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Direct numerical simulations of microsphere motion through a microfluidic separation device (pinched
flow fractionation, PFF, device) were performed using the lattice Boltzmann method. The results were
compared with the original experimental work on PFF by Yamada et al. (2004). The effects of the
pinched segment width and the ratio between the particle solution and diluent flow rates were studied.
Both analyses showed agreement with the experimental trends. Previous modelling of PFF has relied on
the assumption that particles follow streamlines, and this assumption was evaluated. The simulations
indicated that large particles experience a lift force due to a region of low pressure between the particle
and the wall of the pinch. The lift force attracts the particles to the wall as they exit the pinched
segment. Smaller particles experience a much weaker force. This force may provide an explanation for
the experimental observation that a sharp expansion provides better separation performance than a
gradual expansion, an effect that cannot be explained by streamline analyses.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The motion of solid particles is important in a wide variety of
microfluidic devices. In many of these devices, geometric con-
straints, internal hydrodynamic forces, or external forces are used
to control the motion of the particles. Often the goal is to separate
the particles by size. The design of such devices requires models
for the interactions between the particles and the flow to account
for effects such as the lift on particles in shear flow and drag due
to Dean flow (Berger et al., 1983). Modelling and simulation are
complicated by the fact that next to viscous effects, inertial effects
may be important at the moderate Reynolds numbers that can be
achieved in microfluidic devices, implying that the simplifying
assumption of creeping flow is not applicable. The challenges in
understanding the behaviour of particles in microfluidic systems
are emphasized by a recent study of microsphere motion in which
the assumption that the centre of mass of a particle has the same
speed as the particle-free flow was shown to become inaccurate
as the width of a microchannel approaches the diameter of the
spheres (Di Carlo et al., 2009). Thus, confinement, in addition to
finite particle size and mass, causes particle velocities to deviate
from the velocity of the undisturbed fluid. Computational studies
with fully resolved hydrodynamics and coupled particle motion
are a valuable tool for studying complex microfluidic systems
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when the validity of simplifying assumptions is poor or uncertain.
In this work, we present lattice Boltzmann simulations of a device
for separating particles by size.

Pinched flow fractionation (PFF), a method for the continuous
separation of particles by size, was proposed by Yamada et al.
(2004). In PFF, particles with different sizes in a fluid stream are
pushed against one wall of a narrow channel, the pinch, by the
flow of an injected diluent. Due to their alignment along that wall,
the centres of mass of the particles follow different streamlines.
When the particles enter a wider channel, they separate as the
streamlines spread. The method has been used to separate 15 and
30 um poly(styrene/divinylbenzene) beads in a viscous aqueous
Dextran solution (Yamada et al., 2004), erythrocytes from blood
plasma (Takagi et al.,, 2005), and the droplets of an emulsion
(Maenaka et al., 2008). In the latter two examples, the irregular
shape and deformability of the dispersed phase introduce addi-
tional complexity to performance analyses. Enhanced PFF meth-
ods have been proposed (Lee et al., 2011b; Vig and Kristensen,
2008). We study rigid spherical particles in simple PFF.

The analysis and prediction of PFF performance have been
primarily based on the assumptions that particles follow the
streamlines of the particle-free flow and do not disturb the flow
(Jain and Posner, 2008; Vig and Kristensen, 2008; Yamada et al.,
2004). The first empirical model for PFF was a linear amplification
relationship that was determined from the paths of fluorescent
microsphere tracers (1.0 pm diameter) (Yamada et al., 2004)

D\ w,
Yo= <Wp_§>%p (1)
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where w, is the width of the outlet, w;, is the width of the pinch,
Y, is the position of the particle centre at the outlet, and D is the
diameter of the particle. This model assumes that particles reach
the upper wall while in the pinched segment. If the particles do
not reach the upper wall, linear amplification implies that

Yo _ Wo
v @)
where y, is the position of the particle centre when it is in the
pinched segment. This empirical model assumes that the stream-
lines, as determined from the tracer trajectories, exhibit linear
amplification and that the microspheres being separated follow
these streamlines. Mortensen (2007) points out that for low
Reynolds number (Stokes) flow, the assumption that particles
follow streamlines cannot explain some experimentally-observed
phenomena. For example, if particles follow streamlines, then
separation performance should be independent of the geometry
between the pinch and outlet because the positions of the
streamlines in the outlet depend only on the final width of the
channel. Yamada et al., however, observed better performance
with a sudden expansion (step, 180° boundary angle) than with a
gradual expansion (linear, 60° angle). Mortensen indicates a need
for more detailed modelling of PFF to better understand and
design PFF devices.

Vig (2010) provides a review of recent improvements to the
empirical linear model proposed by Yamada et al. (2004). The
model of Andersen et al. (2009) employs the analytical solution
for the laminar flow profile in a rectangular channel and shows
better agreement with experimental results. While this model
provides an improvement to the linear streamline amplification
model, which is accurate in the limit of high aspect ratio channels,
it still relies on the assumption that particles follow streamlines.
Vig and Kristensen (2008) and Vig (2010) modelled PFF by
assuming that particles follow streamlines, but included a corner
effect. This corner effect accounts for the geometric constraints
that prevent particles from following streamlines that pass closer
to a wall than the radius of the particle. Their 2D computational
model used the finite element method (FEM) to obtain the
streamlines of the flow. It is based on the assumptions that the
particles do not disturb the flow and the walls provide only a
geometric constraint and cause no forces on the particles. The
model is considered semi-3D because a body force that is
inversely proportional to the fluid velocity is used to account for
the hydraulic drag of the walls in the omitted dimension (the
depth of the channel).

