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a b s t r a c t

In this paper we present detailed, three-dimensional and time-resolved simulations of turbulent

gas–liquid bubbly flows. The continuous phase is modeled using a lattice-Boltzmann (LB) scheme. The

scheme solves the large-scale motions of the turbulent flow using the filtered conservation equations,

where the Smagorinsky model has been used to account for the effects of the sub-filter scales.

A Lagrangian approach has been used for the dispersed, bubbly phase. That is we update the equations

of motion of individual bubbles. It is shown that the incorporation of the sub-filter scale fluid

fluctuations along the bubble trajectory improves the predictions. Collisions between bubbles are

described by the stochastic inter-particle collision model based on kinetic theory developed by

Sommerfeld (2001). It has been found that the collision model not only dramatically decreases

computing time compared to the direct collision method, but also provides an excellent computational

efficiency on parallel platforms. Furthermore, it was found that the presented modeling technique

provides very good agreement with experimental data for mean and fluctuating velocity components.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Many processes in the chemical and pharmaceutical industry
involve turbulent gas–liquid flows. The phenomena encountered
in these processes are highly complex, such as those in bubble
column reactors (Joshi, 2001; Ranade, 2002). In a bubble column
reactor, the flow patterns are generated not only by the interac-
tions between the phases on a macroscopic scale, but also relate
to small scale flows such as the wakes behind individual rising gas
bubbles. The various scales interact and create complex, turbulent
flow. It exhibits unsteady (time-dependent), three-dimensional
turbulent behavior characterized by a wide range of time and
length scales, from small vortices shed by bubbles to macroscopic
circulation patterns with the size of the reactor. These flow
patterns relate to the operating and design variables. Therefore,
a descriptive engineering model which provides thorough under-
standing of the hydrodynamics in gas–liquid bubbly flows is
essential for analyzing, optimizing, designing and scaling-up of
these processes.

Over the past decades, computational fluid dynamics (CFD) have
been adopted by large numbers of researchers to study the under-
lying physics of turbulent gas–liquid bubbly flows. Accordingly,
ll rights reserved.
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enormous efforts have been directed at establishing a framework
for modeling multiphase flows, including the development of closures
for inter-phase forces. Using the ‘‘hierarchy-of-models’’ concept
introduced by Delnoij (2001), three levels of modeling can be
identified based on the spatial and temporal resolution of the model.
At the finest level, where relevant scales include individual bubbles,
small-scale vortices behind bubbles and bubble–bubble interactions,
the volume-of-fluid (VOF) approach of Hirt and Nichols (1981) or the
front tracking (FT) approach of Unverdi and Tryggvason (1992) may
be employed. However, these approaches are restricted to a single
bubble or a few interacting bubbles due to the extensive computa-
tional requirements (Deen et al., 2004). At the intermediate level each
individual bubble or a parcel of bubbles is represented by a single
point, and its trajectory is tracked by solving its equation of motion.
This approach is known as the Euler–Lagrange (EL) approach. In
contrast to the VOF and FT approach, the EL approach requires closure
relations to account for the inter-phase forces, which can be obtained
from empirical relations or from simulations with a more sophisti-
cated level of resolution (i.e., VOF or FT). Nevertheless, the EL
approach is highly flexible with respect to incorporating microscopic
and bubble-level phenomena, such as bubble–bubble interactions,
coalescence or break-up of bubbles (Ranade, 2002; Van den Hengel
et al., 2005). Due to the significant computational resources required,
the EL approach becomes infeasible for simulations of large indus-
trial-scale bubble columns or stirred tanks, which may contain tens
of millions of bubbles. For such cases, the coarsest level of modeling,
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Table 1
Expressions for the forces acting on a bubble.
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i.e., the Euler–Euler (EE) approach (also called two-fluid model),
which treats both phases as interacting continua, is applied. Despite
its lack of detail at the bubble-level, it has been widely used in the
past decade for the engineering modeling of large-scale industrial
bubble column reactors due to the relatively limited computational
resources needed. However, a detailed understanding of multiscale
phenomena, including large-scale mixing patterns, as well as breakup
and coalescence of bubbles, is crucial for analyzing, designing and
scaling of processes, especially for processes that are critical in terms
of mass transfer and chemical reactions. As may be clear from the
above, limitations of the currently available modeling techniques and
computational resources makes resolution of bubbly flow hydrody-
namics down to the bubble-scale not practical.

The goal of this study is to introduce a novel approach which
allows the modeling of turbulent gas–liquid bubbly flows using
the EL approach to obtain detailed information of the hydrody-
namics down to the bubble-scale with only moderate computa-
tional resource requirements. The proposed approach provides an
alternative to obtain insights into large-scale processes. However,
for the validation purpose, simulations of a lab-scale system have
been carried out and presented here. The modeling technique
used in this study includes the following elements:
�
 The continuous liquid phase is modeled using a variation of
the lattice-Boltzmann (LB) scheme due to Somers (1993) and
Eggels and Somers (1995). We use the scheme to solve for the
large-scale motions of the turbulent flow using the filtered
conservation equations, where the Smagorinsky subgrid-scale
model (Smagorinsky, 1963) has been used to model the effects
of the sub-filter scales. It has been demonstrated that the LB
scheme can accurately represent turbulent flow hydrody-
namics, including single-phase flows (Derksen and Van den
Akker, 1999), as well as multiphase flows (Derksen et al., 2008;
Derksen, 2003, 2010). Due to the locality of operations, lattice-
Boltzmann schemes have high computational efficiency, espe-
cially on parallel platforms (Derksen and Van den Akker,
1999).

