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a b s t r a c t

A procedure for the direct numerical simulation (DNS) of the mixing of a passive scalar dissolved in a fluid phase

due to the motion of spherical solid particles relative to the fluid is outlined. The procedure is based on solving the

fluid flow in between the solid spheres with the lattice Boltzmann method, a molecular dynamics type of approach

for the solid particle motion (including hard-sphere collisions), and solving a convection–diffusion equation for the

passive scalar. The full resolution (in terms of particle motion, flow of interstitial fluid, boundary conditions at the

particle surfaces) implies that only small-scale systems can be considered. In this paper the procedure is applied
to a fully periodic system to assess the mixing performance of granular particles, and to a micro-channel in which

particles are contained to enhance scalar mixing in laminar flow.

© 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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ular gas with a constant temperature. As mentioned above,
. Introduction

n many chemical and environmental engineering applica-
ions, dense gas–solid and liquid–solid flows are encountered
requently. If species are dissolved in the fluid phase, they get
ispersed and mixed by fluid flow and molecular transport
ith the flow driven by multiple sources, the motion of the
articles relative to the fluid being one of them. In order to
odel the transport of a scalar in the fluid phase, somehow

he role of the particles in the dispersion of the scalar needs
o be taken into account. So far this modeling is largely based
n empirical dispersion models as they can be found in e.g.
he monograph by Levenspiel (1962) and references therein.
lso – in the context of computational fluid dynamics (CFD) of

urbulent disperse multiphase flows – it is quite common to
pply the analogy of transport of momentum by eddies and of
scalar for estimating scalar eddy diffusion/dispersion coeffi-

ients. It is questionable if such an approach would be valid for
ystems with high volumetric disperse phase loadings (where
urbulence can hardly develop due to the small interparti-
le spacings), and applications involving laminar flow such as
multiphase) micro-reactors.

In the present study, numerical experiments are described
hat directly probe the spreading of a passive scalar as a
esult of solid particle motion. The moving particles agitate the

nterstitial fluid. Subsequently the flow disperses the scalar
issolved in the fluid. Goals of the simulations are to find
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out how the scalar spreading scales with the parameters gov-
erning the particle and fluid motion such as the granular
temperature. Due to the level of detail that needs to be resolved
in the simulations, we have to limit ourselves to small sys-
tems (in terms of the volume and/or the number of particles
involved). Two sets of cases will be considered in this paper.
In one set of cases we take a small, fully periodic, three-
dimensional system that we ‘stir’ by solid, spherical particles
that move through the fluid as a granular gas (i.e. they agitate
the interstitial fluid without their motion being affected by the
presence of the fluid). This mimics a homogeneous system in
which we single out the effect of particle motion on scalar dis-
persion. The other set of cases relate to micro-channels that
e.g. could be part of a micro-reactor. In such channels mix-
ing is an inherent problem given the low Reynolds numbers
inhibiting turbulent structures to develop.

In the systems we study numerically, the motion of the
solid particles and the interstitial liquid are fully resolved,
including finite-particle-size effects. In the cases involving
micro-channels, particle motion and fluid flow are fully
coupled, i.e. the moving particles initiate fluid flow; the hydro-
dynamic forces stemming from fluid flow act on the particles
and influence their motion. In the granular cases (with fully
periodic boundary conditions) the particles move as a gran-
the particles do not feel the presence of the fluid. At the
fluid–solid interfaces, however, we impose a no-slip condition

neers. Published by Elsevier B.V. All rights reserved.
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Nomenclature

c, c0 scalar concentration, initial scalar concentra-
tion

cz < H/2 average scalar exit concentration in half the
channel

c̃(x, t) one-dimensional scalar concentration function
dp particle diameter
fc collision frequency
g gravitational acceleration vector
H channel width
L linear size of 3D periodic domain
Lb, Ld, Lu channel portions (bed, downstream, and

upstream length, respectively)
M number of realizations
N number of particles
rp particle center position
Rech = uinH/� channel Reynolds number
Reg =

√
Tgdp/� granular Reynolds number

Sc = �/� Schmidt number
Tg granular temperature
t time
uin inlet velocity
vp particle velocity
vs particle settling velocity
x, y, z spatial coordinate system
˛ fitting parameter
� , � e diffusivity, effective diffusivity
� solids volume fraction
� mean-free-path
� kinematic viscosity
�s, �l solid and liquid density
� scalar concentration profile width
�p particle angular velocity

