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We describe a method for the direct simulation of high-solids-volume-fraction (up to 45%) suspensions of
non-spherical rigid particles that are non-colloidal and slightly denser than the interstitial fluid. The lat-
tice-Boltzmann method is used to solve for the flow of the interstitial Newtonian fluid, and the immersed
boundary method is used to enforce a no-slip boundary condition at the surface of each particle. The sur-
face points for the immersed boundary method are also employed for collision handling by applying
repulsive forces between the surface points of nearby particles. We also discuss methods for integrating
the equations of particle motion at low density ratios and propose a method with improved accuracy. The
methods are used to simulate rigid particles shaped like red blood cells. We report on the effect of the
solids volume fraction on the sedimentation rate using a Richardson-Zaki model, and we describe the ori-
entation of the particles during sedimentation. The particles settle in a preferentially vertical orientation
at terminal particle Reynolds numbers near one. We compare a simulation at a 35% solids volume fraction
with typical erythrocyte sedimentation rates, a common blood test. We find an order of magnitude lower
sedimentation rate than the value for healthy adults. The discrepancy is attributed to the omission of
agglomeration-inducing inter-cellular forces and the treatment of the red blood cells as rigid particles

in the simulations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recent research has studied the behavior of dense suspensions
of sedimenting or fluidized spheres. For example, planar instabili-
ties during fluidization were simulated by Derksen and Sundaresan
(2007). Sedimentation of spheres in non-Newtonian fluids has also
been studied (Derksen and Shardt, 2010). Since real particles are
often non-spherical, it is interesting to study the impact of the par-
ticle shape on the flow behavior of dense suspensions. For example,
slender rods assume a preferential orientation as they sediment
(Herzhaft et al., 1996).

Literature on the sedimentation and fluidization of non-spheri-
cal particles is not common. Richardson and Zaki (1954) presented
data for high Reynolds number sedimentation of disks and other
shapes in turbulent flow (Re > 2000). Recently, Fonseca and Herr-
mann (2004) simulated oblate ellipsoids at Reynolds numbers of
0.04 and 7 with solids volume fractions up to 20%. He et al.
(2010) presented experimental data for sedimenting disks of colloi-
dal size (size at which Brownian motion becomes important) at
Re ~ 1077 with solids volume fractions up to 20%. Whalley and
Mullins (1992) studied orientation effects in colloidal clay disks
undergoing centrifugation. We simulate non-colloidal non-
spherical particles shaped as red blood cells (RBCs) sedimenting
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at Reynolds numbers around one and high solids volume fractions
(30-45%).

Simulations of non-spherical particles could be applied to vari-
ous systems. Simulations of RBC sedimentation could provide in-
sight into the rheology and settling behavior of blood and allow
for comparison with data from erythrocyte sedimentation rate
(ESR) diagnostic tests. In industrial applications, fluidized or sedi-
menting particles are rarely spherical, but simulations commonly
use spherical particles for simplicity. This simplification is also
used to study erosion in rivers and sea beds, crystallization pro-
cesses, and slurry pipeline transport. The sedimentation of non-
spherical particles is also relevant to the design of drilling muds
in the petroleum industry (Whalley and Mullins, 1992; Peden
and Luo, 1987). Simulations of non-spherical particles would allow
the effects of non-sphericity to be studied in these systems.

An important challenge in simulations of non-spherical parti-
cles (specifically in dense suspensions) is the efficient handling of
collisions. In the immersed boundary method for imposing a
no-slip boundary condition at the surface of each particle, evenly
distributed surface points are required. In this paper, we use these
points to handle collisions; we define repulsive forces between
surface points for overlap prevention and momentum exchange.

This paper is organized as follows: We first describe the flow
solver, the stability and accuracy of particle motion integration
methods at low density ratios, and the forcing scheme for collision
handling. Next, we describe benchmark simulations of single


http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.06.007
mailto:shardt@ualberta.ca
mailto:jos@ualberta.ca
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.06.007
http://www.sciencedirect.com/science/journal/03019322
http://www.elsevier.com/locate/ijmulflow

26 O. Shardt, ].J. Derksen/International Journal of Multiphase Flow 47 (2012) 25-36

particles. We then study dense suspensions and the effect of the
solids volume fraction on the settling rate. We also investigate
the orientation of the particles in the settling suspension. We then
briefly compare a simulation with data for human blood and pro-
vide concluding remarks.

2. Simulation methods
2.1. Fluid flow and boundary conditions

As in previous simulations of the sedimentation of dense sus-
pensions of solid spheres (ten Cate et al., 2002; Derksen and Sun-
daresan, 2007), we use the lattice Boltzmann method to solve for
the flow of the fluid. The specific scheme employed is that of Som-
ers (1993). It uses a regular cubic lattice, whose spacing is used as
the length unit. We also take the time interval of a time step to be
one. These reference scales define lattice units (l.u.) that are used
for specifying quantities in the simulations. The domain is fully
periodic, and a body force is applied to ensure that the forces acting
on the domain are balanced (Derksen and Sundaresan, 2007). The
no-slip boundary condition at the surface of each particle is en-
forced by using an immersed boundary method (Goldstein et al.,
1993). With this method, body forces are applied to the fluid at
the lattice nodes adjacent to uniformly distributed Lagrangian
tracking points on the surface of each particle. These body forces
cause the fluid velocity to match the velocity of the particle sur-
face. The body forces can also be used to calculate the forces and
torques acting on the solid particles, as described in Section 2.2.
However, the inside of each particle contains fluid, and the effect
of the force on the internal fluid mass and particle mass must be
considered. This will be described in Section 2.2.1.