�
 For the dispersed gas phase, the trajectories of the individual

bubbles are computed in the Lagrangian manner taking into
account the sum of net gravity force, forces due to stress
gradients, drag force, lift and added mass forces. The force
coupling between the fluid phase and the bubbles, i.e., the
two-way coupling between the phases, is achieved by the
‘‘cheap clipped fourth-order polynomial mapping function’’
introduced by Deen et al. (2004). A set of closure relations for
these inter-phase forces were carefully chosen from literature
data (Hu, 2005; Joshi, 2001; Loth, 2000), see Table 1. It should
be noted that the EL approach does not resolve the gas–liquid
interface and the size of the bubbles considered in this work is
smaller than the grid-spacing. The impact of turbulence on the
bubbles, i.e., the fluctuations of the sub-filter or residual fluid
velocity along the bubble trajectory, is computed using the
Langevin equation model introduced by Sommerfeld et al.
(1993). Collisions of bubbles are governed by the so-called
stochastic inter-particle collision model of Sommerfeld (2001).
Although the model was originally proposed for solid particle-
laden flows, it has also been successfully applied to modeling
of bubbly flow (Sommerfeld et al., 2003).

Although various elements of this approach have been
reported in the literature, the presented EL model, for the first
time assesses the feasibility of using the LB scheme with the
stochastic particle model to obtain a fast, yet detailed under-
standing of turbulent bubbly flows. Thus, the combination of
these two techniques constitutes a novel development in the
simulation of bubbly multiphase flows.

This paper is organized in the following manner: in the next
section, the modeling approach for turbulent bubbly flows in the
EL framework will be discussed in more detail. In the subsequent
section, the model validation, including the impact of the model-
ing techniques and choices on the predicted results, will be
presented. The computational performance of the presented
modeling technique will be discussed as well, followed by a
summary and conclusions.
2. Modeling of gas–liquid bubbly flows

2.1. Liquid phase hydrodynamics

In our work the lattice-Boltzmann (LB) method is used for
modeling the continuous liquid phase. The LB method is based on
a simple form of the Boltzmann kinetic equation, which can be
used to recover the macroscopic hydrodynamic behavior of fluids
(Bernaschi et al., 2010). The specific LB scheme employed here is
due to Somers (1993) (see also Eggels and Somers, 1995; Derksen
and Van den Akker, 1999). It provides a second-order discretiza-
tion in space and time for the incompressible Navier–Stokes
equations on a uniform, cubic lattice. This scheme was chosen
because of its robustness for turbulence simulations and its
inherently high parallelization efficiency. The robustness results
from its explicit treatment of the higher-order terms leading to
enhanced stability at low viscosities. This allows us to reach
relatively low viscosities and thus high Reynolds numbers and
makes the scheme suitable for turbulence simulations (Derksen,
2010). The inherent parallelism of the LB method is due to the
locality of its arithmetic operations. Thus, the communication
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between processors requires only limited amounts of overlapped-
boundary data, resulting in an efficient parallel structure.

In this paper, we limit ourselves to a flow configuration in
which the motion of the continuous liquid phase is solely driven
by the dispersed gas bubbles. Bubble collisions are expected to
have a significant effect on the hydrodynamics. However, coales-
cence and breakup of bubbles are neglected in the present study
as we consider a dilute system. In this flow, the turbulent stress
can be divided into two components, i.e., one component due to
bubble buoyancy leading to liquid velocities above the turbulence
onset, and one component due to the so-called pseudo-turbu-
lence, caused by the fluctuations of the bubbles (i.e., the motion of
bubbles relative to the liquid which results in turbulent-like
flows) (Hu and Celik, 2008).

A filtering process with a filter width equal to the grid space
was applied to the conservation equations of the liquid phase to
resolve only the evolution of the large-scale motions. The
resolved flow can be interpreted as a low-pass filtered represen-
tation of the real flow. The impact of the residual motion that
resides at scales smaller than the filter width, i.e., the subgrid-
scale (SGS), is modeled using the Smagorinsky SGS model
(Smagorinsky, 1963). In the Smagorinsky model, the SGS motion
is considered to be purely diffusive, and the model only drains
energy from the resolved motions without feed-back. For finer
grid spacing, a larger fraction of the eddies and more of the energy
contained in the flow field are resolved. However, the choice of
the grid spacing in the present work is also restricted by the
requirements of the EL approach, i.e., the point-volume assump-
tion that the interfacial details are not resolved. Therefore, the
grid spacing should be larger than the (physical) bubble diameter.
In the case where the bubble diameter is larger than the grid
spacing, the bubble’s interfacial detail becomes important and
should be resolved (Nicěno et al., 2009). This is also consistent
with the grid size considerations discussed in the work of Milelli
et al. (2001). Based on considerations of the energy spectra and
modeling closures for the inter-phase forces, they stated that the
grid space should be at least 50% larger than the bubble diameter,
i.e., the ratio between the grid spacing h and the bubble diameter
dp should be larger than 1.5.