To allow better modelling of PFF, the reasons for the deviation
of the particles from the streamlines need to be understood. These
deviations appear to be caused by the complex hydrodynamics
arising from the confinement of the particles in a narrow channel.
The purpose of the present work is to use the lattice Boltzmann
method to perform direct three-dimensional simulations of PFF.
The flow of single spherical particles of two different diameters
through a PFF device was simulated. The simulation results were
compared with the experimental performance data reported by
Yamada et al. (2004). Such simulations with fully resolved
hydrodynamics and full resolution of the solid-liquid interface
provide a way to determine the limitations of simplifying
assumptions and identify which physical effects are essential for
modelling particle behaviour. The simulations could therefore be
used to guide the development of simpler yet accurate models.

This paper is organized as follows. First, the mathematical
modelling of PFF is described, followed by a description of the
required numerical methods. These include the lattice Boltzmann
method (LBM), its boundary conditions, the immersed boundary
method, and the methods for the numerical integration of particle
motion. Several validation benchmarks are described before the
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Fig. 1. Schematic of the simulated pinched flow fractionation device.

full simulations of PFF are presented and discussed. Finally, the
research is summarized and main conclusions are provided.

2. Mathematical modelling and simulation set-up
2.1. Geometry

A schematic of the simulated device geometry is shown in
Fig. 1. The geometry employed by Yamada et al. was modified to
facilitate the simulations yet allow a comparison between the
experiments and simulations to be meaningful. One difference in
the geometry is the angle between the inlet channels. While
Yamada et al. used an angle of 60°, the simulated geometry has an
angle of 180° to simplify the implementation of the boundary
conditions on a cubic lattice. This difference in the geometry,
though it may affect the position the particles reach in the
pinched segment, is considered minor because our main interest
is in the behaviour of the particles as they exit the pinched
segment. Another difference is the smaller outlet width (500 pm
versus 1000 pm). For either width, the ratio between the pinched
channel and outlet channel widths is high, and it is expected that
the vertical position of particles normalized by the width of the
outlet channel would be similar in both cases. The length of the
outlet, 350 pum, was chosen to limit simulation time by selecting
the shortest length for which FEM simulations with COMSOL
(COMSOL AB, 2010) showed a minimal difference in the stream-
lines when compared with a longer outlet channel.

To allow comparison with the experimental work, the para-
meters in the simulations were chosen to match the experimental
system as closely as possible. In LBM simulations, the distance
between lattice nodes Ax is taken to be one, and the time interval
At of each simulation time step is also one. Quantities used in the
simulations, such as length and viscosity, are given in lattice units
(Lu.) and the actual units are omitted. For example, a viscosity of
0.1 Lu. means 0.1 Ax?/At. The matching between the simulations
and experiments is performed through dimensionless numbers.
Based on the ratio of the particle diameter and the pinched segment
width, we simulate particles with equivalent physical diameters of
15 and 30 pm, as in the experiments. The particle over fluid density
ratio was 1.08. The long computation time imposed by LBM
stability constraints prevents running simulations at a Reynolds
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number that matches the experimental flow rate and fluid viscosity.
While Yamada et al. employed a highly viscous Dextran solution to
avoid sedimentation of the particles before they entered the PFF
device, we overcome numerical constraints by matching with the
Reynolds number for water at the same flow rate as the experi-
ments (140 pl/h). As a result of this choice, the simulated Reynolds
number is one order of magnitude higher than the experimental
Reynolds number. Nevertheless, the simulations can be compared
with the experimental results due to the observation that the
particle trajectories are Reynolds number independent at the low
Reynolds numbers considered (Section 3.6). This Reynolds number
independence is supported by the experimental evidence of
Yamada et al,, who showed a small change in particle positions
over the wide range of flow rates from 70 to 560 pl/h that
correspond to Reynolds numbers (Re, as defined later) from 0.01
to 0.1.

2.2. Governing equations

The fluid flowing through the PFF device is assumed to be
incompressible and Newtonian. Therefore, the flow can be
described using the Navier-Stokes equation

pr@c+ U - VT = —VP+uVPT + b 3)

where p; is the density of the fluid, U is the fluid velocity, P is the
pressure, u 1_s> the dynamic viscosity (the kinematic viscosity v is
u/ps), and b is the sum of all body forces. Mass conservation
implies the continuity equation

V.4 =0 4)

In the absence of a body force and time-varying boundary
conditions, non-dimensionalization of the Navier-Stokes equa-
tion provides one dimensionless parameter, the Reynolds number
Re, given by

_uL
Ty

Re (5)
where u is a characteristic speed and L is a characteristic length.
Due to the low speeds and small sizes encountered in microfluidic
devices, the flow is typically laminar, and this is the case for
the device and parameter range being simulated. The lattice
Boltzmann method is used to simulate the flow of a fluid
governed by these equations, as described in Section 2.3.