To simulate non-spherical particles using the immersed bound-
ary method, we use surface points that are distributed uniformly
over the surface of the particles. For spheres, explicit formulae
are available to transform a pair of uniform random numbers each
from the interval [0, 1] to points on the surface of a sphere (Arndt,
2008). For an arbitrary surface, the probability of placing a point in
any region must be the fraction of the total area in that region. In
this work, we consider axially symmetric non-spherical particles
generated by the revolution of the profile z(r) about the z-axis,
where r is the radial distance from the z-axis. We employ a numer-
ical adaptation of the method described by Arndt (2008) to ran-
domly distribute the surface points. For each surface point, we
obtain its angular position 6 as a random number from [0,27].
The probability distribution of the radial position r € [0, R] is

P(0<r<r0):%/0rodA (1)

for all o € [0, R], where A is the surface area of the particle, and R is
the radius. The integral was evaluated numerically to obtain the
probability of selecting a radial distance r from a finite number of
subintervals of [0,R]. The method was used to place 3509 surface
points (four points per square of width equal to one lattice spacing)
on the surface of a red blood cell described using z(r) according to
Evans and Fung (1972), see Eq. (31), with a radius R= 10 lL.u. and
the other parameters scaled accordingly. Surface points were re-
jected if they were closer than 0.3 to another surface point to ensure
satisfactorily even spacing between the points. The surface points
and the surface outward normal vectors at these points are shown
in Fig. 1. This reference set of surface point positions is stored in
memory. In each time step of the simulation algorithm, the loca-
tions of the surface points for each particle are determined by trans-
forming the reference points after the unit quaternion specifying
the orientation of each particle has been updated (as described in
Section 2.2.2). To speed up the rotational component of this affine

transformation, quaternion multiplication is not used; instead, the
rotation matrix is determined using Eq. (10), and matrix multiplica-
tion is used to rotate each surface point from the reference position.
The gain in speed arises from the fact that only one computation of
the rotation matrix is required for the 3509 surface points and 3509
normals on each particle.

2.2. Particle motion

We consider the motion of rigid particles each of which occu-
pies a volume V and has a surface S =0V inside a fluid.

2.2.1. Linear motion

The translational motion of a solid particle in a fluid is governed
by the momentum balance (Feng and Michaelides, 2009)

do - i,

AS ]é TdS + (ps - pf)Vg (2)
where 7 is the velocity of the centre of mass, g is the gravitational
acceleration, and p is the density. The subscript “s” denotes solid;
“f" denotes fluid. Numerical evaluation of the traction 7 can be elim-
inated by considering the momentum balance for the internal fluid
(Feng and Michaelides, 2009):

. 7
fdsz/ av + p,vEY 3
7{ [ Fav+pv G 3)

Heref is the external force acting on the particle and internal fluid,
and in this case it is due to the immersed boundary method. Since
the effect of applying forces to the internal fluid of the particle is gen-
erally small (Feng and Michaelides, 2009), the volume integral re-
duces to being an integral over the volume of a thin shell near the
surface because the force is zero in the interior. Substitution of Eq.
(3)into Eq. (2) provides the equation for the velocity of each particle:

(,oS - pf>vccll—1t7 = /Vfdv + (ps - pf>V§ (4)

The numerical integration of this equation is described in Sec-
tion 2.2.4. For the split-derivative integration methods that will
be described, it is convenient to leave the difference on the left
in an expanded form (as in Feng and Michaelides (2009)) and sim-
plify to obtain:

do do 1 / 2 o
Yo —or=—+ [ fdV+(y -1 5
Vde T de T pv v+ (-1 (5)
where 7 is the density ratio p,/p;.

2.2.2. Rotational motion

The rotational motion of a particle is governed by

doo - . -

IE_M—wx(Icu) (6)
where the angular velocity ¢ and applied torque M are relative to a
body-fixed reference frame. The inertia tensor I is constant and
diagonal since the axes of the body-fixed coordinate system are
chosen to match the principal axes of the particle. An analysis that
is similar to the analysis for linear motion can be used to obtain the
equation governing the angular velocity of each particle (Feng and
Michaelides, 2009):

d(z) dd) -1 i — — ra — —
plge—plgr = pS | (=% x fdv - (ps - pf)w x (1))

v
(7)

Since the force f and (¥ — %), where %, is the position of the cen-
tre of mass, are in the lattice reference frame, the inverse of the
rotation matrix S, which is the transpose of S, is required to trans-
form the torque into body-fixed coordinates. The numerical inte-
gration of this equation is described in Section 2.2.4.
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Fig. 1. The shape of a red blood cell with R = 10 l.u. and 3509 surface points and normal vectors (left) and dimensions and profile of a red blood cell at rest (right).

The orientation of each particle is expressed using a unit quater-
nion q = (qq, §) with scalar component qo and vector component
G = (q4,9>,q5). Rotation of the vector X to ¥ by an angle 0 about
the axis # (a unit vector) can be achieved by the quaternion multi-
plication (Schwab, 2002)

X =qo(0,X)0q (8)
where

= coslei/sinlﬁ 9
q={cos50.vsin5 ®)

and g = (qy, —q). By expanding Eq. (8), the rotation can be expressed
in matrix form as ¥ = SX, where S is (Schwab, 2002):

1-2(63+a3) 2(q102 — do93)  2(4195 + qod2)
S=12(qaq1 +q0ds) 1-(q7+d3) 2(q205 — qodhr) (10)
2(q3G1 — qodz) 2(q3G2 +qoq1) 1 -2(a3 +a3)

If X is the position of a point in body-fixed coordinates on an ob-
ject with orientation given by g, then X' is the position of that point
in the lattice reference frame, provided that both coordinate sys-
tems share the same origin (otherwise a translation is required).
By differentiation of Eq. (8) with respect to time, the rate of change
of orientation due to an angular velocity @ = (w1, w,, w3) in body
fixed coordinates is (Schwab, 2002):

| .

4=59°(0,0) (1)
This can be written as:

0 —w; —wy —w3][q
W 0 w3 -y | |q
Wy —ws3 0 1 q>
w3 Wy — 0 qs

(12)

The eigenvalues of the matrix in Eq. (12) are purely imaginary,
making explicit Euler integration of Eq. (12) unstable. However, ex-
plicit Euler integration can be used if q is scaled in each time step
to ensure that it remains a unit quaternion. For higher accuracy,
modified Euler integration, a second order Runge-Kutta method,
can be used (Suzuki and Inamuro, 2011). Fourth order Runge-Kutta
integration is conditionally stable for imaginary eigenvalues and
could be used, but it requires more computational operations. An
explicit solution for the quaternion rate of change equation (Eq.
(11)) is available for constant angular velocity (Phillips, 2001),
eliminating the need for a numerical method:

1.
(i1 = qx © €Xp (5 a),At) (13)

Applying the Euler identity for quaternions
exp (X0) = cos 0 + Xsin 0, = (cos 0,Xsin 0,) (14)

where X is any vector, we obtain:

Qo1 = G 0 (cos G,At),d)sin (%At)) (15)

At the time the simulation code was developed, the authors
were not aware of the exact solution, and modified Euler integra-
tion with renormalization was used to solve Eq. (11) (as in Suzuki
and Inamuro (2011)). Evaluating the advantages of the exact solu-
tion is left for future work.

