Flow induced forces in sphere doublets

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Fluid Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JFM-07-S-0851.R2</td>
</tr>
<tr>
<td>mss type:</td>
<td>Standard</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Derksen, Jos; University of Alberta, Chemical and Materials Engineering</td>
</tr>
<tr>
<td>Keyword:</td>
<td>Suspensions < Complex Fluids, Particle/fluid flows < Multiphase and Particle-laden Flows, Crystallization/solidification < Materials Processing Flows</td>
</tr>
</tbody>
</table>
Flow induced forces in sphere doublets

J.J. Derksen

Chemical & Materials Engineering Department, University of Alberta, Edmonton, Alberta,
T6G 2G6 Canada, jos@ualberta.ca

Submitted to: Journal of Fluid Mechanics, December 2007
Revision submitted: February 2008
Second revision submitted: April 2008

Abstract

Motivated by applications in solids formation and handling processes we numerically investigate the force and torque required for maintaining a fixed contact between two equally sized solid spheres immersed in fluid flow. The direct numerical procedure applied is based on solving the Navier-Stokes equations by means of the lattice-Boltzmann method, with no-slip conditions at the surfaces of the moving spheres. It is validated by means of the analytical results due to Nir & Acrivos (1973) for sphere doublets in creeping flow. Subsequently, doublets are released in turbulent flows. In these cases, the contact force and torque strongly fluctuate, with peak levels much higher than would follow from simple dimensional analysis. The force fluctuation levels have been quantified by a linear relation in the ratio of sphere radius over Kolmogorov length scale.
Introduction

In many processes involving solid particle formation or solids handling, particles have a tendency to stick together. Moisture can form liquid bridges gluing powder particles (Gopalkrishnana et al. 2005). In crystallization processes crystals tend to agglomerate due to the supersaturated environment they are in (Hounslow et al. 2001; Hollander et al. 2001). Suspension polymerization processes go through a “sticky-phase” with significant agglomeration levels (Guerrero-Sanchez et al. 2006). In colloidal systems Van der Waals interactions can induce agglomeration. Also in biological applications (e.g. blood flow) agglomeration is highly relevant (Mody et al. 2005).

Sometimes agglomeration is a wanted phenomenon to effectively grow particles making separation easier, e.g. in cyclone separators (Obermair et al. 2005) or filtration processes. It also is a mechanism that potentially destroys a narrow particle size distribution, and as a result could deteriorate product quality. Much effort goes into preventing or promoting agglomeration, and much effort goes into repairing the harm agglomeration has done (e.g. in grinding and milling process steps, Kwade & Schwedes 2002). Regardless if agglomeration is wanted or unwanted, it is relevant to assess the stability and the integrity of the bond holding the primary particles together. Agglomerates can break as a result of a variety of mechanisms: collisions with other particles or with the internals of a process vessel; dissolution of their bond due to a changing chemical environment; change of particle surface properties. Also the flow of fluid surrounding an agglomerate is a potential destabilizing factor: Velocity gradients induce forces on and in agglomerates that could make them break.

Understanding and modeling breakage as a result of fluid flow is largely based on relatively simple concepts involving estimating shear rates and semi-empirical correlations for breakage statistics. In recent papers on the broader subject of population balance modeling of colloidal dispersions (Soos et al. 2006; Marchisio et al. 2006), the physical descriptions of breakage due to flow date back quite some time (Delichatsios & Probstein 1976; Kusters 1991), and are prone to refinement.
in terms of getting the (statistics of the) hydrodynamic environment of agglomerates right, and in terms of estimating the actual hydrodynamic forces in agglomerates immersed in complex flow.

In turbulent flows, the shear (better: rate-of-strain) experienced by an agglomerate is strongly fluctuating. Given the suspected non-linear coupling between rate-of-strain and breakage probability, working with an average (in time and/or space) or effective rate-of-strain is a critical simplification. Furthermore, agglomerates with sizes comparable to or bigger than the smallest turbulent scales (these typically are non-colloidal but still can be sub millimeter size agglomerates) do not experience homogeneous rate-of-strain. The deformation rate varies over their surface. This certainly influences the forces in (and on) the agglomerate induced by the flow.

With the above in mind it is clear that it is quite impossible to formulate a generic way of estimating the flow induced forces in agglomerates. The parameter space is simply too large. The morphology of the agglomerate, the shape of the primary particles, the material properties of the solid and liquid involved, and the structure of the flow at the scale of the agglomerate all play their role. Focusing on the fluid dynamics, we specifically anticipate complications in case the smallest flow scales are comparable to or smaller than the size of the agglomerate. In this case the flow around the agglomerate is inhomogeneous and cannot be characterized by a single shear rate, or a single rate-of-strain tensor. What can be done, however, is assessing the role of the non-ideal factors in the flow-induced forces in agglomerates. For this I have chosen to first consider the virtually simplest agglomerate possible: two equally sized spheres, rigidly constrained together at their (single) point of contact. The two spheres are touching, they have zero separation. There is sufficient reason for considering this simple case first. It allows us to develop and test a methodology based on numerical simulation of the fluid flow around the agglomerate, and the way the agglomerate responds to the flow. The specific case of a sphere doublet allows for validating the numerical procedure against analytical results due to Nir & Acrivos (1973) who considered the creeping motion of two touching spheres in a linear shear field. After validating our numerical procedure, we release sphere doublets in turbulent
flow with flow structures of a size comparable to the size of the spheres, and with Reynolds numbers (based on sphere size and slip velocities, or based on (local) deformation rates) well above unity, i.e. a situation beyond the validity of Nir & Acrivos’ analytical approach. We show highly intermittent behavior of the force needed to hold the two spheres together. The peaks in this force are typically one order of magnitude higher than the force one would estimate based on an effective turbulent shear (e.g. $\dot{\gamma} = \sqrt{\frac{\varepsilon}{\nu}}$ with ε the energy dissipation rate, and ν the kinematic viscosity).