In the present paper, the ratio between h and dp was chosen to
be 1.25, similar to that in the work of Nicěno et al. (2009), and
clearly smaller than the criterion proposed by Milelli et al. (2001).
However, it can be argued that it is known a priori that the flow
pattern of the bubble column is dominated by a bubble plume,
which meanders from one side of the bubble column to the other
side. Therefore, it can be concluded that the largest scale, which
contains most energy, will be of the size of the domain cross-
section (Nicěno et al., 2009). The grid resolution employed here is
a compromise between sufficiently fine to capture the most
energetic eddies, and sufficiently coarse to stay close to the
Milelli criterion (Milelli et al., 2001).

The SGS model used in the present work is the Smagorinsky
model adopted directly from the single-phase SGS model. In this
model, the eddy viscosity nt concept is used to represent the
impact of the SGS motion as

nt ¼ ðCSDÞ2
ffiffiffiffiffi
S2

p
, ð1Þ

with the Smagorinsky constant CS, the filter width D (with size
equal to the grid spacing h) and the resolved deformation rateffiffiffiffiffi

S2
p

. As pointed out in the work of Hu and Celik (2008) the
so-called pseudo (or bubble-induced) turbulence possesses a
universal energy spectrum with identifiable power-law decay.
This, however, is different from the classical �5/3 decay. There-
fore, the residual motion arising from both turbulence and
pseudo-turbulence could (in principle) be captured using a
dedicated subgrid-scale model acting on the continuous phase.
However, such a (reliable and accurate) SGS model for multiphase
flows is not readily available (Hu, 2005), so that we reverted to
the use of the Smagorinsky model for our simulations of gas–
liquid flows, justified by favorable results as will be shown later in
this paper.

Since the simulations discussed here are restricted to the
dilute dispersion condition (global gas void fraction up to 2%),
we assume that the void fraction term in the conservation
equations for the continuous phase only has a relatively small
effect on the flow field, and can be neglected. Therefore, the
filtered conservation equations (equipped with momentum
source terms representing the bubbles) for single-phase flows
are approximately valid. This assumption has been tested suc-
cessfully by some researchers, e.g., Hu and Celik (2008) and Hu
(2005), for a relatively dilute void fraction gas–liquid bubbly flow
(up to 1%) and Derksen (2003) for dilute suspensions (solid
volume-fractions up to 3.6%).

In the present paper, the forces imposed by a bubble on the
continuous phase and vise versa (i.e., two-way coupling) are
considered. These local interactions are represented via the
inter-phase force terms in the conservation equations, i.e., the
drag force FD, lift force FL and added mass force FA. Expressions for
these forces are discussed in the following section.

2.2. Bubble dynamics

Each individual bubble is treated as a single, point-volume
particle/bubble with constant mass and has three degrees of
freedom associated to it, i.e., three spatial coordinates. Its trajec-
tory is tracked based on Newton’s equation of motion

dtxp ¼ up, ð2Þ

rpVpdtup ¼ Fp, ð3Þ

where xp, up, rp, Vp and Fp represent the center position of the
bubble, the velocity, the bubble density, the bubble volume and
the net force, respectively. Here, the net force Fp acting on each
individual bubble is the sum of net gravity force FG, forces due to
stress gradients FS, drag force FD, net transverse lift force FL

(i.e., the sum of shear- and wake-induced lift forces), added mass
force FA and Basset history force FH

Fp ¼ FGþFSþFDþFLþFAþFH : ð4Þ

It has been reported by Loth (2000) that the Basset history
force is negligible when time-averaged or when integral quan-
tities in a turbulent fluid velocity field are of interest. Thus, the
Basset history force is neglected in this work. Formulations of the
forces acting on a bubble have been discussed in detail by a
number of researchers, see for example, Loth (2000), Joshi (2001)
and Hu (2005). With the expressions summarized in Table 1 and
substituting Eq. (4) into (3), the following set of equations is
solved in order to keep track of individual bubbles:

rpVpdtup ¼ ðrp�rlÞVpgþrlVpDtu�
1

8
CDrlpd2

p9up�u9ðup�uÞ

�CLrlVpðup�uÞ � r � u�CArlVpðDtup�DtuÞ, ð5Þ

with rl being the liquid phase density, u the liquid velocity, and
CD, CL and CA the drag, lift and added mass force coefficients,
respectively. The drag and lift coefficients depend on the bubble
Reynolds number Rep ¼ 9up�u9dp=nl and the Eötvös number
Eo¼ ðrl�rpÞ9g9d

2
p=s. It should be noted that the drag coefficient

does not have a local void-fraction dependency because the gas
volume-fractions considered here are sufficiently low not to
include a dependency of the drag coefficient on the local void-
fraction. Similar considerations apply to the buoyancy term.
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The liquid velocity at the bubble position u introduced in
Eq. (5) is composed of the resolved liquid velocity and a (residual)
liquid fluctuating component u0. The latter component is recov-
ered using the so-called Langevin equation model introduced by
Sommerfeld et al. (1993). In this model, a correlation function
Rp(Dt,Dr) (see Appendix) is used to correlate the fluctuation
velocity from the old to the new bubble location:

u0nþ1 ¼ RpðDt,DrÞu0nþsSGS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�RpðDt,DrÞ

q
x, ð6Þ

where sSGS is the characteristic residual motion, and x a Gaussian
random number with a mean value of zero and a standard
deviation of one. Based on the assumption that the residual
turbulent motion is locally homogeneous and isotropic, the
characteristic residual motion was estimated by sSGS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3kSGS

p
.

