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In  this  work  a  free-energy  binary  liquid  lattice-Boltzmann  scheme  is  used  to  simulate  Taylor/Bretherton
flow  in  a  micro-channel  where  elongated  gas  bubbles  move  through  a liquid  with  thin  liquid films
between  the  bubbles  and the  channel  walls.  The  numerical  scheme  has  a diffuse  interface,  and  a  main
focus  of  our  work  is  to  assess  resolution  requirements  for  correctly  resolving  the  liquid  film  and  bubble
motion.  The  simulations  are  two-dimensional  and  span  a  capillary  number  range  of 0.05–1.0  where  the
capillary  number  is based  on  the  liquid  dynamic  viscosity,  the  velocity  of  the  bubble,  and  the  interfacial
retherton problem
icrochannel simulation
ultiphase flow

attice Boltzmann method
inary liquid model
low between plates

tension.  The  flow  is  driven  by  a body  force,  and  periodic  boundary  conditions  apply  in the  streamwise
direction.  We  obtain  grid independent  results  as  long  as  the  liquid  film  thickness  is  at  least  twice  the
width  of  the  diffuse  interface,  with  film  thicknesses  in  accordance  to literature  results.  We  also  show
that  the  results  in terms  of film  thicknesses  are  largely  insensitive  to  the  liquid–gas  viscosity  ratio  and
wettability  parameters.
ravity driven

. Introduction

The Taylor/Bretherton [1] flow deals with long gas bubbles mov-
ng through liquid in narrow channels, Fig. 1. It was found that the
ront meniscus film thickness is proportional to Ca2/3 for capillary
umbers smaller than 0.003, where the capillary number is defined
s:

a = �liqUbubble

�
, (1)

here �liq is the liquid viscosity, Ububble is the bubble velocity, and
 is the interfacial tension between gas and liquid.

While there are many works which simulate the Bretherton
roblem by the boundary value approach [2,3], those methods are
f limited applicability for problems involving complex geometries,
ree interface motion, or coalescence and/or droplet breakup. The
ontinuous interface models are more flexible for those kinds of
imulations. However, if the interface is smeared out over several

rid nodes, the question of proper film resolution in comparison
ith the interface resolution arises. This work is focused on explor-

ng the parameter range of the binary liquid lattice Boltzmann
ethod to resolve correctly the flow in a range of capillary numbers.
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The lattice Boltzmann method (LBM) has emerged as a success-
ful method to simulate a wide variety of phenomena including
hydrodynamics [4],  thermal flows [5],  microflows [6],  ferrofluids
[7], and multiphase flows [8,9]. Thanks to its kinetic nature, LBM
as a particle method easily tackles complex geometries and allows
incorporation of physical phenomena on the microscopic level, as
in the case of multiphase models. Most multiphase lattice Boltz-
mann models [8,9] resolve the interface using continuous interface
methods where the interface spans over several grid nodes. Such a
representation brings issues of the film thickness resolution versus
interface resolution – the diffuse interface should be dealt with in
such a way  as to have a negligible effect on the physics of the film.

The binary liquid free-energy LB model due to Swift et al. [8] we
used simulates two liquids with the assumption of uniform over-
all density. While the classical Bretherton problem is stated for gas
and liquid, which are of significantly different densities and vis-
cosities, it was indicated [1] that inertia effects were negligible.
Moreover, the results of Giavedoni and Saita [10] and Heil [3] show
insignificant Reynolds number (Re) effects on the film thickness for
a relatively wide range of Reynolds numbers. For example, Giave-
doni and Saita [10] suggested that the Reynolds number effects
are negligible for Ca ≤ 0.05 and have moderate impact for Ca > 0.05
in the range of Reynolds number from 0 to 70. Later on, Heil [3]
extended these results up to Re = 300. They indicate that while the

Reynolds number influence on the established film thickness is
insignificant (7 percent from the film thickness measured at Re = 0),
the pressure distribution and the flow field near the front bubble
tip can be affected by changes in Re. Since in the present work we

dx.doi.org/10.1016/j.cej.2011.04.023
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ig. 1. The classical Bretherton problem layout. The gas bubble propagates with the
teady velocity Ububble through the liquid media and deposits the film, where the
hickness to height of the channel Heff ratio is ı.

nly deal with flows with Re < 20, we can safely neglect any iner-
ia effects and conclude that the major governing parameter for

icrochannel Bretherton flows is not the density ratio, but the vis-
osity ratio. Moreover, the results based on uniform density, as in
he case of the LBM binary liquid model, are in good agreement
ith other simulations [10,3] in which inertia effects were taken

nto account.
Resolving the interface on a fine level for capillary numbers

maller than 0.003 is computationally expensive even in the two-
imensional case (the amount of memory necessary to perform the
imulation would be of the order of tens or hundreds of gigabytes).
his work is therefore based on a comparison of the results obtained
ith the known data validated for the Bretherton bubble flow. In

his paper, we present techniques for initialization of the simula-
ions and discuss optimal parameter ranges for the binary liquid LB

odel, such as the binary liquid parameters, the viscosity ratio and
he grid resolution. The emphasis is to obtain correct flow physics,
specially in terms of film thicknesses.