The motion of particles is governed by Newton’s laws of
motion. The forces acting on the particles are determined from
the immersed boundary method for imposing a no-slip condition
on the surface of a moving interface, as described in Section 2.4.2.
Though the polystyrene particles being simulated are slightly
more dense than the simulated fluid (water), gravity is neglected
due to the low density ratio and short time span during which the
particles pass through the PFF device. This is justified by the
Stokes law terminal Reynolds number for a settling 30 pm
polystyrene sphere, which is at least two orders of magnitude
smaller than the Reynolds number for the translational velocity.
The translational motion of the particles is governed by (Derksen
and Sundaresan, 2007)

X _g ©6)
de — 7P
. osdi, =
(ps—pf)gD ar = F1pm (7)

where X, is the position of the particle centre of mass, U is the
velocity of the particle centre of mass, D is the diameter of the
spherical particle, p; is the density of the solid particle
(ps/ps=1.08 for the polystyrene beads used by Yamada et al.,

2004, in water), and ?LBM is the force on the particle determined
from the immersed boundary method.

The rotational motion is governed by (Derksen and Sundaresan,
2007; and Shardt and Derksen, 2011)
dg 1

—
a—iqo(o'wp) (8
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where ¢ is the unit quaternion describing the orientation of the
particle, c_o>p is the angular velocity of the sphere with respect to a
body—_ﬁ)xed reference frame, “O” denotes quaternion multiplica-
tion, T ;g is the torque on the particle (in the laboratory reference
frame) due to the forces from the immersed boundary method, and
S is the transformation matrix for conversion from body-fixed to
laboratory coordinates. Eq. (8) describes the change in orientation
due to rotation; Eq. (9) describes the change in rotation rate due to
the applied torque. The numerical solution of the equations
governing the translational and rotational motion of a spherical
particle is described in Section 2.5.

2.3. Lattice Boltzmann method

The lattice Boltzmann method is used as the flow solver. This
method simulates the evolution of the velocity distribution of
the molecules in a fluid, which is governed by the Boltzmann
equation. With the correct choice of equilibrium distribution and
lattice symmetry, the lattice Boltzmann method simulates the
Navier-Stokes equations (Aidun and Clausen, 2010; Chen and
Doolen, 1998). The macroscopic hydrodynamic variables are
obtained as the moments of the velocity probability distribution
f. For example, the density and fluid momentum (and thus
velocity) are given by

p=>fi (10)

pu =Y fic; amn
i

where f; is proportional to the probability of a fluid molecule
moving with velocity ;. In the present work, the BGK-like LBM
proposed by Eggels and Somers is used (Eggels and Somers, 1995;
Somers, 1993). One of its benefits is stability over a broad range of
viscosities (Derksen and Sundaresan, 2007). This method employs
18 discrete velocities €; (with a corresponding set of 18 weight-
ing factors w;) in a regular cubic lattice.

To simulate incompressible flow, the Mach number I l/c
must be kept low, where c; ~ O(1) is the speed of sound in the
LBM. Therefore, the parameters for the simulations were chosen
to ensure that the maximum fluid velocity was approximately
0.01 Lu.

2.4. Boundary conditions

2.4.1. Inlets, outlet, and walls

Lattice Boltzmann simulations involve two steps: streaming, in
which probability densities are propagated to adjacent nodes, and
collision, in which the velocity distribution at each node relaxes
to the local equilibrium. During the streaming step, the densities
entering each node are required. In the bulk fluid, they are
obtained from the adjacent nodes. At a boundary of the fluid
domain, the incoming densities are unknown, and must be
specified by imposing a boundary condition. For a boundary
with a fixed velocity ', Eggels and Somers (1995) provide the
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condition
fi-fa="E (12)

where the subscript —i means the index j such that ?j:—?i.
This is a relationship between the known densities leaving across
the boundary in direction € ; and the unknown densities entering

the domain in direction € _;. To reduce entrance effects at
the inlets that would occur if a flat profile were imposed, an
approximation to the solution for steady laminar flow in a square
channel was used

16v eak
v(xz) = 58
WXWZ

X(Wx—Xx)zZ(W,—2) (13)

where Vpeqr is the maximum velocity of the profile, wy is the
width (x-direction) of the channel, w, is the depth (z-direction),
and v(x,z) is the non-zero component (y component) of the inlet

velocity . The use of this approximate solution is computation-
ally faster than evaluation of the exact solution for laminar flow.
The no-slip boundary condition, which is applied on all walls, is a

special case of the fixed velocity condition with & = 0:
foi=fi (14)

This is called the bounceback condition because the density
entering in the direction T _; is the same as the density leaving
in the direction ?,v.

The outlet requires special treatment because the pressure and
flow profile at the outlet are not known a priori. Furthermore, for
simulations with many time steps, such as those in the present
work, conservation of mass is essential. Assuming a linear
pressure gradient at the outlet, the incoming f; at the outlet at
position (x,y,z) are taken to be

fixy.2) = of (x-1,y,2) (15)

where the constant o is determined such that the densities
leaving and entering at the outlet and both inlets are exactly
balanced. This ensures mass conservation to within machine
precision. This boundary condition provides accurate results, as
detailed in Appendix A.

2.4.2. Immersed boundary method

The immersed boundary method allows the relatively easy
enforcement of a no-slip boundary condition on a moving surface.
In this method, the surface of each particle is specified as a
collection of surface points, the interior of the particles contains
fluid, and body forces are applied to the fluid nodes adjacent to
the interface. These body forces counteract any slip between the
solid particle surface and the fluid, forcing the velocity of the fluid
to match the velocity of the translating and rotating surface, thus
ensuring that the no-slip condition is satisfied. The particular
immersed boundary method employed in the present work is
based on Goldstein et al. (1993). A more detailed description of
the method that was used can be found in Derksen and
Sundaresan (2007) and ten Cate (2002). One important detail is
that a viscosity-dependent calibration is required to accurately
simulate spheres with a particular size (Ladd, 1994). Based on the
previous work on sedimentation, a particle hydrodynamic dia-
meter of 12 L.u. was chosen to ensure sufficient resolution of the
interface and flow. Consequently, uniformly distributed surface
points for spheres with hydrodynamic diameters of 12 L.u. were
obtained for viscosities of 0.1 and 0.2 l.u. The calibration is based
on the drag on an infinite cubic lattice of spheres (Sangani and
Acrivos, 1982).

