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a b s t r a c t

Homogenization of initially segregated and stably stratified systems consisting of two miscible liquids
with different density and the same kinematic viscosity in an agitated tank was studied computationally.
Reynolds numbers were in the range of 3000–12,000 so that it was possible to solve the flow equations
without explicitly modeling turbulence. The Richardson number that characterizes buoyancy was varied
between 0 and 1. The stratification clearly lengthens the homogenization process. Two flow regimes
could be identified. At low Richardson numbers large, three-dimensional flow structures dominate mix-
ing, as is the case in non-buoyant systems. At high Richardson numbers the interface between the two
liquids largely stays intact. It rises due to turbulent erosion, gradually drawing down and mixing up
the lighter liquid.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mixing in stratified fluids has received much attention in envi-
ronmental fluid mechanics and related research areas [1–3]. Flows
(partly) driven by buoyancy, or stabilized by density differences
are abundant in oceans and the atmosphere. In oceans density dif-
ferences are due to water streams having different salinity or tem-
perature. Also in engineered systems homogenization of miscible
liquids having different densities has relevant applications, e.g. in
food processing and (petro)chemical industries. We expect an
impact of the density differences and thus buoyancy on the
homogenization process. In this paper we focus on mixing starting
from stable stratifications, i.e. mixing starting from an initial situ-
ation where a lighter liquid sits on top of a denser liquid. When
agitated (e.g. by an impeller), vertical mixing in such stratifications
is an energy sink, in addition to the viscous dissipation occurring in
the liquid. We also anticipate the (turbulent) flow structures to be
influenced by buoyancy forces [4].

In engineering-mixing and agitated flow research, blending,
homogenization, scalar mixing, and determination of mixing times
are extensively studied topics with an abundance of papers (dis-
cussing experimental and computational procedures and results).
The impact of density differences and stratification on the blending
process in agitated tanks is a subject less frequently encountered in
the literature. A part of the extensive (and classical) set of experi-
ments on agitation of miscible liquids reported by van de Vusse [5]

was done starting from stable stratifications. Further experimental
work in the field is due to Ahmad et al. [6] and Rielly and Pandit
[7]. Bouwmans et al. [8] visualized mixing of small additions of
liquid having a density different from the bulk density. The author
is not aware of computational studies of blending through agita-
tion in stably stratified liquids.

The specific situation that is considered in this paper is a con-
ceptually simple one. Two miscible liquids (one heavy, one light)
are placed in a mixing tank. The light liquid occupies the upper
part of the volume, the heavy liquid the lower part, the interface
being at half the tank height. Since we focus on the impact of den-
sity differences and to limit the dimensionality of the parameter
space, the two liquids are given the same kinematic viscosity.
The tank is equipped with a mainly axially (=vertically in this case)
pumping impeller: a 45� pitched-blade turbine having four blades.
Baffles at the perimeter of the cylindrical tank wall prevent the
liquid in the tank from largely rotating as a solid body. At time zero
– when the velocity is zero everywhere in this stable system – the
impeller starts to rotate with a constant angular velocity and the
blending process starts.

Given the tank and impeller geometry, the fact that the top of
the tank is closed-off with a lid, and given the initial conditions,
two dimensionless numbers govern the flow dynamics: a Reynolds
number (Re) and a Richardson number (Ri), the latter being a mea-
sure for the ratio of buoyancy forces over inertial forces. In this
paper we explore this two-dimensional parameter space by means
of numerical simulations: we solve the flow equations and in addi-
tion solve for the transport equation of a scalar that represents the
local composition of the liquid in the tank. This composition is fed
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back to the flow dynamics in terms of a buoyancy force (active sca-
lar). We study the way the homogenization process evolves in time
in terms of the flow field and the density distributions in the tank
as a function of Re and Ri. This eventually leads to quantitative
information as to what extent the process (i.e. homogenization)
times are influenced by stabilization as a result of buoyancy forces.

The Reynolds numbers are chosen such that they allow for di-
rect simulations of the flow, i.e. we do not employ closure relations
for turbulent stresses or subgrid-scale stress models. On the one
hand this limits the range of Reynolds numbers that can be stud-
ied; on the other hand it allows us to fully focus on the flow physics
without interference of potential artifacts or speculative issues
associated with turbulence modeling in the presence of buoyancy.