The aim of this paper is to present and validate a numerical procedure for calculating flow-induced internal forces in agglomerates, and to show the level of these forces as a function of turbulence intensity. Further along the way is using the insights gained to device breakage models, and for the design of process equipment where breaking (or not breaking) agglomerates is critical.

The organization of this paper is as follows. We first describe our computational methodology which is based on directly solving the motion of a sphere doublet and the fluid in its vicinity (the latter with the lattice-Boltzmann method). We do not consider actual breakage of the doublets. Instead we determine at all times the forces and torques needed to maintain the bond between the spheres. We subsequently discuss simulations of a doublet in a simple shear field at low Reynolds number. Results of these simulations are compared to the analytical results due to Nir & Acrivos (1973), and show good agreement. Then we immerse the doublet in turbulent fields, keep track of the forces and torques in the doublet, and interpret the results. The final section summarizes the main conclusions.

Numerical methodology

In the simulations, two spheres attached to one another are placed in a liquid filled domain. The motion of the spheres and the liquid are fully coupled, i.e. the fluid flow sets the sphere doublet in motion; the motion of the sphere doublet on its turn induces fluid flow. The fluid flow we solve with the lattice-Boltzmann method (LBM). For flows in complexly shaped domains and/or with moving boundaries, this method has proven its usefulness (see e.g. the review article by Chen & Doolen 1998).
In the LBM, the computational domain is discretized into a number of lattice nodes residing on a uniform, cubic grid. Fluid parcels move from each node to its neighbors according to prescribed rules. It can be proven by means of a Chapman-Enskog expansion that, with the proper grid topology and collision rules, this system obeys, in the low Mach number limit, the incompressible Navier-Stokes equations (Chen & Doolen 1998; Succi 2001). The specific implementation used in our simulations has been described by Somers (1993), which is a variant of the widely used Lattice BGK scheme to handle the collision integral (e.g., see Qian et al. 1992). We use the scheme due to Somers, as it manifests a more stable behaviour at low viscosities when compared to LBGK. A lattice-Boltzmann fluid is a compressible fluid. In order to mimic incompressible flow, as is done in this paper, the Mach number must be sufficiently low. In the simulations presented here the local Mach number never exceeded 0.04.

The fluid flow and the motion of the spheres are coupled by demanding that at the surface of each of the two spheres forming the doublet the fluid velocity matches the local velocity of its surface (that is the sum of the linear velocity v_p and $\Omega_p \times (r-r_p)$ with Ω_p being the angular velocity of the sphere, r_p the center position of the sphere, and r a point on its surface); in the forcing scheme that is applied here this is accomplished by imposing additional forces on the fluid at the surface of the solid sphere (which are then distributed to the lattice nodes in the vicinity of the particle surface). The details of the implementation can be found elsewhere (Goldstein 1993; Derksen & Van den Akker 1999; Ten Cate et al. 2002). The collection of forces acting on the fluid at the sphere's surface and its interior is subsequently used to determine the hydrodynamic force and torque acting on the sphere (action = −reaction) (Derksen & Sundaresan 2007).

In our simulations, the radius of each spherical particle is specified and input radius refers to this radius scaled by the lattice spacing. In the LBM simulations, as the spherical particle is represented by forces that are confined to a cubic grid, the input radius does not reflect the actual radius of the particle. A calibration procedure to estimate the effective radius of this object (commonly referred to
as the hydrodynamic radius) was introduced by Ladd (1994). We apply his scheme to estimate the hydrodynamic radius of the particles. The hydrodynamic radius is recognized as a and is given in lattice units. In this study radii in the range $a=6 – 12$ have been used. Typically the input radius turns out to be some 10% smaller than the hydrodynamic radius.

In this stage of the simulation procedure, the two spheres forming the doublet are considered independent entities. For each sphere we determine the hydrodynamic force (F_{h1} and F_{h2}), and torque (T_{h1} and T_{h2}) acting on it. In order to maintain the contact point, we introduce an interaction force F_i, and interaction torque T_i, acting at the contact point. The convention taken here is that the force F_1 acts on sphere #1, and $-F_1$ acts on sphere #2. Similarly T_1 acts on sphere #1, $-T_1$ on sphere #2. The conditions to maintain the contact point between the spheres provide the equations to solve for F_i and T_i. The conditions are

$$\frac{dv_{c1}}{dt} = \frac{dv_{c2}}{dt} \quad \text{and} \quad \Omega_{p1} = \Omega_{p2} = \Omega_p$$

with

$$v_{c1} = v_{p1} + \frac{1}{2} \Omega_{p1} \times \Delta r \quad \text{and} \quad v_{c2} = v_{p2} - \frac{1}{2} \Omega_{p2} \times \Delta r$$

the velocity of the contact point in the perspective of sphere #1 and sphere #2 respectively. The vector Δr connects the centers of the two spheres. Equation 1 provides the six conditions to solve the (in total six) components of F_i and T_i. In the Appendix we give the derivation for solving F_i and T_i in full detail.