The dimensionless numbers governing the particle system
on the fluid. In that manner the fluid responds to the particle
motion and gets agitated. In all simulations discussed, col-
lisions of particles are explicitly resolved and considered to
be fully elastic and smooth (no friction). Once the fluid–solid
systems are fully developed, we release a passive scalar in
the fluid phase. By solving the convection–diffusion equation
for the tracer with non-penetration boundary conditions at
the solid surfaces, we observe how the tracer spreads by the
action of the moving solid particles. We do not consider mass
transfer between the particles and the fluid, the solid par-
ticles are there to agitate the fluid and thus mix the scalar
dissolved in the fluid phase. To limit the parameter space, we
give the dissolved scalar a high Schmidt number, i.e. we set
the molecular diffusivity of the passive scalar close to zero.
The (inevitable) numerical diffusion is suppressed by using a
total variation diminishing (TVD) scheme in estimating con-
vective fluxes (Harten, 1983). The level of numerical diffusion
has been assessed by checking the effect of grid refinement.

2. Numerical procedure

The lattice-Boltzmann method (LBM) (Chen and Doolen, 1998;
Succi, 2001; Yu et al., 2003) has been used to solve the fluid flow
in between the spherical particles. In the micro-channel cases,
fluid and particle motion are fully coupled by demanding that

at the surface of each sphere the fluid velocity matches the
local velocity of its surface (which is the sum of the linear
esign 8 6 ( 2 0 0 8 ) 1363–1368

velocity vp, and rotation �p × (r − rp) with �p the angular veloc-
ity of the sphere, rp the center position of the sphere, and r
a point on its surface). In the forcing scheme that is applied
here for establishing no-slip at the spherical surfaces this is
accomplished by imposing additional forces on the fluid at
the surface of the solid sphere. The details of the implemen-
tation can be found elsewhere (Goldstein et al., 1993; Derksen
and Van den Akker, 1999; Ten Cate et al., 2002). The collec-
tion of forces representing the no-slip conditions is added up
to determine the hydrodynamic force and torque acting on
each sphere (action = −reaction). For the non-granular cases
these are used to evaluate the equations of linear and rota-
tional motion of the spheres. Sphere–sphere (and sphere–wall
collisions in case of micro-channel flow) are considered fully
elastic and smooth (no friction). In the granular cases, smooth
and elastic collisions imply a constant granular temperature.

The dispersion of the passive scalar dissolved in the con-
tinuous phase fluid is simulated by numerically solving a
convection–diffusion equation for the scalar concentration c.
For this an explicit finite volume representation on the same
grid as used by the LBM is employed. To limit numerical dif-
fusion, we apply TVD discretization with the Superbee flux
limiter for the convective fluxes (Sweby, 1983). We step in time
according to an Adams–Bashford scheme. We do not allow
scalar concentration inside the spherical particles. At the sur-
face of the particles we impose ∂c/∂n = 0. This condition is also
applied for assigning concentrations to grid nodes that get
uncovered by a moving solid particle. Since particles typically
move less than 0.05 times the lattice spacing per time step, an
uncovered node always is close to a solid particle interface. We
draw the normal out of the particle into the fluid at the position
of the uncovered node. By interpolation we determine the con-
centration on the normal one additional grid spacing into the
fluid and assign that concentration to the uncovered node (see
Hartmann et al. (2006) for more details). In some situations
this procedure cannot be followed: it regularly occurs that a
grid cell gets uncovered in between two closely spaced par-
ticles moving away from each other after a collision. In such
cases we assign the average concentration in the direct vicin-
ity to the uncovered grid node, while keeping that vicinity as
small as possible. Particles covering and uncovering grid nodes
containing scalar mass makes the simulations not inherently
mass conservative. In practice, total scalar mass is conserved
within a 0.5% uncertainty range.