The research discussed here is purely computational. The re-
sults, however, are very amenable to experimental verification,
and next to quantitatively describing mixing in the presence of
buoyancy the aim of this paper is to trigger experimental work
on flow systems similar (not necessarily identical) to the ones
studied here. In this respect: the choice in this study of giving
the liquids the same kinematic viscosity is not instigated by limita-
tions of the numerical method; in fact our method can very well
deal with variable viscosity flows [9]. Combined experimental
and computational research could eventually lead to improved
equipment designs for mixing tasks involving stratification.

The paper is organized in the following manner: First the flow
system is described, and dimensionless numbers are defined. Sub-
sequently the simulation procedure is discussed. We then present
results, first showing qualitative differences in mixing at different
Richardson (and Reynolds) numbers, then quantifying the homog-
enization process. Conclusions are summarized in the last section.

2. Flow system

The tank and agitator, and the coordinate system as used
throughout this work are shown in Fig. 1. The tank is cylindrical
with four equally spaced baffles along the perimeter. The flow is
driven by four pitched (45�) blades attached to a hub that is
mounted on a shaft that runs over the entire height of the tank.
The tank is closed off with a lid so that at the top surface (as on
all other solid surfaces) a no-slip condition applies. The Reynolds
number of this flow system is defined as Re ¼ ND2

m , with N the
impeller speed (in rev/s), D the impeller diameter (see Fig. 1) and
the m kinematic viscosity of the liquid which is uniform throughout
the tank, i.e. m is independent of the local composition of the liquid.

Initially, two layers of liquid are placed in the tank, their inter-
face being at z = 0.5H. The upper liquid has a density that is Dq less
than that of the lower liquid. The volume of the denser liquid is less

by the volume of the impeller compared to the volume of lighter
liquid. Starting from a completely still situation, we switch on
the impeller with constant speed N. Next to the Reynolds number,
a Richardson number defined as Ri ¼ gDq

qN2D
now fully pins down the

flow system. In the expression for Ri, g is gravitational acceleration,
and q is the volume-averaged density of the liquid in the tank. Riel-
ly and Pandit [7] define the Richardson number as gDqH

qN2D2. Given the
(standard) aspect ratios as used in the present work the latter
expression is equal to three times the Richardson number as we
defined it above.

The Reynolds numbers considered are in the range of 3000–
12,000. For a single-liquid system this range covers transitional
and mildly turbulent flow. The Richardson number ranges from
0.0 to 1.0.

3. Modeling approach

The lattice-Boltzmann method (LBM) has been applied to
numerically solve the incompressible flow equations. The method
originates from the lattice-gas automaton concept as conceived
by Frisch, Hasslacher, and Pomeau in 1986 [10]. Lattice gases and
lattice-Boltzmann fluids can be viewed as (fictitious) fluid particles
moving over a regular lattice, and interacting with one another at
lattice sites. These interactions (collisions) give rise to viscous
behavior of the fluid, just as colliding/interacting molecules do in
real fluids. Since 1987 particle-based methods for mimicking fluid
flow have evolved strongly, as can be witnessed from review arti-
cles and text books [11–14]. The main reasons for employing the
LBM for fluid flow simulations are its computational efficiency
and its inherent parallelism, both not being hampered by geomet-
rical complexity.

In this paper the LBM formulation of Somers [15] has been em-
ployed. It falls in the category of three-dimensional, 18 speed
(D3Q18) models. Its grid is uniform and cubic. Planar, no-slip walls
naturally follow when applying the bounce-back condition. For
non-planar and/or moving walls (that we have in case we are sim-
ulating the flow in a cylindrical, baffled mixing tank with a revol-
ving impeller) an adaptive force field technique (a.k.a. immersed
boundary method) has been used [16,17].

The local composition of the liquid is represented by a scalar
field c for which we solve a transport equation

@c
@t
þ ui

@c
@xi
¼ C

@2c
@x2

i

ð1Þ

(summation over repeated indices) with ui the ith component
of the fluid velocity vector, and C a diffusion coefficient that fol-
lows from setting the Schmidt number Sc � m

C to 1000. We solve

Fig. 1. The stirred tank geometry considered in this paper. Baffled tank with pitched-blade impeller. The coordinate systems ((r, z) and (x, y, z)) are fixed and have their origin
in the center at the bottom of the tank. The top of the tank is closed off with a lid.
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Eq. (1) with an explicit finite volume discretization on the same
(uniform and cubic) grid as the LBM. A clear advantage of
employing a finite volume formulation is the availability of
methods for suppressing numerical diffusion. As in previous
works [18,19], TVD discretization with the Superbee flux limiter
for the convective fluxes [20] was employed. We step in time
according to an Euler explicit scheme. This explicit finite volume
formulation for scalar transport does not hamper the parallelism
of the overall numerical approach.