2.5. Particle motion

The integration of the equations governing particle motion
was performed using finite difference approximations. The details
are provided in Shardt and Derksen (2011). The particle position,
governed by Eq. (6), was updated using explicit Euler integration.
The quaternion equation, Eq. (8), was updated using second order
Runge-Kutta integration with renormalization of the quaternion
at every time step. Explicit Euler integration of Egs. (7) and (9) is
unstable at low density ratios. Therefore, the improved-accuracy
split-derivative method described by Shardt and Derksen (2011)
was used for the integration of the translational and angular
velocities.

Collisions with the walls were modelled as fully elastic,
frictionless collisions: If after the position update the particle
was found to be intersecting a wall (i.e. the distance between the
particle centre and wall was less than the particle radius), then
the velocity component pointing towards the wall was reversed,
and the particle was moved away from the wall by the same
distance it had penetrated the wall. This simulates an elastic
rebound upon collision.

2.6. Implementation

Custom Fortran code based on previous sedimentation
research was used (Derksen and Sundaresan, 2007; Shardt and
Derksen, 2011). Parallelization with OpenMP was used to reduce
execution time. The fluid domain was initialized with a density
of pr=8 and no flow. It was found that a steady flow field was
achieved within 6000 time steps without a particle. The
immersed boundary and particle motion integration code were
then enabled, and the particle motion and fluid flow were
simulated until the particle reached the end of the outlet channel.
The motion of the particle from its initial position in the middle of
the inlet channel to the outlet took about 400,000 time steps,
depending on the path taken by the particle.

2.7. Simulation set-up

The conditions for the 16 simulations that were used to study
PFF are listed in Table 1. The first 10 simulations examine the
effect of changing the ratio between the particle solution and
diluent flow rates. The flow ratios are the same as those used by
Yamada et al. (2004). The last six simulations examine the effect

Table 1
Parameters for the simulations.

Run Domain size,  Viscosity, Particle Flow ratio, Pinch

nx x ny x nz v (Lu.) diameter, particle:diluent width,

D/w, Wp /W,
1 400 x400x41 0.2286 0.29 1:6 0.98
2 400 x 400 x 41 0.2286 0.29 9:19 0.98
3 400 x 400 x 41 0.2286 0.29 1:1 0.98
4 400 x 400 x 41 0.2286 0.29 19:9 0.98
5 400 x400x41 0.2286 0.29 6:1 0.98
6 200 x200x21 0.1143 0.57 1:6 0.95
7 200x200x21 0.1143 0.57 9:19 0.95
8 200x200x21 0.1143 0.57 1:1 0.95
9 200x200x21 0.1143 0.57 19:9 0.95
10 200 x200x21 0.1143 0.57 6:1 0.95
11 400 x 400 x 41 0.2286 0.29 1:6 0.88
12 400 x 400 x 41 0.2286 0.29 1:6 1.07
13 400 x 400 x 41 0.2286 0.29 1:6 1.66
14 200 x200x21 0.1143 0.57 1:6 0.86
15 200x200x21 0.1143 0.57 1:6 1.05
16 200 x200x21 0.1143 0.57 1:6 1.62
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of the pinch segment width at a constant flow ratio. To reduce the
computational time required to simulate particles of two different
sizes, the particle size was kept constant at the minimum needed
to ensure adequate resolution, 12 l.u., and the domain size was
reduced by a factor of two to simulate the flow of particles with
twice the diameter. To ensure Reynolds number similarity while
keeping the maximum velocity at 0.01 l.u. with both resolutions,
the kinematic viscosity was scaled by a factor of two.

3. Results and discussion
3.1. Validation

The simulated velocity profile in the centre of the pinched
segment for Run 13 is compared in Fig. 2 with the analytical
solution for laminar flow in a rectangular channel (van der Graaf
et al., 2006)

uy,z)=up|1- (%) ’ + cos (—) (16)

where the rectangular domain is —b<y<b and -c<z<c,
o = (2k—1)m/2, and up = ((2c)?/8u)(oP/ox). Good agreement can
be seen. In fact, relative errors are below 1% away from the edges,
about 5% within one node of the edges, and about 10% for the
corner nodes. The equivalent physical flow rates through the
pinch were 143.3 and 146.5 pl/h in the high resolution and low
resolution runs, respectively. They are within 2% of each other
and match the experimental flow rate of 140 pl/h. Using the
channel depth (w, =50 pm) as the characteristic length and the
average velocity through the pinch as the characteristic velocity,
the Reynolds number Re, for the simulations is 0.8. Considering
that the 10 wt% Dextran solution used by Yamada et al. is about
30 times more viscous than water (both the kinematic and
dynamic viscosity assuming a small difference between the
solution density and the density of water, see e.g. Akashi et al.,
2000), the experimental channel Reynolds number was about
0.03. Inertial effects can therefore be expected to be greater in the
simulations than in the experiments of Yamada et al. (2004).
The grid independence of the particle-free flow was verified by
comparing the streamlines for the large (nx=400) and small
(nx=200) simulations in the xy-plane through the middle of the
domain. The last saved flow cross-sections at the end of the

initialization period were used. At this time, the flow had reached
steady state. Every pair of runs was compared. The results for
Runs 1 and 6 are shown in Fig. 3 and are typical of all eight pairs.
The streamlines are almost identical showing that the correct
scaling has been used and the grid is sufficiently fine to correctly
resolve the particle-free flow.

