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Simulations of transitional and turbulent flows of purely viscous thixotropic liquids in stirred tanks have been performed. The simple thixotropy
model employed is based on the notion of a network in the liquid with an integrity that builds up with finite rate under quiescent conditions
and breaks down under liquid deformation. We solve a transport equation for the network integrity which is two-way coupled to the lattice-
Boltzmann-based flow solver. The liquid’s time scale characterised by the dimensionless Deborah number demonstrates to have profound impact
on the level of mobilisation and the flow patterns in the mixing tanks, especially if the time scale of the liquid is of the same order as the circulation
time in the tank. It also is shown to what extent increasing the impeller speed improves mobilisation.

On a effectué des simulations de courants transitoires et turbulents de liquides thixotropes purement visqueux dans des cuves à agitation. Le
modèle thixotrope simple employé est fondé sur la notion d’un réseau dans le liquide avec une intégrité qui s’accumule à un taux fini dans des
conditions quiescentes et se décompose lors d’une déformation liquide. Nous avons résolu une équation de transport pour l’intégrité du réseau
qui est couplée de façon bidirectionnelle au résolveur de flux fondé sur Lattice Boltzmann. L’échelle de temps du liquide caractérisée par le nombre
de Deborah sans dimension démontre une incidence profonde sur le degré de mobilisation et les modèles de courant dans les cuves de mélange,
surtout si l’échelle de temps du liquide est du même ordre que le temps de circulation dans la cuve. On démontre également dans quelle mesure
la vitesse de l’impulseur améliore la mobilisation.
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INTRODUCTION

Mainly with applications in oil sands processing (Masliyah
et al., 2004) in mind, we perform direct numerical simu-
lations of thixotropic liquids in agitated tanks. The range

of applications is, however, wider since also in food, pharmaceu-
tical, paper-and-pulp, and polymer industries (Lucas et al., 2009)
handling of thixotropic liquids is abundant. Thixotropic liquids
show time-dependence, that is, their constitutive relations con-
tain terms related to the liquid’s deformation history. A typical
(micro physical/chemical) source of thixotropy is the presence
of a structural network in the fluid that forms as a result of
long-range interactions between, for example, microscopic solid
particles (clay particles) dispersed in it. A strongly developed
network results in a liquid that is hard to deform (highly vis-
cous) and/or has elastic properties. Liquid deformation tends to
disintegrate the network. Since usually the rate at which the
network disintegrates under deformation, and builds up at qui-
escent conditions is finite (e.g., due to transport limitations at
the micro level), the liquid’s history in terms of its (absence
of) deformation impacts the local rheological behaviour, hence
thixotropy.

In many cases agitation of thixotropic liquids in mixing tanks is
done to mobilise the liquid by breaking the network. The extent to
which this happens is an intricate interplay between time scales
(of the liquid and of the agitation), liquid inertia (relative to vis-
cous forces), and the geometrical layout of the tank. As in many
more situations where interaction and competition of a multitude
of phenomena govern process behaviour, numerical simulation is
a versatile way to reveal the interactions and to gain insight in the
relative importance of these phenomena as a function of process
conditions.

In this paper we build upon a computational methodology for
thixotropic liquid flow we recently developed and verified for a
number of laminar flow benchmark cases (Derksen and Prashant,
2009). Its computational efficiency allows for fine grids so that
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direct simulations of transitional and mildly turbulent flows in
mixing tanks are within reach. The focus of the present paper is
on the application of the methodology to agitation for mobilising
thixotropic liquids.

A relatively simple thixotropy model has been adopted and
the liquids considered are purely viscous, that is, no visco-elastic
effects have been incorporated. In spite of these limitations, the
dimensionality of the parameter space is much larger than it
would be with simpler (Newtonian) liquids. For this reason we
primarily limit our study to the impact of the time scale related to
network build-up in the liquid (relative to the flow time scales) on
the level of mobilisation, and on the effect of the impeller speed.
In order to relate to agitated flows of Newtonian liquids we chose
a standard stirred tank geometry: a Rushton turbine revolving in
a baffled tank.