Strictly speaking the Schmidt number is the third dimensionless
number (next to Re and Ri) defining the flow. Its large value (103)
makes the micro-scalar-scales (Batchelor scale) a factor offfiffiffiffiffi

Sc
p

� 30 smaller than the Kolmogorov length scale and quite
impossible to resolve in our numerical simulations. In the simula-
tions – although we as much as possible suppress numerical diffu-
sion – diffusion will be controlled by the grid spacing and the
precise value of Sc based on molecular diffusivity will have mar-
ginal impact on the computational results. In order to assess to
what extent numerical diffusion influences the outcomes of our
simulations we performed a grid refinement study for a few of
the flow cases considered here.

The scalar concentration c is coupled to the flow field via a
Boussinesq approximation. The concentration is used to determine
a local mixture density qmx according to a linear relation:
qmx ¼ qþ 1

2� c
� �

Dq (c = 1 light fluid; c = 0 heavy fluid). The body
force in positive z-direction (see Fig. 1) felt by a liquid element hav-
ing density qmx then is equal to

fz ¼ gðq� qmxÞ ¼ gDq c � 1
2

� �
ð2Þ

and this force is incorporated in the LB scheme. Since the volume of
the light fluid is a little larger than the volume of heavy fluid (by the
volume of the impeller), the uniform concentration after sufficiently
long mixing is c1 = 0.502 (not exactly 0.50). This leaves us with a
small, uniform buoyancy force in the fully mixed state. This uniform
force, however, has no impact on the flow dynamics; its only conse-
quence is a hydrostatic pressure gradient. This was tested by run-
ning a simulation with fz = gDqc (instead of Eq. (2)) so that the
eventual uniform buoyance force got fz = 0.502gDq. The flow
dynamics of the latter simulation was the same as that of the corre-
sponding simulation that used Eq. (2).

In the Boussinesq approximation, the body force term is the
only place where the density variation enters the Navier–Stokes
equations. For this approximation to be valid Dq

q � 1, (that is
Ri� g

N2D
) is required.

3.1. Numerical settings

The default grid (which as explained above is uniform and cu-
bic) has a spacing D such that 180D corresponds to the tank diam-
eter T (defined in Fig. 1). The number of time steps to complete one
impeller revolution is 2000. In this manner the tip speed of the
impeller is pND = 0.094 in lattice units (with the impeller diameter
D = T/3) which keeps the flow velocities in the tank well below the

c 0.0 

0.2 

0.4 

0.8 

1 0.6 

Fig. 2. Liquid composition c in a vertical, mid-baffle plane at (from left to right) 10, 20, 30, and 50 impeller revolutions after start up. From top to bottom Ri = 0.0, 0.125, and
0.5. Re = 6000. (For interpretation to colours in this figure, the reader is referred to the web version of this paper.)
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speed of sound of the lattice-Boltzmann system thus achieving
incompressible flow.

The effect of the spatial resolution of the simulations on the
flow results needs to be examined. The micro-scale of turbulence
(Kolmogorov length scale g) relates to a macroscopic length scale
(say the tank diameter T) according to g ¼ TRe�

3
4. The criterion

for sufficiently resolved direct numerical simulations of turbulence
is D < pg [21,22]. According to this criterion, at Re = 6000 a grid
with T = 180D slightly under-resolves the flow; at our highest Rey-
nolds number (Re = 12,000) the same grid has D � 6.4g. To assess
how serious this apparent lack of resolution is, grid effects were
investigated. In addition to T = 180D, a number of simulations have
also been performed on grids with T = 240D. One simulation with
Re = 12,000 used a grid with T = 330D (so that for this simulation
D � 3.5g). Due to the explicit nature of the lattice-Boltzmann
method and its (in)compressibility constraints, the finer grids re-
quire more time steps per impeller revolution.