3. Micro-channel simulations

We consider vertically placed channels with square cross sec-
tions (see Fig. 1). At the bottom of the channel we force fluid
in by imposing a uniform velocity uin over the cross sectional
area. This velocity, the channel size H and the fluid viscos-
ity � define the channel’s Reynolds number: Rech = uinH/�. In
the channel we place uniformly sized spherical particles with
diameter dp. The particles are confined to a section of the
channel with length Lb. They move freely around this space. At
its lower and upper end the particles collide on an imaginary
wall that the fluid passes undisturbed. These boundaries can
be viewed as very fine wire meshes (with mesh width much
smaller than dp). Upstream and downstream of the bed the
channel is void of particles over length Lu and Ld, respectively
(see Fig. 1)
are the solids volume fraction � of the particle bed, the aspects
ratios dp/H and Lb/H, and the solid over fluid density ratio �s/�l.
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Fig. 1 – Micro-channel flow geometry including definition
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Fig. 2 – Scalar concentration in the center xz-plane of the
micro-fluidized bed at three moments in time (t = 2, 4,
8 × H/uin) after starting the release of the scalar at x = 0.
Conditions: � = 0.365, vs/uin = 24, Rech = 12.2.
f the coordinate system. The vector g indicates the
irection of gravity and is in the negative x-direction.

inally, since we will be considering cases with fluidized par-
icles in vertical channels gravitational acceleration g plays

role. It is introduced via the Stokes settling velocity of a
ingle particle in unbounded fluid vs = 1/18(�s − �l)

∣∣g∣∣ /(�l�)d2
p

ncluded in the velocity ratio vs/uin.
Scalar mixing is quantified by solving the convection–

iffusion equation for a passive scalar concentration c with
calar diffusivity � (and Schmidt number Sc = �/� ) dissolved
n the liquid. The scalar enters fully segregated at the bottom
ide (at x = 0) of the mixer: in half of the inlet cross section
z < H/2), no scalar is added; in the other half of the inlet cross-
ection (z > H/2) we maintain a scalar concentration of c = c0.
he scalar release at x = 0 only starts when the solid–liquid
ow is fully developed; the start of scalar release is denoted
ith t = 0. Two dimensionless groups were a priori set constant:

s/�l = 2.5 (e.g. solid glass beads in water), the Schmidt number
as set to 103 (hardly any molecular diffusion).

.1. Results

ypical laminar flow results (Rech = 12.2) in terms of evolving
oncentration fields for a fluidized bed case are given in Fig. 2.
e look at the center cross section through the channel at

hree moments after the scalar release. The round disks are
he cross sections of the spheres; all spheres have the same
ize but are positioned differently with respect to the cross sec-
ion. We keep track of the orientation of the spheres (indicated
y the black markers on each sphere). The thin, horizontal
hite lines in the panels are the boundaries the spheres are

onfined to. In Fig. 3 is a snapshot of the scalar concentra-
ion fields in the exit plane after steady state almost has been
eached. It clearly shows that at the exit the scalar field has not
ompletely forgotten its segregated state in which it entered.

The motion of the fluidized particles induces fluid motion

hat helps in dispersing the scalar. Particle motion induces
emporal variation in the scalar field as shown in the time
eries of the average concentration in the exit plane (Fig. 4).
A simple way to characterize scalar dispersion is by monitor-
ing at the exit plane how much scalar has reached the side of
the channel with z < H/2, i.e. that part of the channel’s cross-
section where no scalar was injected at the inlet plane. We
quantify this with the average scalar concentration over that
part of the exit plane with z < H/2 (denoted as cz < H/2). A value
of cz < H/2 = 0 implies no dispersion at all; a value of 0.5c0 implies
ideal dispersion since in that case the exit concentration must
be virtually uniform. Time series of cz < H/2 have been included
in Fig. 4. They show a time-averaged value of 0.291c0 (and stan-
dard deviation 0.043c0) for the fluidized case in quasi steady
state (reached after tuin/H ≈ 10).

Increasing the length of the channel helps in better spread-
ing the scalar. In Fig. 5a we show cz < H/2 for three lengths of the
reactor, with the same further conditions. The exit concentra-
tion increases; its standard deviation decreases with length.
The exit concentration cz < H/2 can be translated in an effec-
tive diffusion (or dispersion) coefficient by means of a simple,
Fig. 3 – Scalar concentration in the exit plane at t = 8 H/uin.
Same conditions as Fig. 2.
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Fig. 4 – Time series of the average concentration in the exit
plane (a), and lower portion of the exit plane (b) for the

Fig. 5 – Time-average exit concentrations cz < H/2 at quasi
steady-state (a), and effective diffusivities (b) as a function
of reactor length. The filled squares in (a) indicate the RMS
fluidized bed case as depicted and defined in Fig. 2.

one-dimensional diffusion model:

�e = 1
4	

(
cz<H/2

c0

)2 H2uin�

Lb
(1)

The results in Fig. 5b show that � e only weakly depends on Lb,
giving some credit to the simple diffusion model.