2.2.3. Collision handling

The same surface points required for the immersed boundary
method can be used to apply repulsive forces that prevent overlap
between approaching particles, thereby providing a mechanism for
collision handling. This section describes the choices made regard-
ing the parameters of this collision handling method and the im-
pacts of these parameters on the behavior of colliding particles.

Repulsive forces are applied between all pairs of surface points
that are located within a threshold distance of each other and be-
long to different particles. A linked list is used to speed up the
search for nearby surface points. The repulsive force acts at the po-
sition of the surface point in the direction of the inward normal.
Thus, the direction of the normal at each surface point must be
stored and updated at each time step together with the surface
points. The repulsive force was chosen to vary linearly with the
separation distance. Thus the collisional force acting at a surface
point is:

Fi= Z k(0 — ||% — %) (—u) (16)
[l%=% | <o

where k specifies the strength of the repulsive force, § is the thresh-
old distance, 71; is the outward normal of the surface at the position
X; of the i surface point. Only those j corresponding to surface
points on particles other than the one with the i point are consid-
ered. Due to the random distribution and finite number of surface
points, the method effectively simulates rough surfaces. Conse-
quently, post-collision trajectories of spheres, for example, will de-
pend on their relative orientations despite their symmetry because
of the positioning of surface points along the surface. This is a desir-
able feature when the real surfaces are not perfectly smooth.

The behavior of colliding particles and the effectiveness of the
method depend on several parameters. These are the threshold dis-
tance 4, the distribution of surface points, and the magnitude of the
proportionality factor k. The distance threshold ¢ was fixed at half
the lattice spacing, considering the inherently finite resolution of
the LBM flow solver. The number of surface points must be suffi-
cient to resolve the shape of the particle. Since this condition must
also be met by the surface points for the immersed boundary
method, the same points can be used for the immersed boundary
method and for collision handling. A higher surface point density
is expected to reduce the roughness of the surfaces. Several test
simulations with multiple colliding spheres arranged horizontally
showed insignificant vertical deviation until approximately five
collisions. The number of surface points had to be increased by a
factor of eight to raise this number of collisions to about ten. This
large number of surface points increased the execution time signif-
icantly. The same number of surface points was therefore used for
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Fig. 2. Gap width as a function of time during the collision between two particles
under several repulsive force strengths expressed as fractions of kg, (Eq. (17)). The
dotted horizontal line shows the threshold distance § = 0.5.

the immersed boundary method and for collision handling. As
illustrated in Fig. 1, 3509 points were used on the RBC surface, cor-
responding to a typical spacing of 0.5 L.u. (0.05R) between surface
points. This number of surface points provided sufficiently smooth
collisions and a reasonable execution time on modern hardware.

To determine the required strength of the repulsive force field,
we can consider the simplified case of two spheres of mass m, each
approaching the midpoint between them at a speed u. We suppose
that each sphere has only one surface point located at the point
nearest the other sphere. To determine the force field strength re-
quired to stop the particles over a distance §, we can consider an
energy balance between the initial kinetic energy of the spheres
and the potential energy stored when the particles have stopped.
As a result, the minimum field strength for a single pair of surface
points kg, is:

ke =2 (17)

When the particles are immersed in fluid, the required force in-
creases due to the mass of fluid that moves with the particles and
decreases due to lubrication forces in the gap between the particles.
Though Eq. (17) does not account for these effects, we use Eq. (17)
as a guide for selecting k in simulations with fluid. In dry simula-
tions we consider the fact that several pairs of surface points be-
come active as two particles collide. As a result, the minimum
spring strength that is required to stop particles with many surface
points is lower than k. Fig. 2 shows the separation distance as a
function of time between two particles shaped as RBCs involved
in a head-on collision (without fluid). Several fractions of k, were
considered. The initial speed of the particles was 0.1 length units
per time step. It can be seen that the minimum field strength (k
in Eq. (16)) required to prevent overlap is slightly higher than 5%
of ksp. It is also evident that reducing the strength of the forcing re-
sults in “softer” collisions. The choice of maximum velocity u in LB
simulations is based on the maximum expected flow velocity,
which must be limited to ensure that incompressible flow is simu-
lated. A field strength k equal to 0.15 ks, for a maximum velocity of
0.1 (u in Eq. (17)) was used in the dense suspension simulations.
The factor of 0.15 was chosen because it is higher than the mini-
mum required to prevent overlap (0.05), and energy conservation
is good, as is discussed in Section 2.2.5. Lubrication forces or other
attractive and repulsive surface forces were not implemented in the
present simulations but could be added to the current framework.

Sedimentation simulations of spheres involve a calibration step
to account for the discretization of the interface with a finite num-
ber of surface points and the interpolation of the immersed bound-
ary force from the surface points to the lattice nodes. The need for a
viscosity-dependent calibration was shown by Ladd (1994), and a

method for performing such a calibration is described in ten Cate
et al. (2002) and Derksen and Sundaresan (2007). Such a calibra-
tion to determine the effective size of the non-spherical particles
was not used for the analyses that follow due to the lack of an
accurate drag force model with which the simulations could be cal-
ibrated. For spheres, the drag force on a periodic array of spheres is
used (Sangani and Acrivos, 1982). We therefore estimate (based on
e.g. ten Cate et al. (2002)) an upper bound for the error in the par-
ticle radii of +0.51.u. When R = 10, this corresponds to a 5% error in
the radius, a 10% error in the surface area, and a 15% error in the
volume of each particle and therefore the solids volume fraction.
We keep this error estimate in mind when analyzing the sedimen-
tation results.