Literature on turbulent and transitional agitation of non-
Newtonian liquids is relatively scarce. There is significant research
activity in the field of drag reduction (e.g., Brostow et al., 2007;
Escudier et al., 2009). In terms of agitated flows the literature
is mostly related to shear-thinning and/or Bingham liquids with
a time-independent rheology (Elson et al., 1986; Elson, 1990;
Amanullah et al., 1998; Arratia et al., 2006; Derksen, 2009). Stir-
ring yield-stress liquids in mixing tanks usually results in the
formation of a cavity around the impeller: liquid only gets agi-
tated in a part of the tank volume around the impeller, and—as
for thixotropic liquids—mobilisation is a key issue. Recently,
agitation of thixotropic liquids was studied experimentally and
computationally (Couerbea et al., 2008). One of the main find-
ings of that study was that the level of realism of simulations
would benefit from more refined models for fluid behaviour and
their computationally efficient implementation in CFD codes.

This paper is organised in the following manner: First the liq-
uid’s rheological model is described. Then the flow geometry is
introduced. Along with the liquid characteristics this allows us to
define a set of dimensionless numbers that are the coordinates of
the parameter space we will be partly exploring. The subsequent
section briefly describes the numerical methodology (more details
are in Derksen and Prashant, 2009). In presenting the results, the
focus is on the level of mobilisation, and on the flow structures
encountered. The final section summarises the results and gives
the main conclusions.

THIXOTROPY MODEL
The thixotropy model we use is based on work that dates back
to the late 1950s (Storey and Merrill, 1958; Moore, 1959). More
recently it has been applied by Ferroir et al. (2004) in their analysis
of particle sedimentation in clay suspensions. It has been placed
in a larger context of thixotropy modelling in the review due to
Mujumdar et al. (2002). In the purely viscous (i.e., non-elastic)
model we keep track of a scalar � that varies between 0 and 1
and indicates the integrity of a structural network in the liquid
(� = 0: no network; � = 1: fully developed network). Its transport
equation reads:

∂�

∂t
+ ui

∂�

∂xi

= −k1�̇� + k2(1−�) (1)

(summation over repeated indices) with ui the ith component of
the fluid velocity vector, and �̇ =

√
2dijdij a generalised defor-

mation rate; dij = (1/2)((∂uj/∂xi) + (∂ui/∂xj)) is the rate of strain
tensor. The first term on the right hand side of Equation (1) indi-
cates breakdown of the network due to liquid deformation; the

Figure 1. Steady-state rheology according to Equation (4). The
infinite-shear viscosity is �∞, the zero-shear viscosity is �∞(1 + ˛). The
pseudo yield stress �Y is defined by extrapolating the infinite shear
behaviour towards �̇ = 0.

second term is responsible for build-up of the network with a
time constant (1/k2) associated to it. The network integrity is fed
back to the liquid flow by relating it to the apparent viscosity �a.
The simple model (Ferroir et al., 2004) used here adopts a linear
relation:

�a = �∞(1 + ˛�) (2)

In a homogeneous shear field with shear rate �̇, the steady-state
solution to Equation (1) reads:

�ss = k2

k1�̇ + k2
(3)

The associated steady state viscosity is (combine Equations 2
and 3):

�ss = �∞

(
1 + ˛

k2

k1�̇ + k2

)
(4)

The parameter �∞ can thus be interpreted as the infinite shear
viscosity. The zero-shear viscosity is �∞(1 + ˛). A typical repre-
sentation of the steady-state rheology (Equation 4) is given in
Figure 1.

The thixotropic liquid as defined by Equations (1) and (2) has
four parameters: k1, k2, �∞, ˛. This implies that once the flow
geometry is defined, four dimensionless numbers are needed to
fully pin down the flow conditions.

