion, the path along which the three cases approach quasi steady
state is very different. At Db =1 the network builds up quicker than
the flow that starts around the impeller can penetrate the bulk of
the tank. This results in an initial overshoot of (A) with A quickly
increasing in the still quiescent parts of the tank. In a later stage
the flow erodes the networked zones in the tank and (A) decreases
again after which a quasi steady state is reached. For Db=10 the
development towards steady state has a relatively fast stage (with
a time scale associated to it of the order of k;) and a slow stage
taking of the order of 150 impeller revolutions. At the highest Db
(Db=100) the system very gradually goes towards steady state.
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Fig. 13. Time averaged velocity field in the vertical plane midway between baffles. Averages taken in quasi steady state over at least 20 impeller revolutions. From left to

right: Db=1, 10, and 100.
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Fig. 14. Snapshots of the apparent viscosity 7, relative to n.(+1) in a vertical cross-section through the tank. Top row from left to right: Db=0 at tN=60, Db=1 at tN=60,

Db=100 at tN=250. Bottom row: Db =10 and (from left to right) tN=50, 100, 210.

Before looking into this development more closely, e.g. in terms
of the spatial distribution of the network parameter in the tank,
first the overall structure of the flow under quasi steady conditions
is examined. In Fig. 12 snapshots (i.e. single realizations) of ver-
tical cross-sections through the flows in terms of velocity vectors
are displayed; all three snapshots were taken at moments the flow
had become quasi steady, as identified via Fig. 11. As we already
saw for lid driven cavity flow, liquids that have the same steady-
state rheology and are only different in terms of their network
time scale develop different flow structures, not only in transi-
tional (unsteady) stages, also in quasi steady state. At Db=1 the
impeller outstream has some level of turbulence. The circulation
pattern, however, extends only into part of the tank, with large inac-
tive zones specifically in the upper part of the tank. The result of
the Db =10 simulation is peculiar, with a circulation stream only
present in the region below the impeller, and an inactive region
above. The route towards this situation will be discussed in more
detail below. The case with Db = 100 is again very different. The trail-
ing vortex system in the impeller outstream so typical for the flow
driven by a Rushton turbine [2] has completely disappeared here;
the flow clearly being dominated by viscous forces everywhere.

To make clear that the snapshots of Fig. 12 are representative
for the steady state at each of the Deborah numbers, time-averages
vectors fields collected during (at least) 20 impeller revolutions in
steady state are shown in Fig. 13. In terms of the average flow, the
distinction between the Db=1 and Db=100 case has largely dis-
appeared since the trailing vortex structures emerging from the
impeller and moving in radial direction towards the tank wall get
averaged out.

The above sketched development and eventual stages can be
better understood by monitoring the way the network parameter
A, or (since they are one-on-one related via Eq. (2)) the apparent

viscosity gets distributed in the mixing tank. If Db=100, the lig-
uid’s time scales are much longer than almost all relevant flow
time scales. In other words, the mixing is very fast compared to
the build-up and breakdown of the network which leads to a fairly
uniform (well-mixed) distribution of the apparent viscosity, see
Fig. 14 (upper right panel). This situation is comparable to a very
slow chemical reaction taking place in a vigorously mixed tank.
Under such conditions the tank can be considered ideally mixed
with approximately uniformly distributed concentrations. At the
specific settings of this simulation, the level of the apparent vis-
cosity ultimately gets of the order of 207, throughout the tank
which corresponds to a Reynolds number of Req = pND? /5,4 ~ 300,
indicating laminar flow indeed.

200

Fig. 15. Time series of the tank-averaged X for Db= 10, with three different initial
conditions. Solid line: fully developed Newtonian flow with Re=6000 and A =0;
long-dashed line: zero flow and A =0 (same as Fig. 11); short dashed line: zero flow
and A=1.
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Fig. 16. Vertical profiles at a radial position of r=T/4 of the time-average kinetic energy k, and the apparent viscosity 7, for the various Deborah numbers.

The Db=1 case gives rise to a very inhomogeneous distribution
of the apparent viscosity in the tank, with low levels close to the
impeller and in the stream emerging from the impeller where the
network is destroyed continuously due to liquid deformation, and
high levels in the dead zones in (for instance) the upper corners
(see Fig. 14, upper center panel). This distribution creates active and
relatively inactive regions in the tank. For comparison we also show
in Fig. 14 (upper left panel) a distribution of the apparent viscosity
if Db=0, which we get if instead of a thixotropic liquid we have a
time independent liquid with the steady-state rheology of Eq. (4).
The apparent viscosity distributions with Db=1 is very similar to
the one with Db =0 indicating that for Db=1 (and the rest of the
current conditions: flow geometry, other dimensionless numbers)
the time dependence of the liquid is not strongly felt.