2.2.4. Stability at low density ratios
As the solid density approaches the fluid density, the integra-
tion of Eqgs. (4) and (7) becomes difficult because the difference
on the left side approaches zero. To analyze the stability and accu-
racy of integration methods for these equations, we consider the
model problem:
-0 =y (18)
To apply the subsequent stability and accuracy analysis to Eq.
(5), we can linearize Eq. (5) and find that y is related to a compo-
nent of the velocity and y is the density ratio. The (positive real)
parameter / is given by

1 OF

=
p;V oy

(19)
where F is the integral over V of the component of f that is in the
same direction as the velocity component chosen for y. The quantity
% is negative because F is a drag force: its magnitude increases as
the velocity increases and it acts in the direction that is opposite
to the particle velocity. The analysis is restricted to y > 1; otherwise
the solution to Eq. (18) grows exponentially. We do not consider the
forcing term (y — 1)g since the stability of a differential equation is
generally determined by the eigenvalues and not the source terms.
With explicit Euler integration, Eq. (5) becomes:

- o 1 2 o
D1 = O+ 7/fdv+g At (20)
' <(V - DpV Jy
The explicit Euler discretization of the model problem is:
JAL
Yir1 = <1 —yj)J’k (21)
8 rd
7t %%Q?'/
-7
57
6t oS\ A
A e
Tl & ..
5t Nge \ . W e e
g NGRS
% oS
At 4 e
-‘.. \‘
) Central Difference
| Stable |
e e
0 ." 1 1
1 2 3 4
y=b
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Fig. 3. Stability regions of the three integration methods.
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The condition for stability is:

At <2(y=1) (22)

Feng and Michaelides (2009) proposed a method for achieving
stability at low density ratios that involves evaluating one of the
derivatives in Eq. (5) at the previous time step:
3)igoe (G [ (1-3)8)
— )V — = Dp_1 + dv+(1—-— At 23
y)"v”(psvvf 7)% @)
We call such methods that involve the evaluation of the two

derivatives in different ways split-derivative methods. Applying
this approach to the model system, Eq. (18), yields

I_)Ichl = (1 +

1 1 )
=(1+ 7) —=Yi1 — = YiAt 24
Yiert < 7 Yie VYk 1 ,VYk (24)
The condition for stability is:
At <2(y+1) (25)

Instead of using two one-sided finite differences, one of the dif-
ferences can be a central difference. With such a discretization, sta-
bility at low density ratios is also achieved. Using a central
difference for the first derivative term on the left of Eq. (5) and a
backward difference for the second provides:

(Y Bl fo (- o

1 75 171(,1 +¥?_/‘k+2
With this method, the discrete form of the model problem is

2 2 2

Y1 = <1 - r)J’kq + =Y — - AL (27)
) 7 y

and the stability criterion is

At < 2 (28)

Interestingly, stability does not depend on the density ratio y.

The stability regions for the three methods are compared in
Fig. 3. The benefits of the two split-derivative methods are clear:
they remain stable at low y unlike the explicit Euler method.
Though the present stability analysis cannot be used for y < 1,

29

the split-derivative methods are stable for 7 < 1. Feng and Michae-
lides (2009) presented a simulation of a rising light particle, and a
test simulation showed that the same is possible with the central
difference split-derivative method.

The accuracy of the three methods is compared in Fig. 4 for two
values of 1 (0.01 and 0.3) and three values of y (1.1, 1.6, and 2.5).
The time step was At=1. Explicit Euler integration is unstable
for 2=0.3 and y = 1.1; it is therefore not shown. It can be seen that
the central difference split-derivative method is generally more
accurate than the method of Feng and Michaelides (2009) for the
model problem, considering the lower oscillation amplitudes. For
the lower value of 4, explicit Euler integration is the most accurate;
the two split-derivative methods oscillate when y = 1.1. The three
methods provide very close solutions for y=1.6 and y = 2.5.

A representative value for 4 was obtained by simulating the set-
tling of a single sphere (diameter D = 14) in a fully periodic cubic
domain (64%) with a fluid of kinematic viscosity 0.01 and density
8.0, and a gravitational acceleration of 5 x 107>, These values are
given in lattice units, with the lattice spacing and time step both
being one. The sphere had 3832 uniformly-distributed surface
points. The initial velocity was zero, and the velocity at the previ-
ous time step was also initialized to zero. Only the vertical (parallel
to gravity) velocity was integrated; the other two translational
velocities and the three angular velocities were fixed at zero. The
simulations were run using the Feng and Michaelides (2009) meth-
od and the central difference method at density ratios of 1.1, 1.6,
and 2.5. Explicit Euler integration was only stable for y = 2.5. The
seven simulations provided a value of about 0.3 for /, obtained
by using Eq. (19) and estimating the slope from a plot of the force
as a function of velocity. Though the velocity evolution showed
slightly less oscillation with the central difference method, the
force showed more oscillation. The increased oscillation in the
force applied on the particle may be due to the immersed boundary
method in which the force is proportional to changes in velocity. It
would therefore be interesting to test the method with a different
immersed boundary condition implementation such as direct forc-
ing (Wang et al., 2008). Overall, for the model problem, we see that
as /4 decreases and ) increases, the methods converge to the exact

1 1
X « Explicit Euler « Explicit Euler « Explicit Euler
0.8 0 Feng and Michaelides, 2009 09t O Feng and Michaelides, 2009 o Feng and Michaelides, 2009
A 4 Central Difference 4 Central Difference 09 r 4 Central Difference
08 f Exact Exact
0.7 F 08 ¢
06 07 |
05 F
04 b 06
— e 03 A : : : 05 : : : :
0o 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5
Normalized Time, £2/(y-1) Normalized Time, £4/(y-1) Normalized Time, t4/(y-1)
12 ¢ 1 1
1® o Feng and Michaelides, 2009 *  Explicit Euler Explicit Euler
0.8 ) oo 0.8 F\o 0 Feng and Michaelides, 2009 0.8 F 0 Feng and Michaelides, 2009
06 3 & Central Difference 4 Central Difference [ A Central Difference
04 06 F — Exact 0.6 L — Exact
0.2 o\ {
E 04 04
A [
02F ° 02F &
2 [ 9
0F A 0F
F o o 0 :
1.2 Bun 2 : : 4 2 2 L L 02 - 807 . > . - - 02 Ln - - - . . . - -
0 20 40 60 80 100 120 140 160 180 200 0 1 2 3 4 5 6 7 8 910 0O 1 2 3 4 5 6 7 8 910

Normalized Time, t4/(y-1)

Normalized Time, 72/(y-1)

Normalized Time, 4/(y-1)

Fig. 4. Numerical and exact solutions of the model problem for y = 1.1 (left), 1.6 (centre), and 2.5 (right) and 4 = 0.01 (top) and 0.3 (bottom).
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Fig. 5. Kinetic energy relative to the initial kinetic energy as a function of time for
several repulsive force strengths expressed as fractions of kg,.

solution. With 2= 0.3 and y = 1.1, significant oscillation is evident
with the split-derivative methods, but explicit Euler integration
is unstable. Comparing explicit Euler integration with the split-
derivative methods, the gain in stability achieved by using a
split-derivative method is offset by a loss of accuracy. Comparing
the two split-derivative methods, the central difference method
has higher accuracy but a smaller stability region. The numerical
results are consistent with the previously given stability criteria.