The SGS kinetic energy kSGS was approximated based analysis of
the energy spectrum as (Pozorski and Apte, 2009)

kSGS ¼
nt

0:067D

� �2

: ð7Þ

The interpolation of the liquid properties on the Eulerian grid
to the bubble centroid on the Lagrangian reference frame is
achieved using a mapping function B described by the so-called
cheap clipped fourth-order polynomial proposed by Deen et al.
(2004)

Bðx�xpÞ ¼
15

16

ðx�xpÞ
4

n5
�2
ðx�xpÞ

2

n3
þ

1

n

" #
with 9x�xp9rn, ð8Þ

where x is the position of a neighboring grid node, and n is half of the
predefined influence diameter (set to 2dp in this work). With this
mapping function, a property, such as the liquid velocity at the bubble
centroid u(xp), is evaluated by the integration of the liquid velocity at
the neighboring grid nodes (that is located inside the influence
diameter) u(x). The forces exerted on the continuous phase by the
bubbles are treated as a point force and distributed to the continuous
phase using a similar mapping function. A further discussion
concerning mapping techniques can be found in the work of Deen
et al. (2004) and Hu and Celik (2008).

For turbulent bubbly flow simulations, numerical instabilities
can be induced by many factors, for instance, the evolution of
bubbles with a very small mass, and/or strong fluctuations
generated by forces exerted from the bubbles on the liquid. In
order to avoid these instabilities, we used a very small time step
to maintain the velocity update due to the inter-phase force
(in lattice units) within the compressible limit of the LB scheme.
We under-relax the distributed force with a relaxation factor of
0.25. Additionally, the mapping technique with the influence
diameter concept discussed above also helps to prevent high
concentration of forces exerted by a bubble.
2.3. Stochastic inter-particle collision model

Collisions between bubbles are considered using the stochastic
inter-particle collision model introduced by Sommerfeld (2001).
Instead of direct collision calculation, where a large amount of
information from surrounding bubbles is required, only a
fictitious collision partner and a collision probability according
to kinetic theory are generated for each bubble at each time step
of the trajectory calculation. In this model, the size and the
velocity of the fictitious collision partner is sampled from the
local distribution functions stored at each grid node. Since the
bubble size used is relatively large, in order to obtain representa-
tive properties, the distribution functions is computed from a set
of nodes that reside in the influence diameter of the bubble using
a similar mapping technique as in the previous section. Hence, in
this work, the so generated fictitious bubble can be considered as
representative for the bubbles in its direct vicinity.

The velocity components of the fictitious bubble consist of the
local mean velocity ufict and the fluctuating component u0fict

which also compose of three degrees of freedom. The first
component is obtained from the method discussed above. The
latter component is obtained via a correlation proposed by
Sommerfeld (2001).

u0fict ¼ RðStÞu0realþrp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�RðStÞ2

q
x, ð9Þ

with u0real being the fluctuating velocity components of the real
bubble which are evaluated based on the ensemble-averaged
bubble velocity and the instantaneous bubble velocity. R(St) is the
correlation function based on the bubble Stokes number St, and rp

is the local rms value of the bubble velocity components. The
bubble Stokes number St is defined as the ratio of bubble response
time tp and the Lagrangian integral time scale TL, as suggested by
Ho (2004) (see Appendix). As can be seen in Eq. (9), the degree to
which the bubble fluctuating velocities are correlated depends on
their response to turbulent fluctuations, which is characterized by
the Stokes number. Based on the calculations obtained from large
eddy simulations, Sommerfeld (2001) reports the dependence of
the correlation function on the Stokes number as

RðStÞ ¼ expð�0:55St0:4Þ: ð10Þ

The occurrence of a collision is determined by the collision
probability Pcoll given by kinetic theory

Pcoll ¼
p
4
ðdp,iþdp,jÞ

29up,i�up,j9npDt, ð11Þ

where dp,i and dp,j are the bubble diameters, 9up,i�up,j9 the
instantaneous relative velocity between the considered and the
fictitious bubble, and np the number of bubbles per unit volume in
the respective grid nodes. A collision takes place when a random
number RN, generated by a uniform distribution in the interval
[0,1], becomes smaller than the collision probability, i.e., RNoPcoll.
The technique we have employed for the generation of the random
number follows the algorithm presented in the work of Press et al.
(1992). In the case of a collision, the point of impact on the bubble
surface is statistically determined based on a collision cylinder (see
Sommerfeld (2001) and Ho (2004) for a detailed description). In this
work, the bubble–bubble collisions are assumed to be fully elastic.

2.4. Parallelization aspects

As mentioned previously, the lattice-Boltzmann (LB) scheme
has an inherently high parallelization potential due to its locality
of operations, e.g., data required for updating the flow in a grid
point are obtained from its neighbors, and the stress tensor is
explicitly obtained from the data stored in a single node. In the
present implementation, parallelization of the continuous phase
is achieved by axially dividing the computational domain into
subdomains. In contrast to the conventional parallelization strat-
egy used in single-phase LB schemes where only boundary values
are communicated, the present multiphase (EL) numerical
scheme requires the communication of a number of grid layers,
depending on the bubble diameter and the influence diameter.
For instance, a bubble with a diameter of 0.8h and an influence
diameter of 2dp located near the boundary between subdomains
would require data not only from the nodes at the boundary but
also from the other three rows behind the boundary for the
distribution and redistribution of properties between the bubble
and the liquid phase (see Fig. 1). It should be noted that although
information from two rows behind the boundary is used in the
mapping function, one additional row (the third row) is required
for the evaluation of the curl of the fluid velocity r�u. It will be



Table 2
Overview of the different simulation cases.