The relatively modest default resolution of T = 180D was chosen
because scanning the two-dimensional parameter space (Re and
Ri) requires a significant number of simulations, and since the sim-
ulations need to capture at least the largest part of the homogeni-
zation process, i.e. the evolution from a segregated, static state to a
well-mixed, dynamic state. Dependent on Re and Ri, the time span
per simulation varied from 100 to slightly over 200 impeller
revolutions.

4. Results

4.1. Flow and scalar field impressions

The results of our simulations will be mostly discussed in terms
of the flow and concentration fields in the vertical, mid-baffle cross
section as they evolve in time from start-up from a zero-flow, fully
segregated, stable state. The base-Reynolds number amounts to
6000. For this value of Re we show in Fig. 2 the scalar concentration
fields for three different values of Ri, one of them being a non-
buoyant, and thus passive-scalar case (Ri = 0.0). Buoyancy clearly
impacts the mixing process. At Ri = 0.0 the interface between high
and low concentration quickly disintegrates and e.g. low-concen-
tration blobs appear in the high-concentration upper portion of
the cross section as a results of three-dimensional flow effects, lar-
gely due to the presence of baffles. At Ri = 0.125 this is less the case.
The interface is clearly agitated but largely keeps its integrity, i.e. it
is not broken up. At still larger Ri (Ri = 0.5 in Fig. 2) the interface
stays more or less horizontal. It rises as a result of erosion: High-
concentration (and thus low-density) liquid is eroded from the
interface and drawn down to the impeller. It then quickly mixes
in the lower part of the tank. This leads to a gradual rise of concen-
tration in the part of the tank underneath the interface. The portion
above the interface stays at concentration one and gradually
reduces in height.

tipu
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10
-0.5

10
0

10
-1

Fig. 3. Velocity magnitude in a mid-baffle plane. Top: Ri = 0.0; bottom Ri = 0.5. Left: 20 impeller revolutions after start-up, right: 50 revolutions after start up. Note the
logarithmic color scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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After start up it takes time for the action of the impeller to be
felt throughout the tank with the top of the tank the last region
that gets agitated. In the absence of buoyancy the flow and turbu-
lence induced by the impeller have made their way to the upper
parts of the tank in roughly 30 impeller revolutions. At Ri = 0.5,
the interface between high and low-density liquid acts as a barrier
for flow development in the upper, low-density part of the tank,
see Fig. 3. After 50 revolutions, high up in the tank there still exists
a rather quiescent flow region where agitation is largely due to the
rotation of the shaft, not so much the result of the impeller.

Compared to the impact the Richardson number has, the effect
of the Reynolds number is relatively modest, as can be assessed
from Fig. 4. Here we compare – at Ri = 0.125 – the scalar concentra-
tion fields in the mid-baffle plane at Re = 3000, and Re = 12,000 at
two moments in time. These fields have their Re = 6000 counter-
parts displayed in Fig. 2 (middle row, second and fourth panel
counted from the left). At the three Reynolds numbers, the inter-
face reaches a level of z � 2.2D after 20 revolutions, and is closely
underneath the lid after 50 revolutions.

4.2. Quantitative analysis

The above impressions are now analyzed and interpreted in a
more quantitative manner. One way to show the evolution of the
mixing process is by means of vertical concentration profiles. These
are cross-sectional averaged and time-smoothed profiles. The

vertical concentration profile in the mid-baffle plane (with y = 0,
see Fig. 1) is defined as ~cðz; tÞ ¼ 1

T

R T=2
�T=2 cðx; y ¼ 0; z; tÞdx. As the aver-

aging time we take five impeller revolutions: h~ciðz; tÞ ¼ N
5

R tþ2:5
N

t�2:5
N

~cðz; sÞds. In Fig. 5 the results with the three Reynolds numbers at
Ri = 0.125 as above discussed in a qualitative manner are compared
in terms of h~ci. Now we also get a clearer picture of the effect the
Reynolds number has on the level of homogenization. Initially
the three flow systems evolve at comparable pace (in line with
the observations in Figs. 2 and 4); after 100 impeller revolutions,
however, the systems with Re = 6000 and 12,000 are (virtually)
vertically homogeneous, whereas at this stage the system with
Re = 3000 still has appreciably higher concentrations in the top
10–20% of the tank volume, i.e. above z = 0.8H.