FLOW GEOMETRY
The baffled mixing tank is filled to a level H = T (with T the tank
diameter) with liquid, see Figure 2. A lid closes off the surface, that
is, at the top a no-slip condition applies. Agitation is performed by
a Rushton turbine, see Figure 2. A Rushton turbine has six short,
vertical blades mounted on a disk. The disk is mounted on a shaft
that enters from the top down to the level of the impeller. The
primary flow induced by this impeller is in the radial direction.
The Rushton turbine has a diameter equal to D = T/3. It rotates
with an angular velocity of N revolutions per second. The choice
of this standard impeller and tank configuration allows for relat-
ing the present simulations of thixotropic liquid flow with earlier
works on Newtonian and also Bingham liquid flow in a similar
geometry.
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Figure 2. The stirred tank geometry considered in this paper: baffled
tank with Rushton turbine (left: side view, right: top view). The (r, z)
coordinate system has its origin in the centre at the bottom of the tank.

Now that we have defined the geometry, we can choose a set of
four dimensionless numbers fully defining the flow of thixotropic
liquid in the stirred tank. Three of the dimensionless numbers
are straightforward: (1) a Reynolds number defined in the same
way as traditionally done in Newtonian stirred tank flow but now
with �∞: Re∞ = �ND2/�∞; (2) the ratio of zero-shear over infinite-
shear viscosity ˛ + 1; and (3) a time-scale ratio that we term
Deborah number: Db = N/k2 (having a Deborah number does not
mean we consider visco-elasticity). Db is the ratio of the time
scale of the liquid divided by a macroscopic flow time scale for
which we take the period of one impeller revolution (1/N). The
choice of the fourth dimensionless number relates to the appli-
cation perspective. If the rheogram in Figure 1 is interpreted as
that of a (pseudo) Bingham liquid the intercept of the asymp-
tote for high shear rates with the ordinate can be viewed as a
pseudo yield stress: �Y = �∞˛(k2/k1) (see Figure 1). The fourth
dimensionless number then becomes a pseudo-Bingham number:
Bn = (�Y/�∞N) = ˛(k2/k1)(1/N). However, if the liquid is merely
interpreted as shear thinning, the ratio k2/k1 can be viewed as the
liquid’s “characteristic” shear rate �̇c (characteristic in the sense
that the transition from zero-shear to infinite-shear viscosity takes
place around �̇ = �̇c, see Equation 4) and the dimensionless num-
ber would be typically chosen as �̇c/N . In this paper the Bingham
liquid perspective will be taken, and the pseudo-Bingham number
will be used so that the four dimensionless numbers are: Re∞, ˛,
Db, and Bn.

NUMERICAL APPROACH
The lattice-Boltzmann method (LBM) (Chen and Doolen, 1989;
Succi, 2001; Yu et al., 2003) has been applied to numerically
solve the incompressible flow equations. Lattice-Boltzmann flu-
ids can be viewed as (fictitious) fluid particles moving over
a regular lattice, and interacting with one another at lat-
tice sites. These interactions (collisions) give rise to viscous
behaviour of the fluid, just as colliding/interacting molecules
do in real fluids. The main reasons for employing the LBM for
fluid flow simulations are its computational efficiency and its
inherent parallelism, both not being hampered by geometrical
complexity.

In this paper the LBM formulation of Somers (1993) has been
employed. It falls in the category of three-dimensional, 18 speed
(D3Q18) models. Its grid is uniform and cubic. Planar, no-slip
walls naturally follow when applying the bounce-back condition.
For non-planar and/or moving walls (that we have in case we
are simulating the flow in a cylindrical, baffled mixing tank with

a revolving impeller) an adaptive force field technique (a.k.a.
immersed boundary method) has been used (Goldstein et al.,
1993; Derksen and Van den Akker, 1999).