Case SGS velocity Collision CS h/dp

0 Eq. (6) Eq. (11) 0.10 1.25

1 – Eq. (11) 0.10 1.25

2 Eq. (6) Eq. (11) 0.08 1.25

3 Eq. (6) Eq. (11) 0.12 1.25

4 Eq. (6) Eq. (11) 0.10 1.50

5 Eq. (6) Eq. (11) 0.10 1.10

processor 1 processor 2 

communication layers 
required by Lagrangian part 

bubble

influence
diameter

communication layer 
required by LB scheme 

Fig. 1. Parallelization strategy (left) single communication layer required by the

LB scheme and (right) three communication layers required by the

Lagrangian part.
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shown in the next section that despite the larger amount of data
being communicated between the subdomains, the speedup for
the continuous phase calculation is still excellent.

Generally, the parallelization of the dispersed phase is
significantly more complicated than that of the continuous phase.
The first complication is due to the handling of bubble–bubble
collisions in the vicinity of subdomain borders. For direct
collisions handling, large amounts of information of bubbles
crossing borders as well as bubbles close to the border need to
be communicated. This is overcome by employing the stochastic
inter-particle collision model described above. Since the model
requires only information stored at the Eulerian grid nodes, only a
limited amount of information concerning bubbles crossing
borders is communicated. Another complication arises from the
dynamical nature of bubbles, which makes their spatial distribu-
tion non-uniform. In order to achieve high parallel performance, a
load-balancing strategy needs to be considered. In our case,
unbalanced loading occurred only at the initial stages of the
simulation. After the onset of aeration, the loading at each
processor was approximately balanced. Hence, a static domain
decomposition is considered efficient enough for the paralleliza-
tion of the dispersed phase.

2.5. The Deen bubble column experiment

In the present study, the bubble column experiment
performed by Deen et al. (2001), hereafter called the Deen case,
was used as a reference for validating the simulations. Their
three-dimensional rectangular bubble column has a width, depth
and height of 0.15, 0.15 and 0.45 m, respectively. Air bubbles
were introduced at the bottom-center plane with an area of
0.03�0.03 m2 and a superficial gas velocity of 4.9 mm/s. A bubble
mean diameter in the order of 4 mm was observed in their
experiments using digital image analysis. It was assumed to have
that uniform size with spherical shape in the simulations
presented in this paper.

2.6. Numerical implementation

In all the following simulations, the fluid domain is discretized
by a uniform cubic grids of 30�30�90 lattices in width, depth
and height, respectively. This results in a bubble size of 0.8 times
the lattice distance. An influence diameter is set to 2dp. The
criteria for the selection of the grid spacing have been described
previously. A no-slip, i.e., a bounce-back, boundary condition is
applied at every sides of the computational domain except for the
top where a free-slip boundary condition is applied. Bubbles are
injected at the bottom of the column through 49 inlet positions.
Once a bubble (with its physical surface) touches the top surface
of the column, it will be discarded from the simulation. From our
simulations, it has been observed that a maximum number of
7000 bubbles were tracked. The calculation starts with the
quiescent liquid and proceeds with a time step for the liquid
phase of 10 ms for 150 s. The time step used in this work has the
same order of magnitude as used for the solid suspension
simulation in a stirred tank by Derksen (2003). Using 8 processors,
the simulation time (i.e., the real clock time) is approximately
100 h for case numbers 0–3. A sub-time step of 1 ms is used for
the calculation of the dispersed gas phase. The reason for this
small time step used in this work is to obtain stability of the LB
scheme as well as Newton’s equation of motion (Eq. (5)).
3. Results and discussion

In this study the gas–liquid flow from the Deen case is
simulated using the modeling technique described in the previous
sections. The gas–liquid flow hydrodynamics of the Deen case will
be discussed first, followed by a study of the sensitivity of the SGS
fluctuations, as well as the Smagorinsky constant CS. The paralle-
lization performance of our code will also be assessed. Six
different cases were considered and Table 2 summarizes the
characteristics of these simulations.

3.1. Two-phase flow

A series of snapshots of the evolving bubble plume for the
standard case (case 0) are shown in Fig. 2(a)–(d). These snapshots
are taken at consecutive points in time of 20, 50, 100 and 150 s. As
can be seen, the lower part of the plume fluctuates within a small
range, while the upper part fluctuates strongly around the bubble
column in a random manner. This behavior was also observed in
the experiments by Deen (2001) and Deen et al. (2001). The
corresponding instantaneous liquid flow fields at the vertical mid-
depth plane are shown in Fig. 3(a)–(d). Several large and small
vortices can be observed in the liquid phase. These vortices
interact with each other and significantly change their size, shape
and position randomly with time. The random velocity fluctua-
tion of the liquid phase can be seen clearly in the plot of the
velocity at an arbitrary point in the column, as shown in Fig. 4.
These results illustrate the strong coupling between the fluctua-
tion of the bubble plume and the turbulent flow field in the
liquid phase.

A quantitative comparison of the time-averaged hydrody-
namics between predicted results and experimental data is
required for the validation of the presented modeling technique.
In order to obtain statistically meaningful results, a sufficiently
long simulation period has to be considered. Since the fluctuation
of the bubble plume was only observed after the onset of aeration,
the time-averaged quantities were calculated starting from 20 s.
The average liquid velocity and velocity fluctuations at various
simulation times are shown in Fig. 5. It can be seen that all
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quantities are converged after the simulation time of approxi-
mately 125 s.