The paper is organized as follows. First, we review the liter-
ture for the Bretherton problem and briefly explain the binary
iquid lattice Boltzmann model. Then, the parameters involved in
he simulation are examined and presented in the results section.
he paper is concluded with a summary of the main findings.

. Bretherton bubble flow

Bretherton [1] studied a long bubble moving in a tube filled with
iquid. It was found that the film thickness is proportional to Ca2/3 in
he range of small capillary numbers. Later, it was  realized [11,12]
hat the film thickness is proportional to Ca2/3 only in the certain
egion behind the front meniscus and that the film thickness varies
ver the bubble length for bubbles of finite length. Numerical sim-
lations [10] and experimental studies [13] showed a deviation
rom the Ca2/3 rule for capillary numbers larger than 0.003. To con-
istently predict a flow pattern for capillaries in different ranges
f parameters, simulations have been conducted and have been
ypically validated with the small capillary numbers Bretherton
roblem.

There are a number of numerical methods which were used for
he simulation of the Taylor/Bretherton flow. van Baten and Krishna
14] studied the mass transfer and film thickness for rising bubbles
n a circular capillary using the finite volume method. Kreutzer et al.
13] also used the finite volume method to perform simulations of

 circular capillary for a number of different Reynolds and capillary
umbers. Wong et al. [11,12] studied three-dimensional bubbles in
olygonal capillaries and calculated bubble shapes in the slug cross
ections and menisci appearance. Heil [3] and Ingham and Ritchie
2] studied gas finger propagation in a two-dimensional channel
or a range of Reynolds and capillary numbers using the finite ele-

ent method. Giavedoni and Saita [10] performed cross validation

f the finite element solution with previously published results. The
olutions were obtained for circular and planar geometries.

While the applicability of other methods has been demonstrated
or the simulation of the Bretherton/Taylor problem, this is not the
g Journal 171 (2011) 646– 654 647

case for the lattice Boltzmann method. A thorough parametric study
for this approach has not been done to the best of the authors’
knowledge.

One should acknowledge the work of Ledesma-Aguilar et al. [15]
on menisci in thin films for fingering phenomena, as well as the
work of Yang et al. [16] who  performed lattice Boltzmann simula-
tions of two-dimensional channel flows for relatively large capillary
numbers, and found discrepancies with the classical Bretherton
theory, which is limited to the low capillary number regime [10].
These authors did not take into account recent studies extending
microchannel simulations for the capillary numbers beyond the
Bretherton regime. Thus, the comparison with other established
CFD methods is limited. Yang et al. used the Shan–Chen model [9]
to simulate the multiphase behavior. The Shan–Chen model is also
a continuous interface model, but the above-mentioned paper does
not contain a study of grid dependence.

The level set method is also represented by a number of works
[17–19]. While the bubble shapes were found to be in a good agree-
ment with the experiments, the range of studied bubble lengths is
limited to 2–3 channel diameters. Thus, the bubble radius changes
significantly and cannot be used as a classical Bretherton prob-
lem benchmark. However, the works provide insight to the bubble
formation and to the way small bubbles flow in microchannels.

3. Lattice Boltzmann binary liquid model

The lattice Boltzmann equation (LBE) operates on a rectangular
grid representing the physical domain. It utilizes probability distri-
bution functions (also known as particle populations) containing
information about macroscopic variables, such as fluid density and
momentum. LBE consists of two parts: a local collision step, and a
propagation step which transports information from one node to
another along some directions specified by the discrete velocity set.
The LBE is typically implemented as follows:

f ∗
i

(x, t) = ωf eq
i

(x, t) − (1 − ω)fi(x, t) + Fi, collision step

fi(x + ci, t + 1) = f ∗
i

(x, t), propagation step,
(2)

where fi is the probability distribution function in the direction
ci,f

eq
i

is the equilibrium probability distribution function, ω is the
relaxation parameter, and Fi is the external force population. The
force population represents an external physical force and is imple-
mented in the current work using the scheme outlined in Guo et al.
[20].

The binary fluid LB model is based on a free-energy functional
[8,21], and operates with two sets of populations: one to track the
pressure and the velocity fields, and another to represent the phase
field � indicating the gas or liquid.

The model we  use is a two-dimensional nine-velocity (D2Q9)
model, with equilibrium populations [22]:

f eq
i

= wi

(
3p0 − k��� + �

u˛ci˛

c2
s

+ �
Qi˛ˇu˛uˇ

2c4
s

)