To incorporate thixotropy, the viscosity needs to be made depen-
dent on the local value of the network parameter � (Equation 2),
and (more importantly) the transport equation for the network
parameter (Equation 1) needs to be solved. We solve Equation
(1) with an explicit finite volume discretisation on the same (uni-
form and cubic) grid as the LBM. A clear advantage of employing
a finite volume formulation is the availability of methods for sup-
pressing numerical diffusion. This is particularly important in the
present application since Equation (1) does not have a molecular
or turbulent diffusion term; in order to correctly solve Equation
(1) we cannot afford to have significant numerical diffusion. As
in previous works (Hartmann et al., 2006; Derksen, 2008), TVD
discretisation with the Superbee flux limiter for the convective
fluxes (Sweby, 1984) was employed. We step in time according to
an Euler explicit scheme with the source term (the right-hand-side
of Equation 1) treated in an implicit manner to enhance stability
(Derksen and Prashant, 2009).

DIMENSIONLESS AND NUMERICAL SETTINGS
The values for the infinite-shear viscosity �∞ and the zero-shear
viscosity �∞(1 + ˛) were chosen such that the flow in the mixing
tanks would be mildly turbulent if the liquid would be Newto-
nian with viscosity �∞ (Re∞ of the order of 104), and laminar
with viscosity �∞(1 + ˛) (Re∞/(1 + ˛) = O(102)). With the lattice-
Boltzmann flow solver (that enables the use of fine grids) in place,
these Reynolds numbers allow for direct numerical simulations
(DNS). This way we avoid the use of turbulence closure rela-
tions or subgrid-scale modelling. With DNS we fully resolve the
(likely complex) interactions between liquid properties and flow
structures, without having to consider potential artefacts related
to turbulence modelling.

The tank to be simulated has lab-scale size with a tank vol-
ume of typically 10 L. A 10 L tank with a geometrical layout
as given in Figure 2 has a diameter T = 0.234 m. The impeller
diameter D = T/3 = 0.078 m. With a liquid having �∞ = 10−2 Pa s
and � = 103 kg/m3 we generate mildly turbulent flow if the
impeller spins with N = 10 rev/s: Re∞ = 6 × 103. Commonly used
thixotropic liquids have time constants in the range of 0.1–10 s
(see e.g., Dullaert and Mewis, 2005), so that the Deborah numbers
fall in the range 1–100.

In this paper we only explore part of the four-dimensional
parameter space as defined by the four dimensionless numbers
Re∞, Db, Bn, and ˛ + 1. The viscosity ratio ˛ + 1 has been set
to a fixed value of 100. This way we ensure laminar flow if the
network would be fully developed (� = 1 everywhere). Three
Deborah numbers will be considered: 1, 10, and 100. In addition,
cases will be discussed where the liquid has a time-independent,
shear thinning rheology according to Equation (4). Effectively
this implies that the liquid adapts infinitely fast so that 1/k2 → 0
and thus Db = 0. For these four Db numbers, the base–case
impeller speed has been chosen such that Re∞ = 6 × 103, and
Bn = 100. Under these conditions (tank size, impeller speed,
other liquid properties) Bn = 100 corresponds to a (pseudo) yield
stress of �Y = 10 N/m2 which is a typical yield stress for the clay
suspensions as encountered in oil sands waste stream processing.
As we will see, under these base–case conditions the liquid
sometimes gets only partially (and sometimes only marginally)
mobilised. In order to check to what extent increasing the
impeller speed helps in mobilising the liquid also higher impeller
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speeds are investigated. At higher impeller speeds Re∞ and Db
increase, while Bn decreases.

In its basic implementation (as used in this study) the lattice-
Boltzmann method applies a uniform, cubic grid. The spatial
resolution of the grid was such that the tank diameter T equals
180 grid spacings � (� = T/180). The time step is such that the
impeller revolves once in 2000 time steps. The rotation of the
impeller in the static grid is represented by an immersed bound-
ary technique. In order to assess grid effects, a flow case was also
simulated on a grid with resolution � = T/240, and compared
with its T/180 counterpart in terms of global time evolution of
the structure parameter � in the stirred tank.