A comparison of the predicted mean vertical velocity with
experimental data in Fig. 5(a) shows excellent agreement
between simulation and experiment. The magnitude and the
position of the local maximum are accurately predicted. The
overall velocity profile is correctly reproduced quantitatively
and qualitatively. Only a small deviation of the velocity near the
wall region can be noticed. This might be attributed to an
insufficient resolution of the near-wall structures, which may be
resolved by introducing a wall function or an adaptive grid
refinement at the near-wall region (with some computational
expenses). In Fig. 5(b) and (c), the second-order statistics related
to the turbulence quantities, i.e., the fluctuating components of
the resolved flow field, predicted by the simulations are com-
pared with the experimental data. This comparison is necessary
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Fig. 6. Long-term average of the liquid velocity field in the mid-depth plane.
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to obtain confidence in the prediction of problems involving
turbulent flows. The vertical component of the resolved fluctuat-
ing liquid velocity is shown in Fig. 5(b). The twin-peaked shape
observed in the experiments is correctly reproduced. Quantita-
tively, the magnitude of the vertical fluctuating component is
slightly under-predicted, except at the near-wall regions where
larger deviations can be noticed. Fig. 5(c) shows the resolved
lateral fluctuating liquid velocity. It should be noted that in order
to compare simulation results to the experimental data which are
measured in two dimensions, only one horizontal velocity com-
ponent (on the measured plane) is used throughout this work,
unless otherwise stated. Again, the predicted profile agrees very
well with the experimental data. Additionally, it is apparent that
the fluctuations in the vertical direction are larger than in the
lateral direction, which implies that the turbulence is anisotropic.

A long-term average of the liquid flow fields is shown in Fig. 6.
The flow is dominated by the upward flow induced by the bubble
plume. Two thin circulation zones close to the wall region can be
observed over the height of the bubble column. The long-term
average of the liquid flow field at the upper part of the column is
compared with the experimental data in Fig. 7. The structure of
the flow field, i.e., upward flow in the middle and thin circulation
zones close to the wall, is correctly reproduced by the simulation.
A contour plot of the resolved liquid phase turbulent kinetic
energy TKE in the mid-plane is given in Fig. 8. Two regions of high
turbulent activity (i.e., high TKE) separated by the center line of
the bubble plume can be observed. It can be further seen that, due
to the injection of the bubbles, TKE increases from the bottom,
and has maximum at about half the height of the column.
Consequently, since the top surface dampens the fluctuation of
the liquid phase, the TKE decreases from the middle to the top of
the column. A comparison between the predicted TKE at the
upper part of the column with the experimental data is shown in
Fig. 9. The simulation underpredicts the measured TKE. Addition-
ally, the gas void-fraction profiles at different height levels are
shown in Fig. 10. To determine the Eulerian gas volume fraction
distribution from the Lagrangian simulation, the mapping
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function presented in the previous section was used. It can be
seen that at the bottom of the column, where the bubble inlet is
located, the profile has a high concentration of gas only near the
center line of the column, while the profile tends to broaden
towards the top of the column.
Fig. 8. Long-term average of the turbulent kinetic energy contour in the mid-

depth plane.

Fig. 9. Predicted and experimental long-term average of the turbulent kinetic energy i

color scales are used. (For interpretation of the references to color in this figure legend
3.2. Subgrid-scale velocity

The influence of the subgrid-scale (SGS) velocity, i.e., the
residual liquid fluctuations at the bubble position, was assessed
by comparing cases 0 and 1. A series of snapshots of the evolving
bubble plume colorized by magnitude of bubble’s slip velocity
and liquid fluctuations at its position for case 0 are shown in
Figs. 2(a)–(d) and 11(a)–(d), respectively. The bubble’s slip
velocity varies only within a small range throughout the column
(mostly between 0.2 and 0.35 m/s). The magnitude of the liquid
fluctuations at bubbles’ position, which is approximately one
order of magnitude lower than the slip velocity, varies throughout
the column and decreases from the bottom towards the top of the
column.

It can be seen in Fig. 12(a) that the predicted average liquid
velocity with and without the incorporation of the SGS velocity
are quantitatively different. The position of the local maximum
was shifted away from the center of the column with a lower
velocity magnitude (about 0.02 m/s) than that predicted by the
case 0. It might be that, without the SGS velocity, the fluctuation
of the plume cannot be correctly predicted. In Fig. 12(b) and (c),
the vertical and the lateral component of the resolved fluctuating
n the mid-depth plane at the upper part of the bubble column. Note that different

, the reader is referred to the web version of this article.)
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liquid velocity obtained from the cases 0 and 1 are shown. Similar
qualitative and quantitative deviations can be observed in the
resolved fluctuating components. These results point out that the
inclusion of the SGS velocity has some effect on the dispersion
pattern of the bubbles, which can be seen in the predicted results.
It can be anticipated that the inclusion of the SGS velocity is
beneficial for an accurate prediction of the motion of the bubbles,
and hence, the mean velocity profile. In denser systems with
significantly stronger bubble–bubble interactions, a significant
improvement should be obtained. It is important to note that the
stochastic inter-particle collision model also produces fluctua-
tions due to its stochastic nature. Therefore, larger differences
between the simulations with and without SGS velocity might be
obtained when the direct collision model for bubbles is used.
3.3. Effect of the Smagorinsky constant CS