Once the interaction force and torque have been determined, we know the total force and torque on each of the two spheres, and numerically solve their equations of linear and rotational motion. The so updated sphere velocities and positions are communicated to the fluid flow part of the simulation procedure and used to solve for the fluid flow in the next time step; and so on.

We have chosen an approach involving solving for the motion of the two spheres separately, instead of solving the equation of motion for a sphere doublet as a whole as the former directly
provides us with the interaction force and torque. Since these are necessary to maintain the integrity of the doublet, they can be directly compared to the strength of a bond in order to assess if the flow would be able to break the bond.

Verification: creeping flow

In a seminal article, Nir & Acrivos (1973) analytically solved the problem of the motion of a sphere doublet (with each sphere of arbitrary size) in a linear shear field at creeping flow conditions. Their analysis includes the force acting on the spheres. The expression for the force F_{NA} (components $F_{NA\alpha}$, $\alpha=x,y,z$) exerted on one of the two spheres they give is

$$F_{NA\alpha} = \pi \mu a^2 \left(h_1 e_{\alpha\beta} p_\beta + h_2 e_{\alpha\gamma} p_\gamma p_\beta p_\alpha \right)$$ \hspace{1cm} (3)

with μ the dynamic viscosity of the working fluid. The force exerted on the other sphere has the same size and opposite direction. In Eq. 3 the parameters h_1 and h_2 are functions of the ratio of the radii of the spheres involved. In the case of two equally sized spheres $h_1=4.463$, and $h_2=7.767$. The vector \mathbf{p} is the unit vector in the direction of the line connecting the two sphere centers ($\mathbf{p} = \frac{\Delta \mathbf{r}}{|\Delta \mathbf{r}|}$ in terms of Figure A1); $e_{\alpha\beta} = \frac{1}{2} \left(\frac{\partial u_\alpha}{\partial x_\beta} + \frac{\partial u_\beta}{\partial x_\alpha} \right)$ is the rate-of-strain tensor of the undisturbed flow field the doublet is immersed in. For creeping flow the interaction force \mathbf{F}_i is equivalent to $F_{NA\alpha}$. This we use to verify our numerical procedure.

The case we single out is a doublet of equally sized spheres in a simple shear flow; see Figure 1 (which also serves to define the coordinate system). If this doublet is placed with its separation vector $\Delta \mathbf{r}$ in the wall-normal direction (z-direction), it will start rotating about the y-axis. For this configuration the only non-zero components of the rate-of-strain tensor are $e_{xz} = e_{zx} = \frac{1}{2} \dot{\gamma}$ with $\dot{\gamma} \equiv \frac{2u_0}{H}$. With $[p_x, p_y, p_z] = [\sin \theta, 0, \cos \theta]$ it follows from Eq. 3 that the analytical expression for the
normal force (the component of the interaction force in the direction of the line connecting the sphere centers) \(F_{Na}^n \equiv \mathbf{F}_{Na} \cdot \mathbf{p} \) in this case is

\[
F_{Na}^n = \pi \mu \frac{a^2}{2} \dot{\gamma} (h_1 + h_2) \sin(2\theta)
\]

where we have taken the convention of a tensile normal force being positive, and a compressive force negative. In the \(\theta \)-range \(0…\pi/2 \) (modulo \(\pi \)) the normal force is tensile; for \(\theta=\pi/2…\pi \) (modulo \(\pi \)) the normal force is compressive. Extreme values of the force occur at \(\theta=\pi/4 \) (modulo \(\pi/2 \)).

Nir & Acrivos (1973) also give a general expression for the rotation rate of the doublet in a linear shear field. This expression applied to the case of equally sized spheres in simple shear results in

\[
\Omega_{py} = \frac{d\theta}{dt} = \frac{1}{2} \dot{\gamma} \left(1 + C \cos(2\theta) \right)
\]

With \(C \) a constant equal to 0.594 (in the terminology of Nir & Acrivos \(C = \frac{r_e^2-1}{r_e^2+1} \) with \(r_e=1.982 \) for two equally sized spheres). Given the choice of the coordinate system and geometry, \(\Omega_{py} \) always is positive with minimum rotation rate when the doublet is aligned with the flow, and maximum rotation rate when perpendicular to the flow.

In the numerical simulations we consider a flow domain with size \(nx \cdot ny \cdot nz \) in the \(x \), \(y \), and \(z \)-direction respectively. The upper and lower wall (\(z=0 \) and \(z=nz \)) are no-slip walls with respective velocities \(-u_0\) and \(u_0\) in the \(x \)-direction. As a result \(\dot{\gamma} = \frac{2u_0}{nz} \). The conditions at the other bounding walls are periodic. In the center of this domain we place a doublet consisting of two equally sized spheres with radius \(a \). The Reynolds number we define as \(Re = \frac{\dot{\gamma}a^2}{\nu} \); in order to compare with the analytical solution we demand \(Re \ll 1 \) (creeping flow). The solid over fluid density ratio is kept constant at \(\frac{\rho_s}{\rho_f} = 4.0 \).
At moment $t=0$ (the doublet then has a $\theta=0$ orientation) we start moving the upper and lower plate. A time series of the normal component of the interaction force is given in Figure 2. We see that after a short startup phase, the force fluctuates in a periodic manner with constant amplitude. The slight noise in the force signal is due to the fixed grid over which the spherical particles move, higher spatial resolution reduces this noise (see also Ten Cate et al. 2002). Plotting the force as a function of the doublet orientation θ as is done in Figure 3 allows for a direct comparison with the analytical result as given in Eq. 4. In Figure 3a we plot our “raw” computational signal along with the analytical result. This signal contains a start-up part with reduced force amplitude. Once the signal is steady, we observe good agreement with the analytical result. The agreement improves if we correct for the centrifugal force as shown in Figure 3b. Here we have subtracted an amount $m\Omega_{\rho}^2 a$ (with $m = \frac{4}{3} \pi \rho a^3$ the mass of one sphere) from the computed force in normal direction, with the momentary value of Ω_{ρ} taken from the simulations. The phase shift between simulation and analytical results is approximately 0.015π; the deviation in amplitude of the corrected (for the centrifugal force) computational result from the analytical result is approximately 1%. It should be noted that the results shown above require sufficiently large spacing n_z between the two bounding walls, see Figure 4. For $n_z \geq 90$ the force amplitude is practically independent of n_z for spheres with $a=6$.