4. Granularly moving particles

In order to generalize and extend the results with the micro-
channels to bigger systems we now consider fully periodic,
three-dimensional, cubic domains with edge length L. These
mimic large homogeneous systems. In such cubic domains

we release N spherical particles all having the same diameter
dp. The solids volume fraction of the system is � = N	d3

p/(6L3).
The particles are given a mean-square velocity of 2Tg, with Tg

Fig. 6 – Snapshots of concentration contours in xz cross-sections
Reg = 2.8 at (from left to right) t

√
Tg/dp = 0.05, 1.96, 3.88, and 5.7

parameters except now Reg = 104.
of the fluctuations in quasi steady state.

the granular temperature. The energy of the particulate sys-
tem is fully contained in translational motion – the particles
do not rotate. The granular temperature is kept constant by
letting the particles undergo fully elastic and frictionless hard-
sphere collisions. After this (dry) granular system has evolved
to a steady state, we introduce the interstitial fluid. This fluid
is one-way coupled to the particles: the fluid responds to the
particle motion; the particles do not feel the fluid and con-
tinue their granular motion. The flow dynamics of this system

are characterized by two dimensionless numbers: the solids
volume fraction �, and the Reynolds number based on the
granular temperature Reg =

√
Tgdp/�.

through the cubic domain. Top four panels: � = 0.30 and
9, respectively. Bottom four panels have the same
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Fig. 7 – Simulated (dashed lines) and fitted (solid lines)
one-dimensional concentration profiles at three instants in
time: t

√
Tg/dp = 0.43, 2.16, and 4.33. � = 0.30 and Reg =
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Fig. 8 – Concentration profile width � as a function of time
for three statistically independent repetitions with � = 0.30
and Reg = 2.8 on a cubic L3 domain (thin solid curve, dotted
curve, dashed curve). The thick solid curve has the same
settings except for the domain size in x-direction and the

– as the average distance solid particles travel in between
two subsequent collisions, increases with decreasing solids

Fig. 9 – Concentration profile width � as a function of time
04.

We start simulating passive scalar transport once the flow
s fully developed. As initial condition for the scalar concen-
ration we give a thin yz-slab (with slab thickness dp/4) of fluid

concentration c = 1, and the rest of the fluid c = 0. Subse-
uently we keep track of the spreading of the scalar as a result
f the fluid flow induced by the solid particle motion. Typical
equences are given in Fig. 6.

The full, three-dimensional data are reduced to a
ne-dimensional scalar concentration function c̃(x, t) ≡

/(L2)

L∫
0

L∫
0

c(x, y, z, t)dydz. By repeating the simulation M times

nd averaging the results we get smooth c̃(x, t) profiles that we
t with a Gaussian c̃fit(x, t) = a/(�(t)

√
2	) exp((x − 
)2/2�(t)2),

ee Fig. 7. The default value of the number of repetitions
has been set to 20. The only fitting parameter is �; the

ther two parameters (˛ and 
) are a priori known and
onstant in time. They relate to the total scalar mass
eing released (˛), and the average position of the scalar

(which is the center position of the initial slab). We use
he way � develops in time as a measure for the scalar
ispersion.

In Fig. 7 we see that – compared to the later stages – for
short” times the simulated concentration profile does not fit
Gaussian very well. This is due to the top-hat initial con-

entration profile we imposed. At later stages, however, the
rofiles are very much akin to Gaussian functions, and the
idth of the fitted Gaussian is a good measure for the scalar

preading.
The solids volume fractions that have been considered are

= 0.10, 0.20, 0.30, 0.373, and 0.45. The cases with � = 0.30
erved as base cases. Verification tests regarding repro-
ucibility, grid refinement, time step, and domain size were
erformed at this volume fraction. For each volume fraction
e vary the Reynolds number based on the granular tempera-

ure (Reg) by varying the fluid viscosity. The Reynolds numbers
onsidered are 2.8, 28, 104, and 280.

The default values for the particle diameter dp is 16 lat-
ice spacings (dp = 16 in LB units). The default domain size
= 100 (L = 6.25dp). The number of spheres in the computa-

ional domain determines �. The granular temperature is
hosen such that the solid particle velocities (a good measure
f which is

√
Tg) stay well below the speed of sound of the
attice-Boltzmann scheme: Tg is of the order of 10−4, the speed
f sound is of order 1.
time span of the simulations. Both were doubled.