The simulations of a single settling sphere showed that the esti-
mated value of A rapidly decreases by several orders of magnitude
after about 10 time steps. Therefore, it may be possible to use the
more stable but less accurate methods only at the beginning and
use a higher accuracy method once /. decreases sufficiently. How-
ever, with multiple particles in a dense suspension, sudden
changes in velocity due to collisions can temporarily increase /,
meaning that a stable method must be used always. If explicit Eu-
ler integration were used, the velocity integration would become
unstable initially or after a collision. Thus, the gain in stability
achieved by using a split-derivative method is very useful particu-
larly in simulations of dense suspensions; the loss of accuracy due
to using such a method only occurs during the few time steps
when / is high. The single particle sedimentation simulations
showed nearly identical results for the velocity as a function of
time with both split-derivative methods: after three time steps,
the relative difference is less than 10%, drops below 0.1% after
200 time steps, and decreases to 0.01% after 800 time steps. For
the case that was stable with explicit Euler integration (y = 2.5),
the two split-derivative methods were within 10% of the explicit
Euler solution after three time steps. While the relative error of
the Feng and Michaelides (2009) method compared with explicit
Euler integration fell to 0.1% after about 200 time steps, the central
difference method reached 0.1% after about 100 time steps. This is
consistent with Fig. 4, which shows that the central difference
method is slightly more accurate.

Due to the improved accuracy of the central difference split-
derivative method, this method was used for the simulations of
particles with low density ratios. The discretization of the linear
velocity is given by Eq. (26); the discretized form of the angular
velocity equation (Eq. (7)) is:

. . 2 . et [ oz
D1 = Dy +§(wk—wk4)+2AtI 's 1/(x—xc) x fdv
JV
- 2At<l - %) Iy x (Idy) (29)

To summarize the numerical methods for low density ratio sim-
ulations, the position of the particles is updated with an explicit
Euler step using the velocity, the orientation is updated using mod-
ified Euler integration of Eq. (12), the translational velocity is up-
dated according to Eq. (26), and the angular velocity is updated

according to Eq. (29). The total forces and torques acting on each
particle are determined using the collisional and hydrodynamic
forces at each surface point.

2.2.5. Energy conservation

Several simulations were used to assess energy conservation
with the previously described collision handling method. Fig. 5
shows the total kinetic energy of the particles relative to the initial
kinetic energy. The kinetic energy was computed as the sum over
all particles of the translational and rotational kinetic energies:

Eror = %Z [mili?* + @] 16] (30)
i

The simulations involved 300 randomly-placed RBC-shaped
particles with a diameter D of 20 and a density of 4.0 in a periodic
1323 domain for 5000 time steps. The solids volume fraction was
20.5%. The strength of the force field was based on a velocity of
0.05 and a threshold distance of 0.5. The particles were given ran-
dom initial translational and rotational velocities. Each component
of the translational velocity was chosen from [-0.0125,0.0125],
corresponding to a maximum translational speed u,.x of 0.022.
The components of the angular velocity were chosen from
[-0.00125,0.00125], for a maximum angular speed of 0.0022.
The maximum initial velocity of a point on the surface of a particle
was therefore 0.044. Explicit Euler integration was used for the
positions and velocities of the particles. Modified Euler integration
with renormalization was used for the quaternions.

It can be seen that the kinetic energy of the particles increases
gradually with time, particularly with stronger repulsive forces.
We attribute this to the increase in integration error for the explicit
Euler method with increasing spring stiffness. For simulations with
a force strength equal to or less than the minimum required
strength, ksp, the kinetic energy increases by 10% over 5000 time
steps, which corresponds to 5.5D[umax. For a force strength of
0.05ks,, the energy increase is only about 2%. Increasing the stiff-
ness of the spring-like repulsive force in general increases the rate
of kinetic energy generation. In these “dry” simulations, there was
no interstitial fluid. In simulations with fluid, it is expected that the
fluid would dissipate the energy that is generated. Furthermore,
hydrodynamic forces would reduce the relative velocities of
approaching particles. One final feature of Fig. 5 is noteworthy:
the regular spikes in the kinetic energy are due to collisions which
temporarily convert kinetic energy to potential energy in the
repulsive force field between surface points.

Considering the energy conservation results and collision tra-
jectories, the simulations of dense particulate suspensions were
performed using a maximum speed of 0.1 and a force strength of
0.15ksp. At this force strength, the collisions are reasonably rigid
(Fig. 2), and energy conservation is good (less than a 10% increase
after 5000 time steps in the dry simulation).

3. Simulation results and discussion

The previously described methods were first used to simulate
single rigid RBC-shaped particles and then dense suspensions of ri-
gid RBCs. Though we use RBCs as an example of a non-spherical
particle and do not run simulations with parameters that match
sedimenting blood exactly, the properties of blood are given here
as they are useful for evaluating the differences between the sim-
ulations and erythrocyte sedimentation tests. Furthermore, the
choices of solids volume fraction and density ratio were inspired
by the properties of blood.

Blood is primarily a suspension of red blood cells in a Newto-
nian fluid called the plasma. Other cells, such as white blood cells,
are present in smaller quantities: there is approximately one white
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blood cell per 600 red blood cells (Elad and Einav, 2003). A typical
volume fraction of red blood cells, the hematocrit, is 45%. The dy-
namic viscosity of the plasma ranges between 0.0011 and
0.0016 Pa.s; the density is 1.03 g/cm> (Elad and Einav, 2003). The
midpoint of the viscosity range was used to obtain an estimated
kinematic viscosity of 1.31 x 10~® m?/s. Red blood cells are only
slightly denser than the plasma, having a density of 1.10 g/cm®,
resulting in a density ratio of 1.07 (Elad and Einav, 2003). The pro-
file shape of red blood cells at rest can be described using (Evans
and Fung, 1972):

z(r):%,/l - (%)2<C0+C2(§)2+C4(%)4) 3D

where R is 3.91 um, Gy is 0.81 um, G, is 7.83 um, and Cy4 is
—4.39 um. The (major) diameter D = 2R is 7.82 pm and was chosen
to span 20 lattice spacings, thereby fixing the lattice length scale at
one lattice spacing per 0.391 pm. The moments of inertia about the
principal axes were obtained by symbolic integration. The shape
was illustrated in Fig. 1. With R=101Lu., the surface area is
877 L.u.?, and the volume is 1574 l.u.3. A commonly-used property
of non-spherical particles that is relevant to studies of sedimenta-
tion is the sphericity S, given by
As

S= A (32)
where A is the surface area of a sphere with the same volume as the
particle, and A, is the surface area of the particle. For the RBC shape,
the sphericity is 0.75.