Fig. 4 shows the initial and final vertical positions of 10
streamlines starting in the middle of the pinched segment and
ending at the outlet. As for Fig. 3, the streamlines were obtained
for the particle-free flow before the sphere was added to the
simulation. The vertical positions have been normalized by the
width of the channel at their respective positions. Points for the
particle-free flow of every run are shown and are nearly indis-
tinguishable. It can be seen that streamlines spread nearly
linearly; these results are consistent with the linear amplification
observed experimentally by Yamada et al. (2004) using fluores-
cent microspheres. However, the streamlines end slightly farther
from the centre than a linear relationship would predict. The
deviation may be due to the inaccuracy of the linear amplification
assumption as considered by Jain and Posner (2008) and
Andersen et al. (2009) or the reduced length of the outlet channel
in the simulations.

The immersed boundary and particle motion aspects of the
simulations have been validated in previous work. For example,
the methods have been used to simulate wave instabilities in
dense suspensions (Derksen and Sundaresan, 2007), drag on
agglomerates of spheres near walls (Derksen and Larsen, 2011),
and particle-induced mixing in microfluidic devices (Derksen,
2009). The sedimentation of dense suspensions of non-spherical

m=200_— |

S

Fig. 3. Comparison of the streamlines for Runs 1 (nx=400) and 6 (nx=200)
showing the similarity of the flow fields.
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Fig. 2. Comparison of the velocity profile (u* = u/umq) in the centre of the pinched segment for Run 13 (dots) with the analytical solution (surface, left). The velocity at

z=20 is shown on the right.
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particles (rigid red blood cells) at low density ratios has also been
simulated using these methods (Shardt and Derksen, 2011). Based
on these previous studies, a particle diameter of 12 lL.u. was
chosen to ensure adequate resolution for accurate results.

3.2. Computing resources

We now turn our attention to the simulations of pinched flow
fractionation. The computational workload for these simulations
was split between several nodes on a cluster and a desktop
computer. Each of the simulations with a small particle was
performed using two CPUs on one node of a Westgrid cluster.
Runtimes ranged from 328 to 506 h (14.7-21.1 days). The varia-
tion in the runtime is primarily due to the fact that the particles
reach the outlet in fewer time steps if they follow a faster or
shorter streamline. The large particle simulations were run on a
desktop computer with an Intel Core i5 750 CPU, and all runs
were completed in less than one week (168 h). Each high resolu-
tion simulation required 1129 MB of memory; the low resolution
simulations required about 140 MB each.

3.3. Effect of flow ratio

The simulation data for the first 10 runs allow the effect of the
flow ratio on the position of the particles at the outlet to be
analysed. Fig. 5 provides a comparison of the simulation results
with the experimental data of Yamada et al. (2004). As described
previously (Section 2.1), the simulation results and the experi-
mental results can be compared despite the difference in Rey-
nolds number. At low Reynolds numbers, the path of the particles
appears to be independent of the Reynolds number, as discussed
in Section 3.6. It should be noted that we compare simulations
of a single particle starting in the middle of the inlet channel with
average positions from experiments with uncontrolled initial posi-
tions. The average position from the particles in the inlet might
not have been the middle of the channel. Comparing simulations
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of one particle with the experimental suspensions is acceptable
because of the low experimental solids volume fraction ( < 0.1%).
The “particle solution fraction of the channel width” (Yamada
et al.,, 2004) is the fraction of the pinched segment occupied
by the fluid that entered with the particles. It is given by
Q,/(Q,+Qy), where Q, is the particle stream flow rate and Qq is
the diluent stream flow rate. In both the experimental results and
simulations, the large particle position reaches a maximum at
about the same flow ratio while the position of the small particles
varies throughout the range of flow ratios. One unusual feature of
the experimental results is that the large particles reach a position
below the centre of the outlet when the diluent flow rate is low.
In the limit of no diluent flow, one would expect the particles to
end on average in the middle of the outlet channel. With diluent
flow, the mean position should be above the middle. Reasons for
the offset in the large particle position are uncertain, but there is
general agreement in the trend of the particle position as a
function of the flow ratio. The large range of the experimental
small particle positions also makes comparison of the simulated
and experimental trends difficult. Agreement can be seen in terms
of the downward trend, though the slope differs and the dis-
crepancy increases at lower diluent flow rates where the range of
the experimental observations is wider.

Fig. 6 compares the positions of particles with the predictions
of the empirical linear amplification model. The performance of
the device in terms of the difference between the positions of the
large and small particles is also shown. As expected, better
separation performance is achieved as the diluent flow rate is
increased. Both large and small particles deviate from the linear
amplification assumption; the deviation of the large particles is
greater and increases with increasing diluent flow rate. One
interesting feature of the simulations is the reversal of the relative
positions of the small and large particles at low diluent flow rates
(i.e. large particles end higher in the outlet than the small
particles). As will be discussed later, this may be due to the
interaction of the large particles with the walls of the pinched
segment. Considering the ranges of the small particle positions
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Fig. 6. Separation performance (bottom) and comparison of particle positions
with the linear amplification model (Eq. (2), top) with different flow ratios. The
labels show the ratio of the particle stream flow rate to diluent flow rate.

observed by Yamada et al., it is not possible to validate this
phenomenon using their experimental data.