4.1. Results

A number of verification tests were performed for cases with
� = 0.30. One of the things we checked was reproducibility,
i.e. if the size of the ensemble M (=20) that we base our fit-
ting procedure on is large enough to get reproducible results.
In conjunction with reproducibility we checked the influ-
ence of the domain length in x-direction. As can be seen in
Figs. 6 and 7, at some stage in time the concentration profile
gets a width comparable to the size L of the domain. The peri-
odic conditions then make the scalar leaving the domain on
the right hand side enter on the left hand side, inhibiting a fit
with a single Gaussian. One of the options for extending the
time span of some of the simulations is enlarging the domain
size in x-direction. Fig. 8 shows results on reproducibility and
on the effect of doubling the domain size in x-direction in
the form of evolutions of � as a function of time. The � ver-
sus t curves are well reproducible (deviations less than 4%).
Extending the domain size allows for longer runs thus get-
ting a clearer view on the functional relationship between the
concentration profile width � and time.

There is a very distinct effect of the solids volume fraction
on scalar spreading. In Fig. 9 we show that the scalar spreading
increases significantly with decreasing solids volume fraction.
This is not a surprising result. The mean-free-path (MFP, sym-
bol �) defined – in analogy to kinetic theory and atomic physics
for various solids volume fractions. Left panel: Reg = 2.8;
right panel: Reg = 28.
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Fig. 10 – Concentration profile width � as a function of time
for various solids volume fractions. Time has been scaled
with the collision frequency fc, � with the MFP �. Panels a,
b, c, and d, respectively, have Reg = 2.8, 28, 104, and 280.

The fit also included is the function �/� =
√

˛tfc. The fitting

Yu, D.Z., Mei, R.W., Luo, L.S. and Shyy, W., 2003, Viscous flow
parameter ˛ differs per panel and is 0.9, 1.1, 1.4, and 1.5,
respectively.

volume fraction (for dilute gases this is an inversely propor-
tional relationship). If the particles are able to travel longer in
a certain direction, they take with them the scalar over longer
distances. This notion suggests that it makes sense to scale
the scalar spreading as a function of time in terms of colli-
sional parameters, viz. the MFP and the collision frequency of
the particles. This we do in Fig. 10. It shows the scalar spread-
ing as a function of time for all the four Reynolds numbers we
have considered. The MFP � and the collision frequency fc were
directly determined from the simulations. For each Reynolds
number, the curves taken at different solids volume fraction
get quite close to one another. There is a systematic differ-
ence though. The curves related to the higher solids volume
fractions are slightly but systematically above the ones with
lower �; apparently the scaling with � and fc slightly overcom-
pensates the differences as observed when scaling with dp and
dp/

√
Tg (as in Fig. 9).

Also shown in Fig. 10 is the (by the eye) best fit through the
bundle of curves according to the function �/� =

√
˛tfc, with ˛

the only fitting parameter. We estimate this rather coarse way
of fitting to be roughly ±8% accurate in ˛. We see that despite

the uncertainties involved, the dimensionless parameter ˛

clearly depends on the granular Reynolds number. For low
Reynolds numbers the fluid flow and thus the scalar spreading
esign 8 6 ( 2 0 0 8 ) 1363–1368

are largely slaved to the kinematics of the particle motion; the
flow does not develop structures smaller than those related to
the particle field. At higher Reynolds numbers, the more iner-
tial flow develops eddies that play a role in enhancing scalar
spreading.

5. Summary

In this article we discussed mixing as a result of solid particle
motion. We set up fully resolved simulations of a micro-
channel with mixing enhanced by fluidized particles, and
of fully periodic domains with granular particles. The latter
mimics a homogeneous system with constant granular tem-
perature. The amount of scalar spreading strongly depends
on the solids volume fraction, with higher solids volume frac-
tions leading to lower spreading; scalar spreading in terms
of the width of the scalar concentration profiles is roughly
proportional to the mean-free path of the solid particles.

The fluidized particles dispersed in micro-channels
enhance laminar mixing, and may be an option to overcome
the in many cases problematic scalar mixing in micro reac-
tors. The simulations clearly need further work in the sense
that a large parameter space (solids volume fraction, parti-
cle size relative to channel size, channel length, fluidization
velocity) needs to be explored in order to design and optimize
such micro mixing devices.
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