In the present study, the turbulence generated by bubbles, i.e.,
the so-called ‘‘bubble-induced turbulence’’, is not specifically
modeled. Hence, the impact of the Smagorinsky constant CS was
studied by varying its value. The analysis is carried out based on
the case with CS¼0.10 (i.e., case 0) in comparison to a lower
CS¼0.08 (case 2) and a higher CS¼0.12 (case 3). Fig. 13(a)–(c)
shows the comparison between the experimental and predicted
profiles of the mean vertical velocity and fluctuating velocity
components of the liquid phase. It can be seen that in the case
with higher CS, the predicted mean profile is almost equal to the
case of CS¼0.10, while a lower CS provides the least good
agreement between experiment and simulation. This is due to
the fact that with a decrease of CS, the turbulent viscosity is also
decreased. Consequently, the fluctuations of the bubble plume get
stronger, resulting in a higher collision frequency and lower
average velocity profiles. This phenomenon only slightly influ-
ences the flow field in the case with higher CS. It can also be seen
that, both vertical and lateral fluctuating components are affected
by the choice of CS in the similar manner. We conclude that the
variation of CS has only marginal effect to the predicted flow fields
and an improvement can be made only by incorporating a reliable
multiphase turbulence model.
3.4. Sensitivity of the grid size ratio to the bubble diameter

As discuss earlier, the grid size ratio to the bubble diameter
h/dp should compromise between a sufficiently fine grid resolu-
tion to capture the most energetic eddies and a sufficiently coarse
grid resolution to stay close to the Millelli criterion. Here we
studied the influence of h/dp by carrying out simulations with a h/
dp value equal to 1.25 (the standard case, case 0), 1.50 (case 4) and
1.10 (case 5). Fig. 14(a)–(c) shows the comparison of the pre-
dicted profiles of the mean vertical velocity and fluctuating
velocity components of the liquid phase with various h/dp. As
expected, the simulation with the highest h/dp value, i.e., the
coarsest grid size, provides large deviations from the experimen-
tal data. Although the h/dp value is closest to the Millelli criterion,
the grid size is too coarse for resolving the flow field and correctly
coupling between phases. Decreasing the h/dp value from 1.25 to
1.10 slightly improves the prediction at the expense of computa-
tional resources. Therefore, we concluded that, in this work, the
h/dp value of 1.25 provides a satisfactory level of accuracy along
with reasonable computational expenses and the refinement of
the h/dp value to 1.1 does not deteriorate the prediction.

3.5. Speedup and scalability on parallel platforms

In order to analyze the parallelization performance of the
presented modeling technique, the concepts of speedup and
scalability are employed. The speedup concept represents the
relative reduction of execution time when a parallel execution on
p processors is performed. According to Rauber and Rünger
(2009), the speedup Sp(n) of a parallel program with n processors
with a parallel execution time Tp(n) is defined as

SpðnÞ ¼
Tpð1Þ

TpðnÞ
, ð12Þ

with Tpð1Þ being the execution time to solve the same problem
using the sequential version of the parallel implementation.

The scalability of a parallel program expresses the efficiency of
the program while increasing the problem size with a fixed
number of n processors. The scalability Ss(m) is defined here as
a proportion of the execution time Ts(m) of a problem with a size
m to the execution time of a problem with an appropriate selected
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reference problem size Tsðm0Þ

SsðnÞ ¼
TsðmÞ

Tsðm0Þ
: ð13Þ

In the present paper, a simulation case with a computational
domain of 640�32�32 grid nodes was used to measure the
speedup and scalability of the program using Sun X2100, dual
core Opteron CPUs with Gigabit Ethernet. The settings are similar
to the case 0 in the previous section, except that the bubbles are
homogeneously generated throughout the computational domain
to equally distribute the computational load at every processor.
The studies were carried out for 1 s, i.e., 10,000 time steps.

Fig. 15(a) shows the speedup obtained with 1, 2, 4, 8, 16 and
32 processors. The simulation cases contain 64,000 bubbles in
total at every instance. The measurement of the execution time
for the dispersed gas phase and the continuous liquid phase are
performed separately. The total speedup is the weighted average
of the underlying dispersed and continuous phase calculation. It
should be noted that in our cases, the computational time of the
dispersed phase is approximately 85% of the total computational
time. As can be seen, excellent overall and dispersed-phase
speedups are obtained, while the speedup of the liquid phase
decreases with an increasing number of processors. The reason for
the deterioration of the speedup of the continuous phase part
(i.e., the LB scheme calculation) in our test case is that the layers
being calculated on each processor are the sum of the real domain
layers and the ghost layers (including the communication of these
layers). Therefore, the computational resources being used for the
ghost layer become significant when the number of processors
increases. For instance, based on our test case, with 16 processors
each processor performs a calculation of 40 real domain layers
and 6 ghost layers, i.e., the ratio is 40:6, while the ratio is equal to
20:6 with 32 processors. Thus, the calculation of the ghost layers
is increased from 15% to 30% of the total LB scheme calculation.
An alternative might be to perform two-dimensional paralleliza-
tion. It is important to emphasis again that the overall
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performance is dominated by the Lagrangian particle tracking
part, which takes approximately 85% of the calculation time.
Therefore, the main benefit from the presented modeling techni-
que is the high parallel efficiency of the stochastic Lagrangian
particle tracking, the well-known flexibility of complex geometry
handling provided by the LB scheme, and the parallel perfor-
mance of the LB scheme (when an appropriate ratio between the
real domain layers and the ghost layers is used). This provides an
alternative for simulations of multiphase dispersed flow within
large-scale and complex geometries, e.g., flows in a multiphase
stirred vessel. It is also important to note that, although an
excellent overall speedup has been obtained, the time step used
in this study is approximately two orders of magnitude smaller
than the conventional CFD calculation, e.g., in the work of Zhang
et al. (2006). Therefore, the maximum benefit of using a LB-based
simulation can be obtained when solving a large-scale problem
where a massive parallelization can be utilized.