As the default situation, the simulations were started with a zero
liquid velocity field and a uniform network parameter � = 1 (fully
developed network). This mimics the common situation that the
liquid has been standing still for sufficient time to develop a net-
work after which we turn on the agitation to mobilise it. Our
primary interests are in how the flow develops towards a (quasi)
steady state, what flow structures can be observed in (quasi)
steady state, and what the influence of the Deborah number and
the impeller speed is on all this.

RESULTS
In order to assess how the flow in the tank evolves from a zero-
velocity, fully networked (� = 1) state towards a quasi steady,
agitated state we show in Figure 3 time series of the tank-averaged
network parameter 〈�〉 for Db = 1, 10, and 100 (and further
base–case conditions, Re∞ = 6 × 103, Bn = 100, ˛ + 1 = 100). Obvi-
ously agitation breaks down the network to a large extent. The
time-scales of this process largely depend on the Deborah num-
ber; the slower the liquid, the slower the break-down process. For
Db = 1 quasi steady state sets in after approximately 10 impeller
revolutions, whereas it takes over 200 revolutions for Db = 100. At
Db = 10 the route towards steady state is quite peculiar. After some
40 revolutions—when it looks like a steady state with 〈�〉 ≈ 0.33
has been established—〈�〉 starts increasing slightly, however sig-
nificantly with a final steady state that has 〈�〉 ≈ 0.39 reached after
slightly more than 100 impeller revolutions.

The evolution to steady state in terms of 〈�〉 is quite insensitive
with the grid resolution. In Figure 4 we show two cases (that for
a change start with 〈�〉 = 0) that are the same in dimensionless
terms, but that differ in grid spacing relative to tank diameter:
� = T/180 (default) and � = T/240. As can be observed, the dif-
ferences are small.

In order to interpret the evolution of the mobilisation process
at Db = 10 (see Figure 3) in more detail, scalar distributions in
the vertical, mid-baffle plane at various stages are given in Figure
5. The Rushton turbine first reduces the network parameter in
its direct vicinity after which the breakdown process spreads

Figure 3. Time series of the tank average network parameter 〈�〉 for
three Deborah numbers as indicated.

Figure 4. Time series of tank average network parameter 〈�〉 for
simulations with different spatial resolution. Dashed curves: � = T/180;
solid curves: � = T/240. Re = 6000, Db = 1 starting from a zero flow field
and � = 0 everywhere.

throughout the tank. The slight increase of 〈�〉 that sets in after 40
impeller revolutions as observed in Figure 3 is due to an intricate
interplay between macro-scale flow and thixotropy effects. The
strong radial stream emerging from the impeller and hitting the
tank wall starts deflecting more and more downwards, thereby
favouring the strength of the flow in the lower part of the tank, and
weakening the flow in the upper part of the tank. This is a positive
feedback process: It allows the network in the upper part of the
tank to recover which further contributes to the downward deflec-
tion of the impeller stream and weakening the flow in the upper
part even further. After roughly 100 revolutions the flow has set-
tled in a state with strong flow in the volume below the impeller,
and weak flow (and marginal mobilisation) in the volume
above.

The Deborah number (and thus the time-dependent nature of
the liquids) thus appears to be a crucial parameter for the level

Figure 5. Instantaneous realisations of the �-field in the vertical plane midway between baffles. Base–case with Db = 10. Flow at (from left to right) 10,
40, 70, 100, and 180 impeller revolutions after start-up.
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Figure 6. Instantaneous realisations of the �-field in the vertical plane midway between baffles after quasi steady-state has been reached. From left to
right: Db = 0, 1, and 100.