3.1. Sedimentation of one particle

The use of the LBM and immersed boundary method described
in this paper has been evaluated elsewhere for spherical particles
(ten Cate et al., 2002; Derksen and Sundaresan, 2007). After cali-
brating the particle diameter, excellent quantitative agreement
was obtained. Therefore only simulations with non-spherical parti-
cles will be discussed in this paper. Simulations of one settling
RBC-shaped particle were used to assess the immersed boundary
and motion integration methods for non-spherical particles. Two
different Reynolds numbers were considered. In both simulations,
the particle diameter D was 20, the fully periodic domain was
320 x 64 x 64 (16D x 3.2D x 3.2D; first dimension parallel to
gravity), and the density ratio y was 1.05. In these and all further
sedimentation simulations, a body force was applied to the fluid
to ensure that the forces on the simulated domain are balanced
(Derksen and Sundaresan, 2007). The terminal Reynolds number
was manipulated by changing the viscosity of the fluid and the
gravitational acceleration while ensuring that the terminal speed
remained approximately the same and did not exceed 0.01 in lat-
tice units. Limiting the speed ensures that incompressible flow is
simulated.

A terminal Reynolds number (Re, =u.,D/v) of 7.3 was ob-
tained for the terminal velocity (u.,) of 0.0037 with a viscosity of
0.01 and a gravitational acceleration of 1.8 x 10~* (dimensional
quantities without specified units are in lattice units). With a vis-
cosity of 0.1 and an acceleration of 1.8 x 1073, the terminal speed
was 0.0058, corresponding to a Reynolds number of 1.2. The termi-
nal velocities are relative to a stationary observer rather than the
fluid. With only one particle, the required upward force to main-
tain an overall force balance is small and produces a low (more
than an order of magnitude lower than the particle velocity) net
upward flow rate that was therefore neglected. The speed of the
upward flow is included in the analysis of the dense suspension
sedimentation simulations described below. Fig. 6 shows a se-
quence of cross sections of the flow field. The first image in each

Re.,.=1.2

Re..=7.3

Fig. 6. Sedimentation of a single particle at a Reynolds number of 1.2 (upper
sequence) and 7.3 (bottom sequence) with time progressing from left to right.

sequence shows the initial condition; the final image shows the
steady-state condition. Fig. 7 shows the particle Reynolds number
Re as a function of time. Both simulations ran for 100,000 time
steps (18.5D/u,, for the higher Reynolds number and 29D/u,, for
the lower Reynolds number). Fig. 8 shows the angular velocity
about the axis out of the page (Fig. 6).

At the lower Reynolds number of 1.2, the particle settles in a
vertical orientation which minimizes the projected surface area
perpendicular to the flow direction. At the higher Reynolds number
(7.3), the particle flips to a horizontal orientation with maximal
projected area. This is consistent with the ranges given by Becker
(1959). The RBC-shaped particle should be stable in any orienta-
tion for Re,, < 6.6. For 6.6 < Re_, < 240, the particles are expected
to settle in the horizontal orientation. At higher Reynolds numbers,
the particles would exhibit wobbling and rotation. Thus, the simu-
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Fig. 8. Angular velocity as a function of time about the axis out of the page in Fig. 6.

lation results agree with the expected behavior: the transition
from vertical to horizontal settling occurs over the expected Rey-
nolds number range. The existence of a transition regime between
1.2 and 7.3 is also consistent with work on disk sedimentation in
non-Newtonian fluids by Walker and Mayes (1975) and by Peden
and Luo (1987).

We can also compare the drag coefficients obtained from the
simulations with literature values. We use the drag coefficient Cp
defined as

2Fp

CD = 7pfu§cAl

(33)

where Fp is the drag force and A, is the projected area perpendicu-
lar to the flow direction. At steady state, the drag force is balanced
by the net weight (weight minus buoyancy), which leads to:

_28,
- TR’

p) (-1 (34)
where V,, is the volume of the particle. For the horizontal settling
orientation (Re=7.3) the drag coefficient from the simulation is
6.6. Considering the high sphericity and the similarity between
the drag coefficients for spheres and disks settling horizontally at
Re < 10 (Lapple and Shepherd, 1940), we compare the drag coeffi-
cient at Re =7.3 with the value for a sphere, 5.1. We judge this
agreement to be reasonable considering the difference in shape,
the 5% error estimate for the radius, and the finite size and period-
icity of the domain. Due to the periodicity and high aspect ratio
(height over width) of the domain, we are effectively simulating
an infinite horizontal array of disks rather than a single particle in
an infinite domain. The effect of this periodicity is the reason for
using the drag on a cubic array of spheres for the calibration of

LBM simulations of spherical particles. We cannot calibrate arbi-
trarily shaped particles in the same way due to the absence of accu-
rate drag force values for periodic arrays.

3.2. Simulations of dense suspensions

As in simulations of dense suspensions of spheres, a compaction
procedure is required to obtain a random initial distribution of par-
ticles with a high solids fraction. At the start of the compaction
procedure, particles are distributed randomly in a region that is
much larger than the desired final simulation domain. The particles
are given random initial translational and rotational velocities, and
a force field pulls the particles to the centre. The potential energy
of the particles due to the force field must be dissipated so that
the particles eventually stop. This was achieved by reducing the
velocities of the particles by a small fraction in each time step.
The compaction process used to achieve a solids volume fraction
of 45% is illustrated in Fig. 9. Since the solids fraction was higher
than 45% at the end of the initial compaction simulation, the par-
ticle positions and orientations were used in a second simulation.
In this simulation, the particles were given random initial veloci-
ties, they were allowed to fill a larger domain, and were then
“cooled” until they were stationary.