In Fig. 6 the impact of the Richardson number on the evolution
of h~ci at the base-case Reynolds number (Re = 6000) is presented.
The results confirm the earlier qualitative observations. The pro-
files for Ri P 0.25 show a fairly narrow range where the scalar
concentration transits from a relatively low value in the bottom re-
gion, to c = 1 in the top region. This narrow range represents the
interface; it slowly rises with time. Below the interface the scalar
concentration is quite uniform and gradually increases as a result
of turbulence attacking (eroding) the interface from below, and
the impeller effectively spreading the eroded scalar through the
portion of the tank below the interface. For Ri 6 0.125 the interface
gets wider and less well-defined.

c 

0.0 

0.2 

0.4 

0.8 

1 0.6 

Fig. 4. Assessment of Reynolds number effects at Ri = 0.125. Top row: Re = 3000; bottom row: Re = 12,000 20 (left) and 50 (right) impeller revolutions after start up. (For
interpretation to colours in this figure, the reader is referred to the web version of this paper.)
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The interface rising toward the top of the tank is again visual-
ized in Fig. 7, where we track the interface location zi (quite
arbitrarily defined as the vertical (z) location with h~ci = 0.5) as a
function of time. For all Reynolds numbers considered the rising
interface can be consistently tracked for Ri = 1.0 and Ri = 0.5. Also
for Re = 3000 (the lowest Reynolds number considered) and
Ri = 0.25 the interface rises coherently. For higher Reynolds num-
bers the interface evolves more irregularly and at some stage
becomes intractable. The same is true if Ri < 0.25 (not shown in
Fig. 7).

If possible (based on the level of coherency of the zi versus time
data) we define the interface rise velocity vi as the slope of a linear
function with intercept zi = 0.5 at t = 0, and least-squares fitted
through the zi data points in the time range 0–100 impeller

revolutions. This rise velocity as a function of Ri at the three Rey-
nolds numbers is plotted in Fig. 8. It shows a consistent decrease
of the rise velocity with increasing Richardson number. The (lim-
ited amount of) data points also show an increasing rise velocity
with increasing Reynolds number. This is because the stronger tur-
bulence at higher Re more effectively erodes the interface which is
the primary reason for it to rise. The rise velocity can be used as a
means to estimate the mixing time: smi � 0:5H

v i
with 0.5H the dis-

tance the interface needs to travel to reach the top of the tank.
In order to assess the effect of buoyancy on mixing for the cases

without clearly identifiable interface rise velocity (notably the
cases with Ri 6 0.25) we also analyzed the mid-baffle scalar con-
centration fields in terms of their spatial concentration standard
deviation as a function of time: r2ðtÞ ¼ 1

A

RR
A½c2ðx; y ¼ 0; z; tÞ � ðhci

ðtÞÞ2�dxdz with hciðtÞ the average scalar concentration in the mid-
baffle plane at moment t.

Time series of standard deviations are given in Fig. 9 for
Re = 6000 and various Richardson numbers. The decay rates
strongly depend on the Richardson number; at Ri = 0.03125 the
scalar variance decay is close to that of a passive scalar so that
we can conclude that (for the specific stirred tank configuration
and process conditions) buoyancy influences the homogenization
process if Ri > 0.03125. In order to characterize the decay of scalar
variance with a single number, the time to reach 2r = 0.05 is here
chosen as the mixing time measure sr. If 2r = 0.05 the scalar con-
centration in the mid-baffle cross section is fairly uniform with
only small high-concentration patched near the very top of the
tank (see the inset in Fig. 9).

In Fig. 10 it is shown how the dimensionless mixing time srN
relates to Ri and Re: the higher Ri, the larger the mixing time;
the larger Re the lower the mixing time. For Ri = 0.0 (i.e. no buoy-
ancy) correlations for mixing times based on experimental data are
available. Grenville et al. [23] suggest srN ¼ 5:1ðPoÞ

1
3 T

D

� �2 with Po
the power number (which is the power P drawn by the impeller
made dimensionless according to Po � P

qD5N3). With Po � 1.2 for a
four-blade 45� pitched-blade turbine [24] and T

D � 3 (see Fig. 1)
the correlation gives srN � 43 which is close to the results we
present in Fig. 10 for Ri = 0.0.