We speculate that the small difference between the analytical and numerical result as observed in Figure 3b is due to finite Reynolds number effects, with the Saffman lift force (Saffman 1965; Saffman 1968) playing a significant role since it is proportional to \sqrt{Re}. In the current configuration the Saffman lift force is strongest if the doublet is at $\theta=0$ (modulo π) orientation since then the slip velocity in the direction of the shear field is highest. At this orientation the doublet’s rotation rate is $\Omega_{\rho} = \frac{1}{2} \dot{\gamma} (1 + C) \approx 0.8 \dot{\gamma}$ (see Eq. 5). As a result, the slip velocity (defined as fluid velocity of the undisturbed shear flow at the sphere center minus the sphere velocity) of the upper sphere is
\[V \approx 0.2 \dot{\gamma} a \], of the lower sphere it is \(V \approx -0.2 \dot{\gamma} a \). An estimate of the Saffman force (based on the single sphere Saffman expression) then is

\[F_{sl, \theta=0} = 6.46 \cdot 0.2 \mu a^2 \dot{\gamma} \sqrt{Re} = 1.29 \mu a^2 \dot{\gamma} \sqrt{Re} \]

(6)

On the upper sphere it acts in the positive z-direction, on the lower sphere in the negative z-direction and thus results in an extra tensile (positive) interaction force. In Figure 5 we show results for three different Reynolds numbers. We see a small reduction of the tensile force (corrected for centrifugal effects) at \(\theta=0 \mod \pi \) if we reduce Re from 0.06 to 0.03. The actual values of the tensile force at \(\theta=0 \mod \pi \) are \(0.5 \mu a^2 \dot{\gamma} \) for Re=0.03, and \(0.9 \mu a^2 \dot{\gamma} \) for Re=0.06 (with typically an accuracy of \(0.1 \mu a^2 \dot{\gamma} \) given the slight noise in the force signal). The estimates of the Saffman force with Eq. 6 yield \(0.22 \mu a^2 \dot{\gamma} \) and \(0.32 \mu a^2 \dot{\gamma} \) for Re=0.03 and 0.06 respectively. At least a significant portion of the tensile force at \(\theta=0 \mod \pi \) can be attributed to Saffman lift. If we strongly increase the Reynolds number (to Re=4), inertia induces a large phase shift and a clear top-bottom asymmetry (tensile forces getting much stronger than compressive forces), see again Figure 5.

We checked for the rotation rate as a function of \(\theta \) at creeping flow conditions. After getting into fully developed state, the rotation rate along the y-axis as simulated agrees very well with the analytical result as expressed in Eq. 5, see Figure 6.

Results presented so far were for a spatial resolution such that the sphere radius \(a=6 \) lattice spacings. Taking the case with \(n_x=56 \) and Re=0.06 as a base case, we checked the impact of the spatial resolution by performing two additional simulations with \(a=8 \) and \(a=12 \) while keeping the dimensionless numbers (aspect ratios, Reynolds number, and density ratio) the same as in the base case. The results in terms of the normal interaction force can hardly be distinguished, the major difference being the noise level that gets smaller for higher resolution (see Figure 7).

In conclusion of this validation study we observe good agreement between computational and analytical results, and grid independency for \(a \geq 6 \). It should be noted that in order to get these results
we used the concept of a hydrodynamic radius, i.e. we calibrated the spheres such that a single sphere experiences the right drag under creeping flow conditions. This is a commonly used concept in this type of simulations since its introduction by Ladd (1994). In the remainder of this paper we will apply the computational procedure to study forces in sphere doublets immersed in turbulent flow, with the doublet size not being small compared to the Kolmogorov length scale.

Doublets in turbulent flow

A single doublet consisting of two equally sized spheres is placed in a three-dimensional, cubic, fully periodic domain. The domain size is 128^3 lattice nodes. The spheres forming the doublet either have radius $a=6$ or $a=8$ lattice spacings (in the previous section it was shown that such resolutions were sufficient for correctly resolving the interaction force in the doublet). We limit ourselves to systems with a fixed solid over fluid density ratio $\frac{\rho_s}{\rho_f} = 4.0$. In the computational domain we create a homogeneous, isotropic turbulent flow by linear forcing (Rosales & Meneveau 2005). This flow is characterized by its time and space averaged energy dissipation rate ε and root-mean-square velocity u_{rms}. From these quantities measures for the Kolmogorov scales and relevant Reynolds numbers,

$$\text{Re}_{\text{rms}} = \frac{u_{\text{rms}} a}{\nu}, \quad \text{and} \quad \text{Re}_\varepsilon = \frac{a^2 \sqrt{\varepsilon}}{\nu}$$