The scalability of the program is shown in Fig. 15(b). In this
comparison, the base case has a total number of 40,000 bubbles,
while the number of bubbles is equal to 4,000,000 in the largest
case. The computational domain is kept constant in every case.
The execution time used in this analysis is only the execution
time of the dispersed gas phase. An excellent scalability of the
program is obtained. Fig. 15(b) shows that an increase of the
problem size does not lead to an increase of the simulation time.
For example, a 100-fold increase of the problem size leads to a
90-fold increase of the simulation time. This might be attributed
to the fact that the Eulerian part of the dispersed phase calcula-
tion is kept constant, independent to the number of bubbles,
while the scalability of the Lagrangian part is linear.
4. Conclusions

A novel modeling technique for the simulation of turbulent
gas–liquid bubbly flows according to the Eulerian–Lagrangian
(EL) approach has been presented. Each individual bubble was
treated as a single, point-volume particle and was tracked in a
turbulent liquid flow field. The turbulence in the liquid phase was
represented by filtered conservation equations. The impact of the
residual (sub-filter) fluctuation components on the motion at the
grid scales was modeled using the Smagorinsky model. It was
shown that the choice of the Smagorinsky constant CS slightly
affects the predicted flow field with the best result obtained using
CS¼0.10�0.12. It is important to note that the filtering process
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employed here should be viewed as an engineering model, rather
than a large eddy simulation (LES). This is due to the restriction of
our EL approach that requires the grid size should be larger than
the bubble size. Consequently, the grid space is too coarse to
sufficiently resolve the flow field required for a regular LES. The
motion of bubbles was computed considering gravity/buoyancy,
fluid stresses, drag, lift and added mass forces. The Basset history
force was neglected for physical (and computational) reasons. It is
well known that as of yet there is no universal inter-phase closure
model available for the simulation of bubbly flow. Thus, a set of
appropriate empirical correlations for the inter-phase closures
was carefully chosen from the literature.

Specifically the main results of this work are:
�
 It has been demonstrated that due to the coarse grid space used in
the simulations, the residual fluctuating velocity components of
the liquid phase have a significant effect on the bubbles motion,
which is represented by the predicted mean and fluctuating flow
fields. In our work, the residual fluctuations were considered by
means of a Langevin equation model.

�
 Collisions between bubbles were considered using a stochastic

inter-particle collision model. The model is based on the
generation of a fictitious collision partner and a collision
probability according to the kinetic theory. The collision model
dramatically decreases computing time compared to the direct
collision method and provides excellent computational effi-
ciency on parallel platforms.

�
 The predicted results were compared with experiments of Deen

et al. (2001). Both mean and fluctuating velocities are in excellent
quantitative and qualitative agreement with the measured data.
Furthermore, the subgrid model used (i.e., the Smagorinski model)
provides an excellent agreement between experimental and
simulation data. Thus, the simulation can be used to obtain
detailed, quantitative insight into the dynamics of the dispersed
and the continuous phase in the bubble column.

�
 The speedup and the scalability of the presented modeling

technique on parallel platforms have been analyzed. Excellent
overall parallelization performance and scalability of the program
were demonstrated. The maximum benefit of the presented
modeling technique can be obtained when a large-scale simula-
tion, in which the characteristic length is several order larger than
the bubble diameter, and a massive parallelization are realized.

While the study presented here has been carried out for a
bubble column with a relatively low global gas holdup (approxi-
mately 1%), the modeling techniques can be applied to a wide
range of problems, involving turbulent gas–liquid bubbly flow in
stirred systems. Nevertheless, in order to deal with real industrial
problems, which often involve a high global gas holdup, further
work will address for the inclusion of the gas void fraction in the
conservation equations, the void fraction dependence of drag
force, as well as models for bubble coalescence and breakup.
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Appendix

Correlation function in Langevin equation model

RpðDt,DrÞ ¼ RLðDtÞ � REðDrÞ: ðA1Þ
The Lagrangian velocity auto-correlation function

RLðDtÞ ¼ exp �
Dt

TL

	 

: ðA2Þ

The Lagrangian integral time scale

TL ¼ cT
s2

SGS

e with cT ¼ 0:4: ðA3Þ

The Eulerian correlation tensor

RE,ijðDrÞ ¼ f ðDrÞ�gðDrÞ
� � rirj

r2
þgðDrÞdij, ðA4Þ

with

f ðDrÞi ¼ exp �
Dr

LE,i

	 

, gðDrÞi ¼ 1�

Dr

2LE,i

	 

exp �

Dr

LE,i

	 

: ðA5Þ

The integral length scale

LE,x ¼ 1:1TLsSGS, LE,y ¼ LE,z ¼ 0:5LE,x: ðA6Þ

The particle response time

tp ¼
4

3

d2
p

CD u�up



 

 where Re41: ðA7Þ
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