3.2.1. Effect of solids volume fraction

We now consider the fully coupled simulations of dense sus-
pensions and evaluate the effect of the solids volume fraction on
the sedimentation rate and particle orientation. A fluid domain of
320 x 64 x 64 lattice units (or 16D x 3.2D x 3.2D, with the first
dimension parallel to gravity) was used. The system can be charac-
terized with four dimensionless parameters. These are: the solids
volume fraction ¢, the density ratio ), the Reynolds number
Re = u,D/v, and the Froude number Fr = u2 /gD. Four values of
¢ were used: 0.30, 0.35, 0.40, and 0.45. The particle positions and
orientations for the three simulations with ¢ < 45% were obtained
by omitting randomly selected particles from the results of the
compaction procedure that provided ¢ =0.45. The density ratio

BRECTELGTAPIAOFDE ISR RPMORpEi RNG

Fig. 9. Compaction (top) and expansion (bottom, enlarged) simulations used to
achieve a solids volume fraction of 45%.
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Fig. 10. Particle positions and flow field cross-sections after 100,000 time steps for
the simulations with ¢ = 0.45 (left pair) and 0.35 (right pair). The flow field is
emphasized in the right image of each pair by hiding all particles farther than one
particle radius from the cross-section plane.

was fixed at y=1.07. The average particle Reynolds number at
steady state is an output of the simulations. To consider the effect
of gravity without including the settling speed, we use the dimen-
sionless quantity Re?/Fr = gD*/1? instead of the Froude number.
This number depends entirely on input parameters for the simula-
tions. For all four simulations, the kinematic viscosity was 0.01 and
the gravitational acceleration was 1.8 x 107, resulting in
gD?/v2 = 14,400. This value would be achieved, for example, by
1.1 mm diameter particles settling in water with the gravitational
acceleration on Earth. Sample visualizations of the dense suspen-
sion simulations are shown in Fig. 10.

Fig. 11 shows the average settling rate of the particles as a func-
tion of time for the four simulations. The two lower ¢ simulations
ran for 300,000 time steps; the higher ¢ simulations ran for
600,000 time steps. The Reynolds number used to describe the set-
tling rate is based on the average velocity of the particles relative
to the fluid. The average relative velocity of the particles was ob-
tained by first estimating the average upward velocity of the inter-
stitial fluid. The total momentum of the fluid (interstitial and
internal to the particles) was obtained by integrating the velocity
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Fig. 11. Average particle Reynolds number as a function of time for four
simulations at different solids volume fractions.
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Fig. 12. Sedimentation rate (average particle Reynolds number) as a function of the
void fraction 1 — ¢. Both axes are scaled logarithmically.

)

over the entire fluid domain. The average velocity inside each par-
ticle is the velocity of the particle’s centre of mass. By subtracting
the momentum of the internal particle fluid from the total fluid
momentum, we obtain the momentum of the interstitial fluid.
Dividing by the total mass of the interstitial fluid then provides
the average velocity of the interstitial fluid. The average sedimen-
tation rate relative to the fluid is then the sum of the average
downward speed of the particles and the average upward speed
of the interstitial fluid. It can be seen that the particles rapidly
reach a steady settling rate. For the highest solids fraction (¢
=0.45), the approach to steady state occurs the slowest. In all
cases, we see slight fluctuation about an average settling rate that
depends strongly on the solids volume fraction.

The effect of the solids volume fraction on the sedimentation
rate is shown in Fig. 12. The points that are shown were obtained
by averaging the Reynolds numbers in Fig. 11 over the second half
of the simulation time. A Richardson-Zaki (Richardson and Zaki,
1954) model was fit to the data, since this model is commonly used
to analyze suspensions of monodisperse spheres. This model has
the form:

Re = Reo(1 - ¢)" (35)

where Re is the Reynolds number for the sedimentation rate of a
suspension with a solids volume fraction of ¢, Reg is the terminal
Reynolds number of a single particle, and n is a fitted exponent.
The value of n depends on the Reynolds number; for spherical par-
ticles and Re near 1 it is 4.35 (Rowe, 1987; Di Felice, 1999). A linear
least squares fit was used to obtain Reg=18.2 and n=5.77. For a
single sphere under the same conditions Rey is 11.8. The reason
for the higher value of the extrapolated sedimentation rate at infi-

N—————T T T

Average orientation angle, 6

50....I....I....I....

Nondimensional time, ftte./D

Fig. 13. Average particle orientation angle as a function of time for four simulations
at different solids volume fractions.
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(tu,/D = 7.7), and 300,000 time steps (tu.,/D = 11.6) are shown (left to right).

Number of particles

0
0

Number of particles

10 20 30 40 50 60 70 80 90

Orientation angle (°)

0
0

10 20 30 40 50 60 70 80 90

Orientation angle (°)

Number of particles

0
0

10 20 30 40 50 60 70 80 90

Orientation angle (°)

Number of particles

0
0

10 20 30 40 50 60 70 80 90

Orientation angle (°)
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Fig. 16. Sedimentation rate as a function of time (left) for varying gravitational accelerations and the dependence of the average sedimentation rate on the gravitational

acceleration (right).

nite dilution may be the vertical alignment of the particles, which is
described next, that increases the settling rate. The higher exponent
indicates a stronger dependence of the settling rate on the void frac-
tion for RBC shapes when compared with spheres.

3.2.2. Particle orientation during sedimentation

While obtaining the orientation of each particle as a function of
time is difficult in experiments, this data is readily available from
simulations. Fig. 13 shows the average angle of the particles with
respect to the settling direction. The angle 0 is the angle between
the *z axis of the particle shown in Fig. 1 and the settling direction.
It can be seen that the average angle changes by about 10° from the
initial average. After an initial transient lasting about 5D /u.,., which
is significantly longer than the time to reach a steady settling rate,
the average angle fluctuates significantly about an apparently stea-
dy value. As a result, we believe that the simulations have achieved
a steady state in terms of the settling rate and orientation. Consid-
ering the large fluctuations in the average angle, we do not present
results for the effect of ¢ or Re on 0. These fluctuations have a sig-
nificantly higher amplitude for the lowest solids volume fraction
when the particles are free to rotate due to the increased space
around them.

Figs. 14 and 15 show the probability density function of the ori-
entation angle. In Fig. 14, the evolution from the initial, nearly-uni-
form, distribution to the final skewed distribution is shown for the

simulation with ¢ = 0.35. Fig. 15 shows the histograms at the end
of the four simulations. As the solids fraction increases, the extent
of the vertical alignment increases.