are derived. Our main interest is in the effects non-uniform rate-of-strain around the doublet has on the interaction force and torque. As the primary independent variable therefore the ratio $\frac{a}{\eta_K}$ is considered, with η_K the Kolmogorov length scale $\eta_K = \left(\frac{\nu^4}{\varepsilon} \right)^{1/4}$. In terms of this dimensionless variable we would like to cover an as large a range as possible. Both at the low end and the high end we are, however, limited by computational restraints. At the high end of $\frac{a}{\eta_K}$ there is a need for large computational domains, and large values of a (in terms of lattice spacings) to accurately resolve the flow around the spheres. At the low end we are limited by the demand to resolve
the spheres with at least \(a=6 \) resolution (for this resolution our methodology was validated) implying the need for \(\eta_k \) significantly bigger than the lattice-spacing and again the need for large overall domains to develop turbulent structures covering a significant range of scales. In this study \(\frac{a}{\eta_k} \) roughly ranges from 2 – 20. It has to be acknowledged, however, that for the lower end of this range turbulence was not fully developed as can be witnessed from the spectra given in Figure 8. At the high end of the range we approach the limits of properly resolving turbulence with the computational grid.

At the highest \(\frac{a}{\eta_k} \) (being 21.4), we had \(a=8 \) (lattice units) and thus \(\eta_k = 0.37 \). The maximum wavenumber resolved in the simulations amounts to \(k_{\text{max}} = \pi \) (in lattice units). As a result \(\eta_k k_{\text{max}} \) is close to but still above 1 which is generally considered sufficient spatial resolution (see e.g. Overholt & Pope 1998).

As the doublet moves through the computational domain, we keep track of its position and orientation, its linear and angular velocity, its direct hydrodynamic environment, and the interaction force and torque between the two spheres forming it. Typical time series for the normal force, the shear force (the projection of the interaction force on a plane normal to the vector connecting the two spheres), the torsion (the torque along the vector connecting the two sphere centers), and bending torque are given in Figure 9. We observe highly intermittent behavior. Fluctuations have a time scale of 1 – 10 times the Kolmogorov time \(\tau_k = \frac{\nu}{\epsilon} \). In Figure 9 the forces have been scaled in a manner consistent with the way we scaled the forces in simple shear (with \(\dot{\gamma} = \frac{1}{\tau_k} \)). The time-averaged normal force is positive, i.e. tensile. As we will demonstrate below, this is partly due to the centrifugal force. The peak levels of the shear force are generally somewhat smaller than those of the normal force. Torsion and bending torque fluctuate at similar levels. Their frequencies are comparable to those of the force fluctuations.
In what follows, we will limit ourselves to discussing the normal force, and the way it relates to the turbulence properties. A comprehensive description of the statistics of all force and torque components is beyond the scope and the aim of this article which is to develop tools for demonstrating and quantifying the effects of the direct hydrodynamic environment on forces in agglomerates. If we are confronted with particular solid material for which the shear forces or torques are more critical for breakage, the methodology for determining their (statistical) behavior is available.

The probability density function (PDF) related to an extended version of the time series of the normal force as given in Figure 9 is given in Figure 10. It shows an asymmetric shape. The decay on the negative side (compressive forces) is approximately linear on a linear-logarithmic scale (exponential decay). On the positive side (tensile forces) the decay fairly well fits a Gaussian. This is akin to the shape of the PDF of the relative radial velocity of two closely spaced points in a single phase, homogenous, isotropic turbulent flow (Wang et al 2000, Ten Cate et al 2004): Gaussian for positive (separating) radial velocities, and exponential for negative (approaching) velocities. The radial velocity PDF has its maximum for velocity values greater than zero; its average being zero by definition. The interaction force showing a similarly shaped PDF reflects velocity differences experienced by the two spheres causing differences in drag resulting in the interaction force.

We further reduce the normal force data by only considering the first two moments of its PDF, i.e. the average normal force and its standard deviation, where our main interest is in assessing and modeling the fluctuation levels. Averages were all taken over simulations running for 100 000 time steps. Measured in units of the Kolmogorov time scale, the minimum length of a simulation was $200 \tau_K$. With a view to the typical time scale of the force fluctuations (of the order of 1 to 10 τ_K) this is sufficient. The extreme events as seen in Figure 9, however, have much longer time intervals and make the estimates of the first and second moment uncertain. Running over significantly longer time spans would solve this problem but quickly becomes unpractical if we also want to capture a broad range of turbulence conditions (i.e. do many simulations). We have instead chosen to replicate a few 10^5 time
step simulations and this way assess the level of statistical uncertainty in the moments of the normal force PDF.

In Figure 11a we plot the average scaled force \(F^n \) scaled with \(\frac{\mu a^2}{\tau_k} \) as a function of the ratio of the primary particle radius \(a \) over the Kolmogorov length scale \(\frac{a}{\eta_K} = a \left(\frac{\nu}{\nu} \right)^{1/4} \) for a number of simulations. In the same graph we also plot the contribution of the centrifugal force to this average, the latter being equal to \(F^c = m a \sqrt{\Omega_p^2 a} \). The average normal force data show significant scatter. Different points at the same \(\frac{a}{\eta_K} \) ratio are duplications, indicating the statistical contribution to the scatter. The overall trend is higher average forces for higher \(\frac{a}{\eta_K} \) ratios. The average normal force is systematically larger (by a factor 2 to 3 for \(\frac{a}{\eta_K} > 5 \)) than the average centrifugal force. Apparently the latter can not fully explain why the average normal force is always positive (tensile). An additional contribution to the on average tensile force is likely due to the asymmetric shape of the PDF of the radial velocity, inducing an additional (on average) tensile force.