of mobilisation and (related) flow structures in the tank. It is
worthwhile noting that under steady, homogeneous shear con-
ditions the three liquids as used in Figure 3 display exactly the
same shear-thinning behaviour (according to Equation 4). The
lower the Deborah number, the faster the flow reaches (quasi)
steady state, and also the higher the steady-state 〈�〉. For low
Deborah numbers, the liquid responds quickly to deformation
(and absence of deformation). Therefore the regions in the liq-
uid undergoing strong deformation due to agitation (notably the
impeller-swept volume, and the impeller stream) largely overlap
with regions of low �. Given the liquid’s quick response, the low-
� regions do not get a chance to be transported to the rest of
the tank, leaving that part quite inactive (similar to cavern for-
mation with Bingham liquids) and giving rise to relatively high
tank-averaged network parameters. As we discussed above, the
interactions between liquid and flow time scales give rise to a
complex evolution of the flow for Db = 10. If Db increases fur-
ther to 100, the delay between the moment the deformation is
applied to the liquid and the destruction of the network increases,
so that high deformation regions get dislocated from low viscos-
ity regions. Similarly, more quiescent regions not necessarily get
the change to develop high apparent viscosities. At Db = 100 the
liquid is responding so slow that the network parameter � gets
fairly uniformly distributed in the tank.

In Figure 6 we show typical distributions of � after quasi-steady
state has been reached for Db = 0, 1, and 100. For Db = 0, the
transport equation in � (Equation 1) does not need to be solved;
it can be determined directly from the local �̇ and Equation (3).
Comparison of infinitely fast liquids (Db = 0) and time-dependent
liquids agitated such that Db = 1 shows minor differences. This is
further detailed in Figure 7 where we show axial profiles of the
velocity fluctuation levels in terms of the turbulent kinetic energy
k, and apparent viscosity �a.

Apparently if the liquid is agitated such that Db = 1, the liquid’s
time dependence plays a minor role. At the other side of the spec-
trum, for large Db (Db = 100), � gets (more or less) uniformly
distributed throughout the tank. For the specific case considered
here we expect laminar flow; the uniformity of � results in a uni-
form and relatively high viscosity: in quasi steady state 〈�〉 ≈ 0.30
so that 〈�a〉 ≈ 30�∞ and 〈Re〉 = �ND2/〈�a〉 ≈ 200.

For the �-fields depicted in Figure 6 at Db = 1 and Db = 100, the
corresponding velocity vector plots are given in Figure 8. At Db = 1
the impeller stream is transitional/turbulent whereas the flow in
the rest of the tank is laminar. The placement of the impeller with
a bottom clearance of T/3 makes the upper parts of the liquid
virtually immobile. As expected, at Db = 100 the flow is laminar,
however with a better overall mobility compared to the Db = 1
case.

Figure 7. Vertical profiles at a radial position of r = T/4 of the time-average kinetic energy k, and the apparent viscosity �a for the various Deborah
numbers.
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Figure 8. Snapshot of velocity vectors in the mid-baffle plane in the tank for Db = 1 (left) and Db = 100 (right) after quasi steady state has been reached.

An obvious way of enhancing liquid mobility is increasing the
impeller speed N. Since changing N has consequences for three of
the four dimensionless numbers that have been identified above
we have chosen to present the simulation results directly as a
function of the impeller speed relative to the base–case impeller
speed (that gave rise to Re∞ = 6 × 103, Bn = 100). Slower liquids
(liquids with higher Db-base values) benefit relatively more from
increasing the impeller speed than faster liquids, especially in
terms of the enhanced agitation mobilising bigger parts of the
tank. This is illustrated in Figure 9. This figure shows � contour
plots for Db-base = 1, 10, and 100 at a three times higher impeller
speed as compared to the base-speed.

SUMMARY
In this paper, a procedure for detailed simulations of flow of
thixotropic liquids is applied to transitional and mildly turbulent
agitated tank flow. Thixotropy is considered to be the result of
the finite rate response of the integrity of a network in the liquid
to local flow conditions. The thixotropy model used is very sim-
ple: It is purely viscous, it assumes linear relations for network
build-up and breakdown (the latter due to deformation), and a
linear relation between apparent viscosity and network integrity.
This simple model, however, already comes with four parame-