+k(wxx
i

(∂x�)2 + wyy
i

(∂y�)2 + wxy
i

∂x�∂y�), 1 ≤ i ≤ 8

f eq
0 = � −

∑
i /=  0

f eq
i

geq
i

= wi

(
	� + �

ci˛ui˛

c2
s

+ �
Qi˛ˇu˛uˇ

2c4
s

)
, 1 ≤ i ≤ 8

geq = � −
∑

geq,

(3)
0

i /=  0
i

where 	 is the mobility parameter; the chemical potential
� = − A� + A�3 − k��; k is the parameter related to the surface
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ension; A is the parameter of the free-energy model. The bulk
ressure is expressed as p0 = c2

s � + A(−0.5�2 + 0.75�4) with the
ound speed c2

s = 1/3. Parameters specific to the D2Q9 grid are the
eights wi =

{
4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36

}
,

nd the tensor Qi˛ˇ = ci˛ciˇ − c2
s ı˛ˇ. Other weights are as follows:

xx
1−2 = wyy

3−4 = 1/3, wxx
3−4 = wyy

1−2 = −1/6, wxx
5−8 = wyy

5−8 = −1/24,
xy
1−4 = 0, wxy

5−6 = 1/4 and wxy
7−8 = −1/4. The set of equations (3)

estores the macroscopic fluid equations as:

∂t� + ∂˛�u˛ = 0

�
(

∂t + uˇ∂ˇ

)
u˛ = F˛ − ∂ˇP˛ˇ + 
∂ˇ

(
∂˛uˇ + ∂ˇu˛

)
∂t� + ∂˛�u˛ = M∂2

ˇˇ
�,

(4)

here 
 = c2
s (� − 1/2) is the viscosity, M = 	 (�� − 1/2)

s the mobility parameter, and � = 1/ω  and �� are
he relaxation parameters of density and phase
elds,P˛ˇ = (p0 − k��� − k/2 | ∇� | 2)ı˛ˇ + k∂˛�∂ˇ� [22].The inter-

ace tension value in the framework of the binary liquid model
s � =

√
8kA/9. The inclusion of the interface tension in the

omentum flux tensor is done through the coefficients k, A and
eights w˛ˇ

i
.

Note that the first equation of system (2) simulates the
ontinuity and the Navier–Stokes equations, i.e. the first two
quations in (4).  The second equation of system (2) simulates
he phase governing equation, i.e. the third equation in (4).  The
ystem (4) allows the separation of the liquid phase with � = 1
nd a so-called gas phase with � = − 1. The relaxation time is
aken as linearly dependent on the relaxation times �gas and
liq: � = �gas + ((� + 1)/2)(�liq − �gas). This allows to change viscosity
rom the gas viscosity 
gas = 1/3(�gas − 1/2) to the liquid viscosity
liq = 1/3(�liq − 1/2) while phase changes accordingly.

While the lattice Boltzmann system has parameters such as the
urface tension, the gas and liquid viscosities, etc., those param-
ters are not the representative and proportional quantities of
he parameters in a physical system. The parameters of the lat-
ice Boltzmann are connected with the physical parameters only
hrough the non-dimensional numbers governing the physics of
he problem. In our case, these numbers are the capillary number
a and the viscosity ratio �liq/�gas, which are obtained from the
hysical world and then matched through the lattice Boltzmann
uantities. The set of the fluid and phase equations (4) is valid in
he lattice Boltzmann space and in the physical domain. Therefore,
ne can substitute any quantity, i.e. Ububble, in the physical units or
n the lattice Boltzmann units as soon as the capillary number is the
ame in both worlds.

. Numerical benchmark procedure

To properly simulate and compare simulation results with the
ata published in the literature, one needs to design a numeri-
al benchmark addressing the following challenges for the lattice
oltzmann method:

The diffuse nature of the interface in the multiphase model should
not influence the film thickness results. The same applies to spu-
rious currents arising due to surface tension discretization, which
can influence mass transfer in the thin film, thereby compromis-
ing the overall solution.
The wettability coefficient which in principle can control the
dynamic angle and the menisci appearance [23] should not influ-

ence the overall solution.
The free-energy model examined in this work is a single den-
sity, two viscosities model. The classical Bretherton problem is
a free-interface problem between liquid and gas where the film
g Journal 171 (2011) 646– 654

thickness is established by itself. Thus, the viscosity and the den-
sity ratios for the classical Bretherton problem should be large.
However, in terms of the lattice Boltzmann binary liquid frame-
work only the viscosity ratio can be addressed. Our computations
show that the results are consistent with other works and inertial
effects can be neglected.

• The Bretherton problem addresses a bubble flow driven by a pres-
sure difference, not a body force. However, to the best of our
knowledge the pressure boundary conditions are still not yet
developed for the binary liquid model, because it involves the
treatment of associated gradients and Laplacians on the bound-
ary. This kind of pressure boundary conditions for the binary
liquid model is currently under development, and preliminary
results show that the differences between flows driven by a body
force and by pressure difference are small as far as the film thick-
ness is concerned. In this work we limit ourselves to the study
of body force driven flows, because of their simplicity and better
numerical stability. This implies that we can use periodic bound-
ary conditions in the streamwise direction. As soon as the periodic
boundary conditions are applied, not a single bubble but a bubble
train is simulated. In this case one needs to ensure that the dis-
tance between bubbles is large enough to exclude mutual bubble
influence.