In Figure 11b the standard deviation of the normal force \(F'' \) is plotted. It shows a more consistent trend with \(\frac{a}{\eta_K} \) than the average force data. The standard deviation is generally larger than the average, making it more relevant for assessing doublet breakage. The computational data for the systems studied here tentatively fit a linear function:

\[
\frac{F'' \tau_k}{\mu a^2} = \alpha + \beta \frac{a}{\eta_K}
\]

(7)
with $\alpha=11\pm2$ and $\beta=1.5\pm0.2$. The intercept α is the root-mean-square normal force in the limit $\frac{a}{\eta_k} \rightarrow 0$. In this limit the doublet is immersed in a continuously changing linear shear field. For specific a this limit can only be reached by letting $\eta_k \rightarrow \infty$ and thus $\text{Re}_k \rightarrow 0$. In this limit Nir & Acrivos’ (1973) analytical result (Eq. 3) applies. A crude model for estimating F''_n in the limit $\frac{a}{\eta_k} \rightarrow 0$ based on Eq. 3 is to determine the root-mean-square normal force for a randomly oriented doublet immersed in simple shear flow with $\dot{\gamma} = \sqrt{\frac{\tau}{\nu}}$. Applying Eq. 3 and averaging over all possible doublet orientations gives $\frac{F''_n \tau_k}{\mu a^2} = \frac{\pi}{4} (h_1 + h_2) = 9.61$. This value is within the range of the intercept α as estimated from the linear fit. However, the model highly simplifies the actual situation in the sense that the spectrum of flow conditions experienced by the doublet is much richer than only simple shear.

An alternative and potentially more refined way to apply the Nir & Acrivos (1973) result to estimate forces in doublets in turbulent flow is to use the results of the simulations on the hydrodynamic environment of the doublet. Each time step during the various simulations we kept track of the rate-of-strain tensor averaged over a spherical volume around the center of the doublet. This data together with the doublet orientation we substitute in Eq. 3 to determine each time step the normal force in the doublet if it were immersed in a linear shear field with the momentary rate-of-strain tensor.

As was already pointed out, since the doublet is usually larger than the Kolmogorov length scale, its hydrodynamic environment is non-homogeneous and a single rate-of-strain tensor around the doublet does not exist. The deviations between the actual force, and the force calculated via Eq. 3 are indicative for the role of inertia and of flow inhomogeneities around the doublet. The impact of the size of the averaging volume for determining the deformation rate around the doublet has been investigated; we present data for (spherical) averaging volumes with radius $3a$, and radius $2a$.
In Figure 12 we show part of the time series we showed in Figure 9 (top panel) along with the results from applying Eq. 3. There clearly is a correlation between the actual normal force signal and the ones modeled via Eq. 3. The correlation improves if we narrow down the averaging volume from $3a$ to $2a$ radius indicating that details regarding the flow around the doublet matter for the forces. However, peak levels of the actual signal are generally much larger than those based on modeling with Eq. 3 (note the different vertical scales in the panels of Figure 12). Also the higher frequency fluctuations in the actual signal are smoothed in the modeled signals. The bottom panel of Figure 12 shows the level to which the centrifugal force contributes to F'', and the way it fluctuates. A similar set of times series but now for a smaller $\frac{a}{\eta_k}$ ratio are shown in Figure 13. The picture quite drastically changes. The force as modeled with Eq. 3 now clearly much better follows the actual force. Peak levels of the modeled force time series are in fact sometimes larger than those of the actual force.

In Figure 14 we condense the modeled force data and plot them (similar as in Figure 11 for the actual force levels) as a function of $\frac{a}{\eta_k}$. The modeled force fluctuation levels (Figure 14b) clearly depend on the size of the averaging domain around the doublet. Their trend with respect to $\frac{a}{\eta_k}$ is opposite to the trend for the actual force fluctuation levels: a decrease for increasing $\frac{a}{\eta_k}$. Apparently averaging the inhomogeneous flow around the doublet smoothen out the details that induce high force levels, an effect that gets stronger as $\frac{a}{\eta_k}$ increases, making modeling the interaction force in highly turbulent flow a difficult task. A similar remark applies to the average force. The modeled average force (Figure 14a) decreases with increasing $\frac{a}{\eta_k}$, the actual average force increases (Figure 11a).

Conclusions
Motivated by the potential role of fluid flow in breaking agglomerates we numerically investigated the
force and torque required to maintain a fixed contact between equally sized solid spheres immersed in
a flow. The direct numerical approach, which is based on solving the fluid flow by means of the
lattice-Boltzmann method, was able to accurately reproduce the analytical results due to Nir & Acrivos
(1973) for the case of a doublet in simple shear at creeping flow conditions. The minor deviations of
the numerical from the analytical results could be largely attributed to physical effects: finite Reynolds
number (including Saffman lift), domain size, and centrifugal force. The numerical results were
virtually independent of the resolution of the simulations in the range $a=6 – 12$, with a the sphere
radius expressed in the number of grid spacings it spans.

After this validation study, the sphere doublet was immersed in turbulent flow. In a fully periodic
domain, turbulence was generated by linear forcing. The force and torque to keep the two spheres
attached now strongly fluctuates. The normal force’s peak levels typically are an order of magnitude
higher than the maximum force attained if the doublet were immersed in a simple shear flow with
$\dot{\gamma} = \frac{1}{\tau_k}$ (with τ_k the Kolmogorov time scale of the turbulent flow). On average the doublet experiences
a tensile normal force. Partly this is due to the centrifugal force always being tensile, partly due to the
probability density function of radial relative velocity in turbulent flow being skew, with its maximum
at positive (separating) radial velocity.