3.4. Effect of pinched segment width

The simulated and experimental particle positions at the
outlet are compared in nondimensional form in Table 2. Nearly
the same pinch widths were considered as those used by Yamada
et al.: 45, 55, and 85 pm in the simulations versus 47, 56, and
82 um in the experimental work. The particle:diluent flow ratio
was 1:6 as in the experimental work. Excellent agreement can be
seen between the simulations and experiments. It should
be noted, however, that the simulation results are for a single
particle while the experimental values are averaged over many

Table 2
Effect of the pinched segment width on the position of the particles at a flow ratio
of 1:6.

Pinch width wy, (um) Small sphere position
Yo/Wo

Large sphere position
Yo/Wo

Experimental LBM Experimental LBM Experimental LBM

47 45 0.87 +0.01 0.868 0.66 + 0.01 0.711
56 55 0.89+0.02 0.891 0.76 + 0.02 0.769
82 85 0.89 +0.03 0.897 0.81 +0.02 0.850

particles with potentially different initial positions. It is evident
that the position of the small spheres remains nearly constant
while the large spheres move higher as the pinch becomes wider.

The changes in particle position in response to changes in the
width of the pinched segment are shown in Fig. 7. These figures
include the data for Runs 1 and 6 which had a 50 pm wide pinch
and the same flow ratio as the other runs shown. It can be seen
that the position of the small particles is nearly independent of
the pinched segment width. This is consistent with the assump-
tion that particles follow streamlines: the particles should reach
the same position independent of the geometry between the
initial and final position (Mortensen, 2007). Unlike the small
particles, the large particles reach different positions depending
on the width of the pinched segment. As the width decreases, the
deviation from linear amplification increases. This suggests that
the particles interact with the upper wall while in the pinch, and
the strength of the interaction increases as the width decreases.
Overall, the results are intuitive: a narrower pinch affects the
large particles more than the small particles and enhances
separation performance.

3.5. Particle rotation and cross-streamline migration

In all the simulations, the spheres reached a higher position at
the outlet than streamlines would predict. To examine this
phenomenon in greater detail, the trajectories of the particles
were compared with streamlines passing through the position of
the particle at the start of the simulation and upon reaching the
middle of the pinched segment. Sample comparisons of the
particle trajectories with the streamlines are shown in Fig. 8 for
the runs with varying flow ratios and in Fig. 9 for the runs with
varying pinched segment widths. The streamlines were obtained
for the xy-plane through the middle of the simulated domain. Due
to the geometric constraints where the inlet reaches the pinched
segment, the large particles quickly deviate from the initial
streamline after colliding with the wall. After entering the
pinched segment, the extent of the deviation from the streamline
through the particle position in the pinch depends on the particle
size, flow ratio, and pinched segment width. The figures reiterate
the previous observations regarding the position of the particles
in the outlet and in the pinch: the particles reach the outlet at a
higher position than the streamline through the position of the
particle in the pinch would predict. Large particles deviate more
from the streamline than the small particles. The closer a particle
is to the upper wall, which occurs with higher diluent flow rates
and narrower pinches, the more it deviates from the streamlines.

One feature of the particle motion not considered by stream-
line analyses is the rotation of the particles into, through, and out
of the pinched segment. Figs. 10 and 11 show the angular velocity
of the particles about the z-axis as they travel through the PFF
device. The use of the segment width in the nondimensionaliza-
tion of the angular velocity was chosen for comparison with the
experimental work of Di Carlo et al. (2009). The particles do not
rotate until they begin entering the pinched segment. Through
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the pinched segment, the angular velocity is constant until it
increases as the particle exits the pinch. The angular velocity then
decays rapidly in the outlet channel. At the channel Reynolds
number of 20 for which Di Carlo et al. report rotation rates
(compared with 0.8 in the present simulations), smaller particles
at their equilibrium positions rotate faster than larger particles. In
the simulations, the nondimensional angular velocity is higher for
the smaller particles when the particles are nearer to the wall (i.e.
when the diluent flow rate is high or the pinch is narrow). While
the experimental nondimensional angular velocities at a Reynolds
number of 20 vary between 0.13 and 0.5, the angular velocities
through the pinched segment vary between about 0.1 and 1.2
in the simulations. Possible reasons for the differences are the
Reynolds number and the comparison of angular velocities at the

equilibrium position (experimental) and non-equilibrium posi-
tion (simulations). In the simulations, the angular velocity
depends strongly on the flow ratio and pinch width. Wall and
particle surface roughness in the experimental system (both are
assumed smooth in the simulations) or insufficient resolution in
the simulations may also play a role. Lubrication forces were not
added to the simulations to compensate for low resolutions in the
narrow gaps between the spheres and channel walls.