ters. Where single-phase mixing tank flow of Newtonian liquids
can be captured by a single dimensionless number—the Reynolds
number—(once the tank and impeller geometry in terms of aspect
ratios has been defined, and if the tank does not have a free sur-
face), we now need four dimensionless numbers to pin down the
flow conditions. In this paper these dimensionless numbers are a
Reynolds number Re∞ based on the infinite-shear viscosity, a Deb-
orah number Db being the time scale of the liquid relative to the
time of a single impeller revolution, a pseudo-Bingham number
Bn, and the ratio of zero-shear over infinite-shear viscosity. The
aim of this paper is to see how thixotropy qualitatively impacts
global flow structures and mixing and liquid mobilisation in agi-
tated tanks. In our base–case simulations we fix the Reynolds
number to Re∞ = 6 × 103 which allows us to perform DNS, the
Bingham number to Bn = 100 which translates to a pseudo yield
stress of order 10 N/m2 in our lab-scale (10 L) setups, and the
viscosity ratio to 100.

The primary characteristic of thixotropy is the effect of the
deformation history on the liquid’s rheological behaviour. In
terms of the dimensionless numbers considered here, thixotropic
liquids give rise to non-zero Deborah number. For this reason we
studied the effect the Deborah number has on the flow. Compar-
ing flows with Db = 1 and Db = 0 only shows marginal differences
which implies that the liquid’s time dependence is not strongly

Figure 9. Snapshots of �-contours for three times the base–case impeller speed. From left to right: Db-base = 1, 10, 100 respectively. Note the small
high-� spots in the upper corners of the right panel. Also note the different colour scale as compared to Figure 6.

| VOLUME 89, AUGUST 2011 | | THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING | 633 |



felt if its time scale is of the order of the time required for one
impeller revolution. At Db = 100, that is, at the other side of the
Db-range considered, a slow evolution towards a fairly homoge-
neous distribution of the network parameter is observed resulting
in—given the rest of the conditions—laminar flow. The unifor-
mity is due to the large delay between deformation and network
breakdown, and the slow build-up of the network under quies-
cent conditions. A more intriguing situation occurs when Db = 10.
This case shows the strongest interaction between flow and liq-
uid time scale, the reason probably being that the liquid time scale
now gets comparable to the circulation time of the liquid in the
tank (the flow number for a Rushton turbine is roughly equal to
one which results in a circulation time of approximately 20/N, see,
e.g., Tiljander et al., 1997). The Rushton turbine flow at Db = 10
slowly (over some 100 revolutions) evolves to the undesired sit-
uation with strong flow underneath the impeller, and a largely
immobile volume above.

Given the sometimes poorly mobilised tank volumes we sub-
sequently studied to what extent increasing the impeller speed
improves overall mobilisation. It does so in a manner that favours
cases with high Deborah numbers.

The results presented in this paper are largely qualitative, and
sensitive to the specific thixotropy model chosen. However, they
do show a rich response of stirred tank flow to thixotropy. Fur-
thermore, the methodology as outlined here is generic and can
be easily adapted to more complicated (albeit viscous) rheolog-
ical liquid descriptions. The method is computationally efficient
(as demonstrated by the significant number of flow systems, and
the significant numbers of impeller revolutions per flow system
simulated) and geometrically flexible so that attacking practical
mixing and mobilisation problems is within reach.

NOMENCLATURE
D impeller diameter
dij rate of strain tensor
k turbulent kinetic energy
k1, k2 thixotropy parameters (Equation 1)
N impeller angular velocity
r, z radial and axial coordinate in tank (Figure 2)
T tank diameter
t time
ui fluid velocity component
vtip impeller tip speed
xi spatial coordinate
˛ + 1 viscosity ratio
�̇, �̇c (characteristic) deformation rate
� lattice spacing
�a, �∞ apparent, infinite-shear dynamic viscosity
�, 〈�〉 (tank-averaged) network integrity parameter
� density
�Y yield stress
Bn Bingham number
Db Deborah number
Re∞ Reynolds number based on infinite-shear viscosity
〈Re〉 Reynolds number based on the tank-averaged apparent

viscosity
ss (subscript) steady-state
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