The fluctuation levels of the normal force are generally larger than the average normal force,
making the former more relevant for assessing doublet breakage. The fluctuation levels of the
normalized normal interaction force have been shown to correlate with the ratio of sphere radius over
Kolmogorov length scale $\frac{a}{\eta_k}$ according to a linear relation. For a solid over fluid density ratio of 4.0
we found

$$\frac{F''_{\tau_k}}{\mu a^2} = \alpha + \beta \frac{a}{\eta_k}$$

with $\alpha=11\pm2$ and $\beta=1.5\pm0.2$.
The success of modeling the normal force in turbulent flow with Nir & Acrivos’ (1973) analytical result highly depends on the size of the doublet in relation to the Kolmogorov length scale η_K. For roughly $\frac{a}{\eta_K} \leq 5$ the fluctuations levels of the normal force as estimated by means of the analytical result are comparable to the actual fluctuation levels. For higher $\frac{a}{\eta_K}$ ratios, the agreement quickly deteriorates, caused by inertial effects and the inhomogeneity of the rate-of-strain tensor around the doublet.

Future work will focus on practical applications of the methodology developed here to assess flow induced forces in agglomerates, a prominent one being the design of microfluidic layouts for effectively breaking agglomerates with specific bond strength. Also the solid over liquid density ratio (kept fixed at 4.0 in this study) deserves further attention. It plays a potentially complicated role. Heavier agglomerates will experience more centrifugal force on one side, and are less sensitive to quick changes in their hydrodynamic environment on the other. Furthermore we will consider bigger agglomerates (in terms of the number of primary particles), extending the parameter space with the morphology of agglomerates.

Acknowledgement

I thank one of the reviewers for pointing me to the role of the Saffman lift force in the shear flow simulations, and to an error in my derivation of the interaction torque.
References

Appendix: derivation of interaction force and torque

The conditions for maintaining fixed contact between the two spheres forming the doublet are given by Eq. 1. In Figure A1 we define the doublet geometry including the forces and torques acting at the point of contact.

The time derivative of the velocity of the contact point is a result of the linear acceleration of the sphere and the time derivative of the contribution from rotation of the sphere:

$$\frac{dv_{c1}}{dt} = \frac{dv_{p1}}{dt} + \frac{d}{dt}\left(\Omega_{p1} \times \frac{1}{2} \Delta r\right)$$ \hspace{1cm} (A1)

$$\frac{dv_{c2}}{dt} = \frac{dv_{p2}}{dt} - \frac{d}{dt}\left(\Omega_{p2} \times \frac{1}{2} \Delta r\right)$$ \hspace{1cm} (A2)

The linear acceleration of the spheres is due to the hydrodynamic force and the interaction force:

$$\frac{dv_{p1}}{dt} = \frac{F_{h1} + F_i}{m} \quad \text{and} \quad \frac{dv_{p2}}{dt} = \frac{F_{h2} - F_i}{m}$$ \hspace{1cm} (A3)

with \(m\) the mass of one sphere. \(F_{h1}\) and \(F_{h2}\) are known from the hydrodynamics part of the simulation procedure. Since \(\frac{dv_{c1}}{dt} = \frac{dv_{c2}}{dt}\) and \(\Omega_{p1} = \Omega_{p2} = \Omega_p\), subtracting Eq. A2 from Eq. A1, and substituting Eq. A3 leads to an expression for the interaction force:

$$F_i = -\frac{1}{2}(F_{h1} - F_{h2}) - \frac{1}{2}m \frac{d}{dt}\left(\Omega_p \times \Delta r\right)$$ \hspace{1cm} (A4)

The angular acceleration \(\frac{d\Omega_p}{dt}\) is a result of the torques applied on the spheres. There are three contributions to the torque: (1) the hydrodynamic torque (\(T_{h1}\) for sphere #1, \(T_{h2}\) for sphere #2, both quantities are known from the hydrodynamics part of the simulation procedure), (2) the torque induced by the interaction force (see Figure A1), and (3) the interaction torque \(T_i\). For sphere #1:

$$I \frac{d\Omega_p}{dt} = T_{h1} + \frac{1}{2} F_i \times \Delta r + T_i$$ \hspace{1cm} (A5)

For sphere #2:
\[I \frac{d\Omega_p}{dt} = T_{h2} + \frac{1}{2} \mathbf{F}_i \times \Delta \mathbf{r} - T_i \]
(A6)

with \(I \) the moment of inertia around the center of the sphere (\(I = \frac{2}{5} a^2 m \)).

Subtracting Eq. A6 from A5 directly gives an expression for the interaction torque:

\[T_i = \frac{1}{2}(T_{h2} - T_{h1}) \]
(A7)

In order to determine the interaction force from Eq. A4, the term

\[\frac{d}{dt}(\Omega_p \times \Delta \mathbf{r}) = \frac{d}{dt}(\Omega_p \times \Delta \mathbf{r}) + \Omega_p \times \frac{d}{dt}(\Delta \mathbf{r}) \]

needs to be determined. Adding Eq. A5 and A6 results in an expression for the angular acceleration:

\[\frac{d\Omega_p}{dt} = \frac{1}{2I}(T_{h1} + T_{h2} + \mathbf{F}_i \times \Delta \mathbf{r}) \]
(A8)

Furthermore

\[\frac{d}{dt}(\Delta \mathbf{r}) = \Omega_p \times \Delta \mathbf{r} \]
(A9)

Substituting Eq. A8 and A9 in Eq. A4 gives

\[\mathbf{F}_i = -\frac{1}{2}(\mathbf{F}_{h1} - \mathbf{F}_{h2}) - \frac{1}{2m} \left(\frac{1}{2I}(T_{h1} + T_{h2} + \mathbf{F}_i \times \Delta \mathbf{r}) \times \Delta \mathbf{r} + \Omega_p \times (\Omega_p \times \Delta \mathbf{r}) \right) \]
(A10)

This equation can be cast in a form \(\mathbf{A} \cdot \mathbf{F}_i = \mathbf{b} \) with \(\mathbf{A} \) and \(\mathbf{b} \) a known tensor and vector respectively.