4. Comparison with erythrocyte sedimentation rate

Since the shape of the particles, the solids volume fraction
(hematocrit), and the density ratio of the simulations match those
of blood, we briefly compare our results with the sedimentation
rate of blood. The International Council for Standardization in Hae-
matology (ICSH) recommendations for testing the erythrocyte sed-
imentation rate (ESR) state that the hematocrit of a blood sample
should not exceed 35% (International Council for Standardization
in Haematology, 1993). We therefore use the simulation with ¢
=0.35 for comparison.

Due to computational constraints, simulations that match the
value of gD*/v? for sedimenting blood while retaining the same
resolution are not feasible. We therefore attempt to correct for this
difference. For blood sedimenting under normal gravity, gD?/1?2 is
2.7 x 1073, a factor of 5.3 x 10° lower than in the simulations.
However, we recognize that at low Reynolds numbers (creeping
flow) the terminal velocity of a particle depends linearly on the
gravitational acceleration. For a single sphere (e.g. Tilton (2008)),
gD’

2

18Re = (7 = 1)2 (36)
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Provided that the Reynolds number is low (<0.1), we can there-
fore estimate the sedimentation rate under weaker gravity by using
simulations with a higher acceleration. Since the Reynolds number
in the simulation with ¢ = 0.35 is near two and therefore exceeds
0.1, the error in the linearity assumption must be evaluated for Rey-
nolds numbers near 2. We estimate this error to be an underesti-
mate of 20% based on the ratio of the drag coefficient for a sphere
given by Stokes’ law (Eq. (36)) and the drag coefficient obtained
using a correlation for higher Reynolds numbers (Tilton, 2008).
Considering the Richardson-Zaki model for the relationship be-
tween the sedimentation rate of a single particle and a dense sus-
pension, the error in the sedimentation rate of a dense suspension
is also 20%. Several simulations with lower accelerations were per-
formed to examine the effect of the gravitational acceleration on
the sedimentation rate. The results are shown in Fig. 16 and confirm
the expected linear relationship. The range of gravitational acceler-
ations that was feasible to simulate is narrow, but the results indi-
cate that the effect of non-linearity is small. The Reynolds number
corresponding to a typical ESR of 4 mm/h is 6.6 x 10~%. Dividing the
Reynolds number from the simulation with ¢ =0.35 by 5.3 x 10°,
we obtain 2.9 x 1077, or a sedimentation rate of 0.18 mm/h. Based
on the previous error estimate of 20%, the corrected value is
0.21 mm/h. This is about 20 times slower than the value for human
blood. Since the magnitude of the correction for the moderate Rey-
nolds number is small compared with the discrepancy, the assump-
tion of linearity is not the main reason for the difference.

Several aspects of blood physiology are relevant to interpreting
the discrepancy between the simulations and blood tests. The
erythrocyte sedimentation rate varies with age. In men, it ranges
between 3 mm/h at 20 years and 6 mm/h at 55 years. The range is
6-9 mm/h for women at the same ages (Wetteland et al., 1996).
The ESR is known to depend on the hematocrit and plasma viscosity
(Wetteland et al., 1996), as would be expected from a fluid mechan-
ics perspective. The increase in sedimentation rate with age or dis-
ease is due to proteins in the plasma that increase the adhesion
between cells (Wetteland et al., 1996). These proteins are present
in blood at all ages, but attractive inter-particle forces were not in-
cluded in the simulations. While normal cells experience these
agglomerating forces, the simulations provide the sedimentation
rate in the absence of inter-cellular forces. Given that abnormal
sedimentation rates can be as much as an order of magnitude high-
er than normal rates (International Council for Standardization in
Haematology, 1993), it seems plausible that the absence of any
agglomeration-inducing forces could lower the sedimentation rate
by an order of magnitude. The sedimentation rate determined in
the present work could be assessed better by comparing it with
the sedimentation rate of red blood cells in a medium that lacks
the proteins that cause agglomeration. Furthermore, the deforma-
tion of cells (MacMeccan et al., 2009), which was not simulated,
may also alter the sedimentation rate. Other reasons for the dis-
crepancy, which are likely minor, include inaccuracies in com-
pletely matching the conditions of an ESR test, for example the
temperature, variation in plasma viscosity, and the agglomerating
effect of platelets. We also assume a uniform distribution of mass
in the RBCs. In cells, density variations between the outer mem-
brane and the internal fluid, modify the moment of inertia. Further-
more, we do not consider the effect of the Reynolds number on the
average orientation, and therefore the sedimentation rate, when
correcting for the different gravitational acceleration.

5. Conclusions
Simulations of dense suspensions (up to 45% solids volume frac-

tion) of rigid non-spherical particles with low density ratios at
moderate Reynolds numbers (~1) were performed using the lattice

Boltzmann method. Two split-derivative methods, in which the
rates of momentum change of the solid particle and internal fluid
are evaluated using different discretizations, were evaluated for
integrating the motion of particles at low particle over fluid density
ratios. The proposed higher-accuracy model was used in the simu-
lations. The immersed boundary method was used to impose a no-
slip boundary condition on the surface of each particle. Collisions
between particles in the dense suspensions were handled with a
linear spring-like force field applied between the same Lagrangian
points that were used in the immersed boundary method.

The methods were used to simulate rigid particles shaped like
red blood cells. Two simulations of the sedimentation of a single
vertically-oriented particle showed that the particle flips to a hor-
izontal orientation as the terminal Reynolds number increases to
7.3 from 1.2. Simulations at solids volume fractions of 0.30, 0.35,
0.40, and 0.45 were used to study the effect of the solids volume
fraction on the sedimentation rate and average orientation of the
particles. A Richardson-Zaki model fit the simulation data closely.
The cells adopt a preferentially vertical orientation, with the extent
of the orientation increasing with increasing solids volume
fraction.

Due to the similarity of the parameters in the simulations with
those of blood, a simulation was compared with typical values of
the erythrocyte sedimentation rate (ESR) blood test. After correct-
ing for the difference in gravitational acceleration between the
simulations and a blood test, a sedimentation rate of 0.21 mm/h
was obtained. We attribute the difference between this value and
a typical ESR of 3-9 mmy/h to the omission of attractive inter-cellu-
lar forces from the simulations and the treatment of the RBCs as ri-
gid particles. The study of the attractive, agglomeration-inducing
forces and their effects on the sedimentation rate is left for future
work.

While the simulations that were presented used particles
shaped as red blood cells, the computational methods are general
and could be used to investigate many other systems and phenom-
ena, such as fluidized beds, crystallization, slurry transport, drilling
mud, and erosion.
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