• Most simulations are done for a channel with circular cross
section, which is quite difficult to address in terms of lat-
tice Boltzmann framework. Although one can apply certain
finite difference stencils [24,25] developed specifically for curved
boundaries, the analysis of error introduced by the boundary con-
ditions becomes an issue. Although the circular axis-symmetric
case can be simulated on a rectangular grid by introducing spe-
cific mass and force terms in the continuity and Navier–Stokes
equation [26], the lattice Boltzmann incorporation of force and
mass terms is in the process of development and validation.
Therefore, the benchmark is chosen as a plane-symmetric two-
dimensional case.

Given all the concerns and challenges, the suggested lattice
Boltzmann framework is a two-dimensional flow driven by a body
force. An analytical solution to this problem is not known for a
wide range of capillary numbers. Though some authors [16] use
the gravity driven model to validate the Bretherton film thickness,
the latter should be used with caution since the velocity of the
bubble is different from the fluid velocity and the bubble shape
is different in the front and rear menisci depending on the Bond
number (Bo = ��gl2/�). Wong et al. [11] analytically described the
film thickness variation along a bubble varying from Ca1/2 to Ca2/3.
The bubble should be long enough to have the film thickness pro-
portional to Ca2/3. Therefore, we chose the bubble length to be
5 channel heights. This number is shown to be sufficient to give
results consistent with the theory. The channel length is taken to
be 3 bubble lengths (or 15 channel heights) to minimize influence
of one bubble on another, because of the periodicity of boundary
conditions. Fig. 2 is a sketch of the geometry used for the bench-
mark.

5. Results

5.1. The nondimensionalization and initialization procedure

We now introduce the procedure of nondimensionalization,
as well as the initialization technique we  used to determine the

parameters necessary for the simulation. The capillary number
defined in Eq. (1) governs the interface thickness. Parameters as
�liq, � are usually taken in the already defined stable range. The
capillary number Ca is supplied from the physical world. In com-
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ig. 2. The benchmark sketch. ı corresponds to film thickness. � corresponds to the
nterface thickness. We take the microchannel length to be 15 times larger than its
eight.

arison, the bubble velocity Ububble is not given explicitly. In our
imulations we approximate Ububble with the Poiseuille profile
aximum velocity, which is given as:

Ububble ≈ H2
eff

8�liq

dP

dx

Ububble ≈ (Ny − 2)2

8
6

(�liq − 1
2

)

dP

dx
,

(5)

here Ny is the number of nodes in the vertical direction. As will
e discussed further, the effective channel width is defined as
eff = Ny − 2 due to the use of bounce-back nodes to mimic  no-slip
onditions at the walls. For the Poiseuille profile one can estimate
he body force (pressure gradient) through the capillary number
nd grid resolution:

dP

dx
= 8

(Ny − 2)2
�Ca. (6)

n the simulations the body force (6) causes the bubble velocity to
iffer from that implied by the Poiseuille relation because of the
resence of a bubble in the flow. That is why an iterative procedure

s needed to achieve the desired velocity and capillary number.
owever, the initial body force as given by (6) is a good starting
oint.

After one calculates the parameters to run a simulation, one has
o initialize the macroscopic fields and particle populations. The
elocity is initialized with zero everywhere. Populations are ini-
ialized using the equilibrium values for the binary liquid model,
ncluding all the phase gradients and Laplacians. The liquid phase
s initialized with � = 1 and the gas phase with � = − 1. Though the
nitial film thickness does not affect the final result for the front

eniscus (see Fig. 3) we  keep the initialized film thickness as close
s possible to the already obtained numerical film thickness values
10]. This is done to minimize the time to convergence.

For demonstration purposes we present the simulation param-
ters choice for Ca = 0.05. In these examples we use k = 0.04 and

 = 0.04 as numerically optimal binary liquid model parameters.
hat implies the surface tension to be

√
8kA/9 = 0.0377 and the

haracteristic width of the interface 5
√

k/A = 5 lattice Boltzmann
nits (grid spacings). For the sake of simplicity and stability, the
elaxation times for liquid and gas phases are taken as �liq = 2.5
nd �gas = 0.7, which correspond to the liquid over gas kinematic
iscosity ratio equal to 10.

Overall, the setting up the simulations can be described in steps
s follows:

Capillary number One first needs to set the capillary number for

simulations. For the demonstration purposes we  chose Ca = 0.05.
Film thickness After the capillary number is prescribed, one needs
to approximate the film thickness ı. It can be done either by taking
correlations from numerical simulations by Heil [3] and Giavedoni
g Journal 171 (2011) 646– 654 649

and Saita [10] or by using the classical Bretherton correlation for
small cappillary numbers ı = 0.6687Ca2/3. In the case of Ca = 0.05,
the film thickness is taken from correlations by Heil [3],  and for
Reynolds number 40 is in the range 0.06–0.07.
Grid choice After specifying the film thickness, one needs to choose
the associate number of nodes to resolve the film thickness. Note
that for paremeters indicated above the interface is spread over
approximately 5 lattice units. The study of the interface resolu-
tion to the film thickness, Section 5.3, suggests to choose the film
thickness to be 2–2.5 times larger than the interface thickness.
Therefore, we  want to resolve 6% of the whole channel width with
12 lattice units. Thus, the physical channel width is 200 lattice
units. We  take the bubble length equal to 5 channel widths for the
film thickness to establish and the distance between bubbles as 3
bubble lengths to avoid mutual influence of bubbles on each other.
Thus, the whole physical grid size is 200 × 3000. Note that in the
case of the half-way bounce-back walls [4] which are used in the
simulations one needs to calculate the film thickness as:

ı = �0 − 0.5
Ny − 2

, (7)

where �0 is the grid coordinate where the phase field is 0, Ny − 2
is the effective channel height. If the grid size in the y direction
is Ny, then one has Ny − 1 regions between the grid nodes which
represent the physical domain. The effective wall location is in
the middle between bounce-back and fluid nodes giving overall
Ny − 2 nodes representing the fluid. Note that it is a simplification
to impose the boundary in the middle between the bounce-back
node and the fluid node. The location of the wall is viscosity depen-
dent [27]. The effective location of the wall for the multiphase
models to the best of the authors’ knowledge is not yet derived.
Thus, the simulation grid size is 202 × 3000.
Velocity The relaxation parameters are taken to be in the stable
range for the simulations. In the present simulations the viscos-
ity ratio is �liq/�gas = 10 with the correspoding relaxation times
�liq = 2.5 and �gas = 0.7. Given the viscosity of the liquid one can
obtain the velocity of the bubble from the capillary number:

Ububble = Ca
�

�liq
= Ca

√
8kA/9

1/3(�liq − 1/2)

Ububble = 0.05
0.0377
0.6666

= 2.82 × 10−3,

(8)

where �liq = 1
3 (2.5 − 0.5) = 0.6666.

Body force It is desired to obtain the prescribed velocity Ububble
in the simulations. The flow in the simulations is conducted by
imposing the body force. Thus, the assumption is needed of how
the body force is connected with the bubble velocity Ububble. We
assume that the flow is close to planar Poiseuille flow with Ububble
being the maximun in the Poiseuille profile:

dP

dx
= 8�liq

H2
eff

Ububble = 8

N2
y

�Ca = 3.77 × 10−7. (9)

After imposing the body force the simulations can be run. A typi-
cal simulation runs approximately 100,000–300,000 time steps to
reach steady-state, see Section 5.2.

Note that following the prescribed procedure one can see that
computer memory requirements are high for small capillary num-
bers due to large grids to resolve the film thickness. Thus, the
simulations in the present work cover a range of capillary num-
bers from 0.05 to 1.0. Although, Bretherton obtained an analytical

solution for the range of low capillary numbers Ca ≤ 0.005, many
researchers, for example Giavedoni and Saita [10] and Heil [3],
extended it to the range of capillary numbers greater than 0.005,
and to higher Reynolds numbers. Therefore, the focus of our work
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Fig. 3. Phase plots for different bubble thicknesses as Heff − 12, Heff − 16 and Heff − 20. The grid for the simulation is 102 × 1501. The results are rescaled on Ny .The phase
p  is initialized with different bubble volumes, the bubbles always relax to a shape where
t ckness rescaled at the effective channel width Heff is 0.0701, 0.0697, 0.0692 measured at
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Table 1
The results for steady-state calculations. The simulated domain is of size 202 × 3000.
Ububble is the velocity of the interface at the fron tip of the bubble. Ca = 0.05 was
taken to initialize the simulation. One can see that in terms of velocities and film
thicknesses 100,000–300,000 iterations are enough.

Niter ı Ububble Re

100,000 0.0655 0.0027 0.81
140,000 0.0608 0.0027 0.81
180,000 0.0577 0.0027 0.81
220,000 0.0630 0.0027 0.81
rofiles were obtained after 2 × 105 time steps. One can see that even if the system
he  film thickness is the same. For the given parameters (Ca = 0.05) the interface thi
he  center of the bubble.

n the capillary range larger Ca ≥ 0.05 is legitimate as far as we
ase it on comparison with already cross validated results for all
anges of capillary numbers. Our intention is to show physically
orrect behavior for moderate Ca, which can be easily and quickly
alidated on a computer.

Note that we base the initialization techniques on correlations
or the capillary number and the body force. However, in the
inary liquid framework those correlations are approximations.
he strongest assumption is in calculating the body force from
he Poiseuille velocity profile. In reality, the less viscous bubble

oves faster than the surrounding liquid. In practice, one needs
o take the bubble velocity from the simulations and recalculate
ll the necessary flow characteristics, i.e. adjust the applied force
o obtain the desired velocity/capillary number. However, simula-
ions show that the Poiseuille flow assumptions work reasonably
ell.