Solving for the three components of \(\mathbf{F}_i \) then requires solving a linear 3\times3 system.
Figure 1. Doublet in simple shear flow. Shear is generated by moving two flat plates in opposite direction.
Figure 2. Interaction force in normal direction (F^n) as a function of time. The parameters for this simulation are: $a=6$, $nx\cdot ny\cdot nz=96\cdot 144\cdot 144$, $Re=0.06$.
Figure 3. Interaction force in normal direction (F^n) as a function of the orientation angle θ of the doublet. Same parameters as in Figure 2. (a) Closely spaced symbols: numerical results; dashed curve: analytical result (Eq. 4). The arrow indicates the starting point of the simulation and the direction in which it evolves. (b) Closely spaced symbols: numerical results in fully developed flow corrected for the centrifugal force; dashed curve: analytical result (Eq. 4).
Figure 4. Interaction force F^n (corrected for centrifugal effects) as a function of θ; influence of the domain size in z-direction. Thin drawn curve: same as results shown in Figure 3b ($nz=144$); dotted curve: $nz=90$; dashed curve: $nz=56$; thick drawn curve: $nz=40$.

\[
\frac{F^n}{\mu \gamma a^2}
\]
Figure 5. Interaction force F^n (corrected for centrifugal effects) as a function of θ; influence of the Reynolds number. $a=6, nx\cdot ny\cdot nz=96\cdot 56\cdot 56$.

\[
\frac{F^n}{\mu \dot{\gamma} a^2}
\]
Figure 6. Rotation rate of the doublet along the y-axis as a function of the orientation angle θ. Same simulation parameters as in Figure 2. Closely spaced symbols: numerical results; drawn curve: analytical result (Eq. 5). The arrow indicates the starting point of the simulation and the direction in which it evolves. $a=6$, $nx\cdot ny\cdot nz=96\cdot 144\cdot 144$, Re=0.06.
Figure 7. Interaction force F^n (corrected for centrifugal effects) as a function of θ; influence of the spatial resolution of the simulations in terms of a (the number of lattice spacings per particle radius). Conditions: see text.
Figure 8. Power spectral density (psd) as a function of wavenumber (both in lattice units) for three simulated cases, all on a 128^3 grid. Solid curve: $\frac{a}{\eta_k} = 2.1$ and $a=6$, long dashed curve $\frac{a}{\eta_k} = 6.1$ and $a=8$, short dashed curve $\frac{a}{\eta_k} = 16$ and $a=8$. The thick line indicates the $\frac{5}{3}$ slope.
Figure 9. Time series of the interaction force F^n, the absolute value of the shear force F^s, the absolute torsion T^t, and the absolute bending torque T^b of a doublet in turbulent flow as a function of time. The turbulence conditions are such that $\frac{a}{\eta_K} = 8.3$, and $Re_{mu} = 27$. The resolution is such that $a = 8$.
Figure 10. Probability density function (PDF) of the interaction force F^n. Symbols: computational results; curves: by-the-eye fits of an exponential distribution (straight line), and a Gaussian distribution (parabola). The dashed line indicates the average. The turbulence conditions are such that $\frac{a}{\eta_K} = 8.3$, and $\text{Re}_{rms}=27$. The resolution is $a=8$.
Figure 11. Average \bar{F}^n (a) and root-mean-square F^n' (b) normal force in the sphere doublet at various turbulence conditions, characterized by the ratio $\frac{a}{\eta_K}$. The square symbols in the top panel are the total average normal force; the triangles indicate the contribution of the centrifugal force. The trend line in the bottom panel (Eq. 7, see text) has intercept $\alpha=11\pm2$ and slope $\beta=1.5\pm0.2$.
Figure 12. Time series of the normal force for the same case as Figure 9 ($\frac{a}{\eta_K} = 8.3$, and Re$_{rms}$=27).

Top panel: actual normal force time series; middle panel: normal force calculated by substituting in Eq. 3 the orientation of the doublet and the average rate-of-strain tensor around the doublet (solid-line: averaging volume with radius 2a, dashed line: averaging volume with radius 3a); bottom panel: contribution of the centrifugal force to the normal force.
Figure 13. Same as Figure 12, now for the case with $\frac{a}{\eta_K} = 2.1$, and $\text{Re}_{\text{rms}} = 4.1$.
Figure 14. The average (\bar{F}^n) and root-mean-square normal force (F'^n) as estimated by means of Eq. 3 with the average deformation rate in the direct vicinity of the doublet. The square symbols relate to a spherical averaging volume with radius $3a$, the triangles with radius $2a$. The line in panel (b) is Eq. 7 (see text).
Figure A1. Definitions of interaction force F_i, torque T_i, and separation vector Δr.

![Diagram showing forces and separation vector between two objects](image-url)