The most intriguing case is the one with Db=10. Some 40 rev-
olutions after start-up the system tends to steady state. However,
beyond 50 revolutions (A) starts slowly but systematically increas-
ing again until it levels off after 150 revolutions after start-up.
This behavior is quite insensitive for the initial conditions as can
be appreciated from Fig. 15: in addition to the simulation starting
from zero flow and zero network, also simulations starting from
zero flow and fully developed network, and fully developed New-
tonian flow (with viscosity 1.,) were preformed, showing similar
long-time behavior. What happens in the slow part of the flow’s
development (between 50 and 150 revolutions) is a slow build-up
of the network in the upper part of the tank which gradually pushes
the impeller stream down until the liquids only recirculates under-
neath the impeller, see Fig. 14 (lower three panels). This is the steady
state as also identified in Figs. 12 and 13.

5.2. Quasi steady-state flow

In order to compare the different stirred tank cases in a more
quantitative manner, profiles of the kinetic energy contained in the
velocity fluctuations u; (turbulent and deterministic due to impeller
rotation) k = (1/2)uju}, and time-averaged apparent viscosity have
been determined, see Fig. 16. A few qualitative observations made
above are confirmed by these profiles. In the first place we note
the small difference between the flow at Db=1 and Db=0. Both the
viscosity and kinetic energy profiles show strong resemblance. The
conclusion is that a thixotropic liquid with a network time scale of
the same order of magnitude as the time needed for one impeller

revolutions effectively behaves as a time-independent liquid. In the
second place, the profiles show that in all cases considered velocity
fluctuations (as expressed in kinetic energy) are confined to the
impeller region, and the liquid stream emerging from the impeller.
In the rest of the tank fluctuation levels are negligible (note the
logarithmic scale of the k-profiles). In the third place there is the
sharp division between an active (underneath the impeller) and an
inactive volume if Db =10.

6. Summary and outlook

In this paper a procedure for flow simulations involving vis-
cous thixotropic liquids has been outlined. Thixotropy enters via
a scalar quantity A that represents the level of integrity of a struc-
tural network in the liquid. A highly developed network (A close to
1) implies high viscosity, A close to zero implies low viscosity. The
network can be given a characteristic time to build-up, and gets
disintegrated due to fluid deformation. The simulation procedure
isbased on the lattice-Boltzmann method for solving the flow equa-
tions, and an explicit finite volume method for solving the transport
equation in A. It is numerically very efficient and therefore allows
for highly resolved simulations that we use to study flows in com-
plexly shaped confinements at relatively high Reynolds numbers
(transitional and turbulent flows).

The simulation method has been verified by applying it to three
benchmark cases: simple shear flow, planar Poiseuille flow, and
lid-driven cavity flow. In the former two cases very good agree-
ment between numerical results and (semi-) analytical solutions
has been obtained. The lid-driven cavity case highlights the inter-
esting interactions between flow time scales (circulation time in
this case), and time scales related to thixotropy; also in steady flows
the time scale of the liquid matters.

The full potential of the algorithms has been utilized by per-
forming direct numerical simulations of the flow in a mixing tank
in the laminar and transitional regime with a focus of the role
of the Deborah number (the ratio of the liquid time scale and
impeller revolution period). A high Deborah number (Db=100 in
this paper) results in an almost uniform distribution of the network
parameter in the mixing tank. If Db =1, the thixotropic liquid effec-
tively behaves as a time-independent liquid and develops (with the
steady-state rheology as chosen here) flow structures reminiscent
of Bingham liquids in agitated tanks. The case with Db=10 shows
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peculiar behavior. Its transient has two time scales of which the
faster can be directly traced back to the time scale of the liquid. The
slower has to be due to an intricate interaction between flow condi-
tions and liquid properties. The global quasi-steady flow structure
shows a sharp distinction between an active part underneath the
impeller, and an inactive part above. In practical situations such
behavior would be highly undesirable since it leaves a large part
of the tank’s volume (and mixing capacity) unused. The simula-
tion results call for experimental work on similar flow systems and
liquids.

The simulations presented here were run in sequential mode.
The procedure, however, can be trivially extended to allow for
computationally very efficient parallel simulation so that higher
resolution and/or computation speed can be achieved.

The work presented is mainly motivated by the challenges
posted by processing waste streams in oil sands processing (tail-
ings). We plan to perform simulations of dense solid-liquid
mixtures with direct resolution of the solid-liquid interfaces, as
to predict mobility of solid particles in thixotropic liquids. The
lattice-Boltzmann method allows for such simulations as has been
demonstrated for solids in Newtonian liquids [28]. The results with
thixotropic liquids could provide useful insights in the consistency
of tailings which is important for land reclamation at the end of the
oil sands production cycle.
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