To quantify the deviation of the particles from the streamlines
of the undisturbed flow, the component of the particle velocity
perpendicular to the velocity of the undisturbed flow was com-
puted. The perpendicular relative velocity component u; normal-
ized by the particle speed Hﬂ)pl\ is shown in Fig. 12 for the runs
with varying flow ratios and in Fig. 13 for the runs with varying
pinched segment widths. A positive velocity is towards the upper
wall of the pinch and the inner left and right walls adjacent to the
upper wall of the pinch. In general, the particles deviate from the
streamlines when they enter and leave the pinched segment.
Spikes in the perpendicular velocity occur when the particle
collides with the wall and the direction is reversed to handle
the collision. In general, it can be seen that the large particles
move faster from the streamlines. The perpendicular velocity
component increases with increasing diluent flow rate and
decreasing pinched segment width. Thus, the closer a particle is
to the upper wall, the faster it moves away from the streamline.
Vig (2010) considered the geometric constraints that prevent
particles from following streamlines, and the model handles the
changes in position due to contact with the wall, but does not
include the attraction to the wall when the particle leaves the
pinched segment. The motion towards the wall causes the
particles to follow a path that is closer to the wall than a
streamline through the position of the particle when it is in
the pinch.

To determine the origin of the lift force that causes the
deviation from the streamlines, the pressure fields around the
particle were analyzed for Run 7. Fig. 14 shows the pressure field
in the xy-plane around the particle while it is rotating and
translating past the middle of the pinched segment. The angular
velocity of the particle is such that all points on the particle are
moving in the positive x-direction, i.e. the angular velocity is less
than the velocity for perfect rolling along the upper wall. The
pressure has been normalized with respect to the pressure drop
between the diluent inlet (with pressure P;) and the outlet (with
pressure P,). A high pressure region is evident in the gap between
the particle and the wall in the portion downstream of the
particle. A low pressure region exists in the portion of the gap
that is upstream of the particle. The shape of the pressure field is
due to the rotation and translation of the particle which cause
fluid to be drawn into the gap (relative to the bulk flow farther
from the particle) in the downstream portion and pushed from
the gap in the upstream portion.

The pressure fields around the particle as it enters the wider
outlet segment are shown in Fig. 15. Fig. 16 shows a sample
velocity field cross-section. A low pressure region can be seen
between the particle and the upper corner. This low pressure
region is likely the cause of the attraction towards the upper wall
experienced primarily by the large particles as they leave the
pinched segment. The low pressure region and the consequent lift
force may explain why Yamada et al. observed that a sharp
expansion provides better separation performance than a gradual
expansion. With a gradual expansion, the particle would be close
to the wall for a longer time. Attraction to the wall would move
the particle to a higher streamline in the outlet channel, thereby
worsening separation performance. Attraction to the wall may
also explain why large particles could reach a higher position in
the outlet than small particles when the diluent flow rate is low.
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Fig. 8. Comparison of the small (top) and large (bottom) particle trajectories (black) with a streamline through the initial particle position (dotted red) and through
the particle position in the centre of the pinched segment (dashed blue) for the runs with varying flow ratios: Runs 1 and 6 (left), 3 and 8 (middle), and 5 and 10 (right).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of the small (top) and large (bottom) particle trajectories (black) with a streamline through the initial particle position (dotted red) and through the
particle position in the centre of the pinched segment (dashed blue) for the runs with varying pinch widths: Runs 11 and 14 (left), and 13 and 16 (right). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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At low diluent flow rates, small particles would pass nearly along
the middle of the pinched segment, while the large particles could
be attracted to the upper wall due to their larger size, causing
upward deviation from the streamline.

Under the assumption that the particle does not disturb the
flow, the Saffman lift force due to shear and the Magnus lift
force due to rotation were estimated at the positions of the
particles as they travelled through and exited the pinched
segment. The correlation by Mei (1992) was used for the Saff-
man force, and the correlation by Oesterlé and Dinh (1998) was
used for the Magnus force. It was found that the Saffman force
would repel the particle from the wall while the Magnus force
would attract the particle. The Saffman force was approximately
two orders of magnitude higher than the Magnus force, indicat-
ing that the net force would cause repulsion from the wall. This
discrepancy with the simulations can be explained by the
possibility that the spheres disturb the flow significantly. Other

lift and drag force models were considered. However, the
available models deal with translating and rotating particles
near one wall in a quiescent fluid (Zeng et al., 2005) or a linear
shear flow (Lee and Balachandar, 2010; Lee et al., 2011a;
McLaughlin, 1993; Zeng et al., 2009) and are not applicable to
the PFF simulations in which four walls surround the particles
and the shear flow is not linear. Di Carlo et al. (2009) note that
the particle disturbs the flow field as the diameter of the sphere
approaches the width of the channel. The large particles are
likely sufficiently large relative to the size of channel that the
deviation observed by Di Carlo et al. is relevant to the PFF
simulations. The direction of the lift force observed in the PFF
simulations may therefore be plausible given the complexity of
the flow around a sphere translating and rotating in a narrow
channel. Higher resolution simulations of the flow of a sphere in
a microchannel could be used to further assess the validity of
the simulation results.
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Fig. 14. Pressure field around the particle as it rotates and translates through the pinched segment during Run 7.

Fig. 15. Pressure field around the particle as it leaves the pinched segment during Run 7. Colour range is the same as in Fig. 14. The interval between each image is 500
time steps (0.36 ms). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Sample velocity field around the large particle as it exits the pinched
segment in Run 7 after 35,000 time steps.