Note that the initialization procedure is a good guide of design-
ng the simulations. For example for the grid refinement, Section
.3, we keep the same velocity Ububble and Ca. This implies the con-
ervation of the quantity H2

eff(dP/dx) = (Ny − 2)2(dP/dx) = const.
or designing capillary range simulations, Section 5.6,  we use a pro-
ortionality law to initialize body forces knowing results of just one
imulation:

Calit ∝ Ububble

Ububble ∝ dP

dx
H2

eff

Calit ∝ dP

dx
H2

eff or

dP

dx
∝ Calit

H2
eff

,

(10)
here the subscript “lit” stands for the predicted capillary number
10,3].
260,000 0.0660 0.0027 0.81
300,000 0.0661 0.0027 0.81

5.2. Steady state

The simulations were performed in order to determine the num-
ber of iterations for the bubble to reach the steady state. The grid
was  chosen as 202 × 3000. The body force was 0.375 × 10−6. The
initial film thickness was taken as 12 nodes. Table 1 summarizes
the simulation results in terms of the film thickness in the mid-
dle of the bubble and the velocity of the interface as a function of
time. We  can conclude that it is enough to have 100,000–300,000
iterations for the bubble to approach the steady state.

5.3. Grid refinement

To properly estimate the interface resolution one needs to study
the convergence as a function of the grid resolution. To do that the
grid resolution is varied while all remaining parameters, includ-
ing the bubble velocity and the capillary number, are fixed. Our
goal is to determine the ratio of the interface thickness to the film
thickness at which results are no longer dependent on the grid
resolution.

Let us illustrate the procedure for the capillary number 0.05. The

procedure of parameters choice and film thickness measurements
follows the instructions from Section 5.1.

The simulations start from the initial grid size with Ny = 102,
which gives the horizontal grid size as Nx = 15(Ny − 2) = 1500, and
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Table 2
The parameters and results for grid resolution. The simulated domain is of size
Nx × Ny . Ububble is the velocity of the interface at the fron tip of the bubble. 5� is
the  interface thickness. Hfilm = ı(Ny − 2) is the size of the film in lattice Boltzmann
units. Ca = 0.05 was  taken to initialize the simulation.

Nx Ny ı Ububble
5�

Hfilm
Niter Re

1500 102 0.0694 0.0028 0.824 200,000 0.44
1875 127 0.0690 0.0028 0.646 250,000 0.53
2250 152 0.0675 0.0027 0.539 300,000 0.63
2625 177 0.0674 0.0027 0.453 350,000 0.73
3000 202 0.0662 0.0027 0.400 400,000 0.83
3375 227 0.0664 0.0026 0.355 450,000 0.91

Fig. 4. Grid-refined profiles for the effective channel widths Heff = 100, 125, 150, 175,
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Fig. 5. Phase profiles for different wall gradients. One can see that if the thickness is
properly resolved then the wettability of the wall does affect the film thickness. The
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00, 225. ı is scaled on Heff and ı = 0 corresponds to the wall location. The profiles
ere taken at x = 14 (nondimensional coordinates). Capillary number is Ca = 0.05.

he capillary number obtained from simulations Ca = 0.047.

roceeds with finer grids. The bubble is initialized as a rectangular
ox with coordinatesy = 7(Ny − 2)/100 . . . Ny − 7(Ny − 2)/100 − 1,

 = (Nx)/3 . . . (2Nx)/3 and phase �bubble = − 1. All other nodes are
nitialized with the phase field � = 1. The force gradient can be esti-

ated through the Poiseuille profile formula, Eq. (6),  and it equals
.508 × 10−6 lattice units.

After choosing the reference parameters, the grid refinement
rocedure needs to keep the macroscopic parameters constant,
ee Section 5.1. We  performed a number of simulations for the
rescribed grids. The simulation results in terms of grid dimen-
ions Nx, Ny, the film thickness ı, center bubble velocity Ububble are
ummarized in Table 2. The unified scaled profiles are shown in
ig. 4. One can see that results converge for Heff ≥ 175, and that
ith proper initialization techniques, large enough time and dif-

erent wall wettabilities, results are different only in the 3rd digit
ven for underresolved film thicknesses. To calculate how well the
nterface is resolved, the ratio of the interface thickness to the film
hickness is calculated. The interface itself occupies approximately
�, where � =

√
k/A = 1. The ratio of the interface thickness to the
lm thickness 5�/Hfilm is shown in Table 2. Based on these results
ne can conclude that the interface needs to be resolved as 40–50
ercent of the expected film thickness for simulations to be grid

ndependent. We  further examine the velocities in the center of the

able 3
he parameters and results for wall gradient effects on the film thickness. Ububble stand
he  wall responsible for hydrophilic and hydrophobic behavior. The results are calculate
nitialize the simulations.

∂n� −1.0 −0.8 −0.6 −0.4 −0.2 

ı 0.0633  0.0634 0.0634 0.0634 0.0634 

Ububble 0.0041 0.0042 0.0042 0.0042 0.0041 
simulations were conducted for 200,000 iterations. The measured profile was taken
at  the nondimensional coordinate scaled to Heff as x = 11.42. Ca = 0.05 was taken to
initialize simulation.

bubble to calculate the capillary number. One can see from Table 2
that the bubble velocities are consistent and the calculated capillary
number corresponding to these velocities is 0.047, which is close to
the capillary number we aimed for. The corresponding difference
can be attributed to the Poiseuille profile body force initialization.

5.4. The influence of the wall gradient

The simulation results should not depend on the wall wettabil-
ity. Wettability is defined through the phase gradient [22], ∂n�. We
took a large enough grid in order for simulations to be consistent –
the grid size was 177 × 2626 and the initial film thickness was  12
lattice Boltzmann units, which corresponds to the predicted film
thickness. We  examined 11 different values for the wall gradient
ranging from −1 to 1. The parameters and results are summarized
in Table 3. The results are consistent for all the wall gradients given
that the interface is properly resolved. For given wall gradients the
values of interface thickness values are of 0.2% relative accuracy. For
the given wall gradients 0.8 and 1.0 the simulations are unstable.
One can see a few of the calculated phase profiles in Fig. 5. It shows
that the negative wall gradient values cause non-physical phase
values (above 1.0 near the wall). One should attribute them to the
numerical adjustment of wall gradients through a first-order finite
difference scheme. Note that negative values of the phase gradient
are preferable, since the phase of the liquid adjacent to the wall has
the value of 1. The phase values near the wall are above 1 and do
not interact with the bubble which has phase value −1. In case of
positive gradients, the values near the wall are below 1, and the
gradient profile can merge with the values of the gas phase. Such
a situation would correspond to slug flow when gas is in contact
with the wall.
Another question that arises is the influence of the wall gradi-
ent on the bubble velocity and the corresponding capillary number.
The shear stress controlled by the wall phase gradient changes the
effective viscosity near the wall and the bubble velocity respec-

s for the interface velocity. ı is the film thickness. ∂n� is the phase gradient near
d at the middle of the bubble after 200 000 time iterations. Ca = 0.05 was  taken to

0.0 0.2 0.4 0.6 0.8 1.0
0.0634 0.0633 0.0632 0.0631 N/A N/A
0.0041 0.0042 0.0042 0.0042 N/A N/A
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F  (courtesy of Yang et al. [16]), Right (present simulations); x is scaled to Heff and increases
i gauge Digitizer” and scaled to compare with the present simulations.
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Table 4
The parameters and results for capillary number region simulations. ılit is the film
thickness with corresponding Calit taken from literature. ı is the simulation film
thickness with corresponding Ca.Ububble is the interface velocity at the center axis.
Ca  is based on the measured bubble tip velocity Ububble.

Calit ılit ı Ububble Ca Re

0.03 0.04 0.040 0.0014 0.026 0.449
0.05  0.06 0.058 0.0027 0.047 0.820
0.08  0.08 0.085 0.0045 0.080 1.378
0.1  0.1 0.076 0.0037 0.065 1.126
0.2  0.12 0.122 0.0125 0.222 3.807
0.4  0.13 0.151 0.0271 0.479 8.222
0.6  0.15 0.164 0.0416 0.736 12.617
ig. 6. A qualitative comparison for the film thickness across the bubble length. Left
n  the flow direction. The data from [16] was digitally acquired by the program “En

ively. If the viscosity ratio is high enough then the free surface
otion of the bubble should not depend on the shear stress near

he wall. One can see that if the film thickness is resolved properly
he influence of the wall gradient can be neglected. The velocities
f the bubble center for profiles along x direction are presented in
able 3. The average relative error for the mean velocity is 0.1%.

.5. The film variation over the bubble

Next, we investigated the variation of the film thickness over
he bubble length. The comparison for the thickness variation
s presented in Fig. 6. One can see a qualitative agreement, i.e.
he thickness increases towards the front meniscus and rapidly
ecreases towards the rear meniscus. This shape is sometimes
eferred as a “bullet” shape. The shape of the bubble is an important
uantity, as the bubble tip shape mainly influences the film thick-
ess at infinity [1].  It was indicated by Heil [3] that inertia effects

nfluence insignificantly the film thickness at infinity but influence
ignificantly the velocity pattern in front of the bubble. Therefore,
o properly describe the Bretherton phenomena the bubble shape
long with velocity pattern needs to be examined.

.6. Capillary number region

The purpose of this section is to validate the correlations of
iavedoni and Saita [10] and Heil [3] for a range of capillary num-
ers. Because of limited computational resources, we  skip the small
apillary numbers and make calculations for the range of capil-
ary numbers 0.03–0.8, which is a computationally reasonable task.
o be consistent with the previous sections, we choose the grid
o be 202 × 3001. Then 5 lattice Boltzmann units do not occupy

ore than 60 percent of the effective film thickness. Because the
imulation gets unstable with smaller grids and larger gradients,
ll the capillary number simulations were performed on the same
rid. To properly initialize the body force, the proportionality law
as utilized. The forcing 6 × 10−6/16 was chosen to obtain the pre-
icted capillary number 0.05. The pressure gradient can be obtained
hrough the capillary number ratio, see Section 5.1:

dP

dx
= 6 × 10−6

16
Calit

0.05
(11)

he film thickness is initialized through the ratio of capillary num-
ers as well:
2
Calit

0.05

he results obtained after 2 × 105 steps are presented in Table 4.
e chose to measure the film thickness in the middle of the bubble.
0.8  0.16 0.172 0.0559 0.989 16.960