3.6. Effect of the Reynolds number

We now consider the effect of the Reynolds number on the
trajectory of the particles. While Yamada et al. (2004) chose a
high-viscosity fluid (aqueous Dextran solution) to overcome
experimental challenges, the simulations in the present work
were scaled to match a less viscous fluid (water) due to stability
and computational time constraints. To assess the significance of
the different Reynolds numbers, two additional simulations were
performed for the larger sphere size. In one simulation, the
parameters were the same as in Run 7, but the Reynolds number
was lowered by reducing the maximum fluid velocity from 0.01 to
0.001 lL.u., resulting in a 10 times longer computational time. In
the second simulation, the Reynolds number was raised by a
factor of 10 by lowering the viscosity from 0.1143 to 0.01143 L.u.
The surface points were not recalibrated for this lower viscosity;
the impact of a different hydrodynamic radius is expected to be
small. Fig. 17 shows the trajectories of the particles at the base
case (Run 7) Reynolds number and the higher and lower Reynolds
numbers. It can be seen that the trajectories for the base case and
lower Reynolds number are nearly identical, indicating that
comparison of the previous simulations with the lower Reynolds
number experimental results is reasonable. The absence of
significant difference suggests that up to Reynolds numbers
around 1, the flow is determined by viscous stresses. The minimal
change in the trajectories is consistent with the experimental
evidence of Yamada et al. For flow rates ranging from 70 to
560 pl/h, corresponding to Re, from 0.01 to 0.1, Yamada et al.
observed a small change in the outlet positions of the particles.
The simulation results suggest that this Reynolds number inde-
pendence extends to Re;~1. The simulation at the highest
Reynolds number shows significant deviation from the other
two, demonstrating the effect of increasing inertia: the particle
rises later in the wider segment and ends higher.

4. Conclusions

Direct simulations of pinched flow fractionation were per-
formed using the lattice Boltzmann method. A system that was
feasible to simulate was obtained by the use of parallelization and
careful selection of geometric and fluid parameters. The final

coooooo-cooRcZ:(),S

Re, =0.08

Fig. 17. Effect of the Reynolds number on the trajectory of a sphere through a PFF
device.

positions of large and small diameter spheres in the simulations
were compared with the experimental work by Yamada et al.
(2004). Since previous PFF modelling has relied on the assump-
tion that particles follow the streamlines of the particle-free flow,
the trajectories of the particles in the simulations were compared
with these streamlines. Reasons for the deviation from the
streamlines were examined, and the key role of lift forces related
to particle-wall interactions was identified.

The trends in particle position due to changes in particle
solution and diluent flow rate agreed qualitatively with experi-
mental trends. Good agreement was also observed for the effect of
the pinched segment width on separation performance. Since the
simulations were performed at an order of magnitude higher
Reynolds number than the experiments, additional simulations at
ten times higher and lower Reynolds numbers were used to
assess the impact of the difference in the Reynolds number. These
simulations showed a minimal change in the large particle
trajectory at the lower (near experimental) Reynolds number
and a significant upward displacement of the large particle at the
higher Reynolds number (100 x experimental).

Particles that were far from channel walls followed the
streamlines of the undisturbed flow. This occurred when the
diluent flow rate was sufficiently low or the pinched segment was
sufficiently wide compared to the diameter of the particle. The
simulated spheres rotate while in the pinch, as observed in
experimental work on particles in confined flows (Di Carlo
et al., 2009). Particles appear to deviate from the streamlines of
the particle-free flow due to attraction to the walls caused by the
formation of a low pressure region between the particle and the
channel wall as it exits the pinched segment. This attraction
causes large particles to move to streamlines that end higher in
the outlet. The wall effect may explain why a sharp expansion is
better than a gradual expansion, as observed by Yamada et al.: a
particle would be attracted to the wall longer with a gradual
expansion. Attraction to the upper wall may also explain why
large particles reached a higher position in the outlet than the
small particles, the reverse of the usual order, at low simulated
diluent flow rates.
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Future work will take a closer look at direct and hydrodynamic
particle-wall interactions. The effect of wall and sphere rough-
ness during particle-wall collisions on particle rotation and
(related) lift forces will be assessed. Enhancing the resolution of
the simulations and/or adding analytical (lubrication force)
results for hydrodynamic interactions between a sphere and a
wall may shed more light on why spheres deviate from stream-
lines. Other avenues for future research are simulations of PFF
devices involving dense suspensions with multiple spheres pas-
sing through the device at the same time and simulations
involving non-spherical and possibly deformable particles. It is
anticipated that interactions between the particles of a suspen-
sion and the motion of non-spherical particles into and out of the
pinched segment will have an important impact on separation
performance.
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Appendix A. Verification of outlet boundary condition

A two-dimensional benchmark was used to assess the perfor-
mance of the outlet boundary condition. This simulation had
a width w in the y-direction of 21 nodes and a length L in the
x-direction of 101 nodes. The kinematic viscosity was O0.1.
A parabolic profile with a peak velocity (u;nq) of 0.01 was
imposed at the inlet (x=0). The mass conserving outlet condition
was used at the right boundary (x=L). These parameters corre-
spond to a channel Reynolds number of Re,, = umaxw/v =2.1. The
simulation was run for 20,000 time steps at which time a steady
solution had been reached. The resulting velocity profile was
compared with the analytical parabolic solution; excellent agree-
ment was obtained. The pressure gradient in the y-direction was
minimal, and the x-direction pressure gradient was within 0.2% of
the theoretical prediction for planar Poiseuille flow. Thus, the
proposed mass-conserving outlet condition provides accurate
results when used with a laminar flow inlet condition, as required
for the PFF simulations.
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