The classical Bretherton formulation is for the measurement of the
film thickness at “infinity”. However, Thulasidas et al. [28] indicate
that for the gravity-driven bubble train flow in tubes it is enough
for bubbles to have a length of two–three tube diameters to apply
analysis for very long bubbles. In comparison with the axisymmet-
ric geometry, for three-dimensional square shaped microchannels
Hazel and Heil [29] indicate the measurement of the film thickness
at 5.5 channel heights from the front bubble tip. This distance was
shown sufficient for the film thickness to establish itself for the cap-
illary number range Ca < 4. Giavedoni and Saita [10] showed that the
film stabilizes at the distances of 2.6–4.0 diameters from the front
tip depending on the Reynolds number. We chose to measure the
film thickness in the middle of the bubble, which is located at least
at a distance of 2.5–3 channel heights from the bubble tip. More-
over, the film thickness examination, see Section 5.5,  shows that for
the capillary range of interest, i.e. 0.05 ≤ Ca ≤ 1, the standard devi-
ation of the film thickness from the bubble middle film thickness
is around 7 percent for small capillary numbers (Ca = 0.05) and less
than 1 percent for larger ones (Ca ≥ 0.1). This certainly validates the
point of choice to measure bubble thickness. One can see that the
calculated capillary numbers are overpredicted but the obtained
thicknesses are overpredicted as well due to the body force setting
caused by the Poiseuille flow assumption. If one needs to obtain
the desired capillary number, the shooting method for the forcing
is necessary, starting with the Poiseuille pressure gradient force
as the initial condition. Note that in the present work the shoot-
ing method is not used but it is presented as a possible remedy
to exactly match the required capillary number. We  extracted the
data of Giavedoni and Saita [10] and Heil [3] and compared them
with our results (see Fig. 7).
For the completeness of the presented data we also indicate the
velocity streamlines profiles, Fig. 8. The pattern shows that there is
a transition of having vortex in the front of the bubble for Ca = 0.22
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Fig. 7. A comparison between simulation results and results of Giavedoni and Saita
[10]  and Heil [3].  One can see a reasonable agreement. The plots depict the film
thickness as a function of the the capillary number. Data from [10] was  extracted
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ith the help of “Engauge Digitizer”, data from Heil [3] was  extracted manuallys
sing a set of curves involving interpolation and is the reason while the data exhibits

 noisy trend.

nd not having it for larger capillary numbers Ca = 1.00. Giavedoni
nd Saita [10] studied the behavior of the detaching of the vortex for
he Bretherton problem. They indicate critical capillary numbers as
a = 0.73 and Ca = 0.89 for detaching and full vortex disappearance.
eil [3] indicates that the behavior of the pattern strongly depends
n the Reynolds number. The scope of this work is to indicate the
ualitative capture of the effects.
.7. The influence of different viscosities ratio

The results presented above are taken for the liquid over gas
inematic viscosity ratio of 10. We  performed the same simula-

ig. 8. The streamlines plots for Ca = 0.22 (top) and Ca = 1.00 (bottom). One can see the ch
maller capillary numbers there exists a vortex in front of the bubble. For the larger once
he  bubble interface.
Fig. 9. The film thicknesses versus capillary number for �liq/�gas = 10 and
�liq/�gas = 20.

tions for the liquid over gas viscosity ratio of 20. The relaxation
parameters were taken as �liquid = 4.5 and �bubble = 0.7. We  did not
find any significant differences from the results presented above.
The comparison for the liquid film thicknesses is presented in Fig. 9.
The results validate our assumption that in the low capillary flow
regime the sufficiently high gas over liquid viscosity ratio (≥10) is
sufficient to obtain results consistent with the literature data. How-
ever, in reality the viscosity ratio affects results as it is indicated by
Han and Shikazono [30].

Also, while it is necessary to increase the viscosities ratio for the
binary-liquid formulation to be close to the physical Bretherton for-

mulation, one needs to be attentive to the numerical accuracy of the
LBM formulation. It is known [31] that the BGK collision operator
used in the present scheme has residual error accuracy propor-
tional to (� − 1/2)2. That means that by increasing the viscosity one

ange of pattern as indicated in works of Heil [3] and Giavedoni and Saita [10]. For
 there is none. The streamlines are presented in the reference frame moving with
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re studied for simple hydrodynamics solutions, their application
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. Conclusion

This work presents numerical studies of the Bretherton/Taylor
roblem using the binary liquid lattice Boltzmann method. The
ubble was chosen sufficiently long for the film thickness to
tabilize, and periodic boundary conditions were used to keep
he simulations robust. A bubble train was simulated instead of
he motion of a single bubble, and care was taken to minimize
he mutual influence of neighboring bubbles. The computational
esults in terms of capillary number dependence and shape of
he bubbles show consistency with the previously published data.
urprisingly, with large enough viscosity ratio the results are inde-
endent of any inertial effects. An examination of the influence of
rid resolution on the results allowed us to determine that the
hase interface should be resolved as at least 50 percent of the
lm thickness in order for the simulations to be grid independent.
hough our results are specific to the binary liquid lattice Boltz-
ann method, the numerical hints and procedures can be used for

ny continuous interface method.
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