Buoyancy amplifies the differences in mixing times between the
various Reynolds numbers: at Ri = 0.0 the mixing times of the three
Reynolds numbers are within 25%. By Ri = 0.0625 this has grown to
some 50% and differences increase further for higher Ri. Specifi-
cally homogenization at the lowest Reynolds number (3000) slows
down drastically. At this value the stratification makes it hard to
sustain turbulence, specifically in the higher levels of the tank. Re-
duced fluctuation levels also have negative impact on the interface
erosion process that – as discussed above – becomes more and
more rate determining at higher Richardson numbers.

4.3. Assessment of grid effects

At this stage it is important to (again) realize that the results
and their analysis presented so far is a purely computational exer-
cise and that we have no experimental validation. In order to as-
sess the quality of the results to some extent we here present
their sensitivity with respect to the spatial and temporal resolution
of the simulations: Three of the cases as discussed above were re-
peated on a grid with D = T/240 and Dt = 1/(2800N) (as discussed
above the default values are D = T/180 and Dt = 1/(2000N)). The
three cases have (1) Re = 6000 and Ri = 0.25; (2) Re = 3000 and
Ri = 1.0; (3) Re = 12,000 and Ri = 0.0625. In addition and given its
high Reynolds number, the third case was also simulated on a grid
with D = T/330 and Dt = 1/(3600N). We analyze these cases in the
same way as their lower resolution counterparts. For the cases
with Ri = 1.0 and 0.25 we determine their vertical, time-smoothed

Fig. 5. Vertical concentration profiles h~ci (as defined in the text). The three curves
per panel relate to t = 17.5/N (time averaging from 15/N to 20/N) (solid line),
t = 47.5/N (dotted line), and t = 97.5/N (dashed line). From bottom to top: Re = 3000;
6000; and 12,000. Ri = 0.125.
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concentration profiles, and track the rise of the interface. The case
with Ri = 0.0625 is analyzed in terms of the decay of the scalar
standard deviation with time, and in terms of its flow characteris-
tics. The results are in Figs. 11–15.

In general there only is a weak sensitivity with respect to the
grid size; the sensitivity getting stronger for higher Re. It can be
seen (Fig. 11) that the concentration profiles at Re = 3000 agree
better between the grids than the profiles at Re = 6000. Interpret-
ing the concentration profiles in terms of the rise of the interface

(Fig. 12) shows insignificant differences; the statistical uncertain-
ties stemming from turbulence are at least as big as potential grid
effects.

The test at Re = 12,000 and Ri = 0.0625 is more critical. It shows
(in Fig. 13) a clear, and to be expected trend with respect to the
grid resolution. Since diffusion is largely controlled by the numer-
ics, the simulation on the finest grid is less diffusive and thus
shows higher scalar standard deviations in the later stages of
homogenization. The differences are not very large; the sr mixing

Fig. 6. Vertical concentration profiles h~ci (as defined in the text). The three curves per panel relate to t = 17.5/N (solid line), t = 47.5/N (dotted line), and t = 97.5/N (dashed
line). All panels have Re = 6000, and (a) Ri = 0.0; (b) Ri = 0.0625; (c) Ri = 0.125; (d) Ri = 0.25; (e) Ri = 0.5; (f) Ri = 1.0.
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time increases by some 6% from the coarsest to the finest grid. It is
believed that the essential flow physics is sufficiently captured by
the default (and coarsest) grid.

In addition to the mixing time results, this is further assessed by
comparing some important flow characteristics for the case with
Re = 12,000 and Ri = 0.0625 on the three grids. The turbulent flow
in the mixing tank is largely driven by the vortex structure around
the impeller. In Fig. 14 we visualize this structure by plotting the
vorticity-component in the direction normal to the mid-baffle
plane. This view allows us to clearly see the strong vortices at
the tips of the impeller blades, and the way they are advected in
the downward direction by the pumping action of the impeller
[25]. The data in Fig. 14 (and also in Fig. 15) have been averaged
over the final 30 impeller revolutions during which the flow can
be considered fully developed and stationary (the scalar is well
mixed during this stage). The averaging is conditioned with the
impeller angle (impeller-angle-resolved averages).

Fig. 7. Vertical interface location zi as a function of time for (from bottom to top)
Re = 3000; Re = 6000; and Re = 12,000; and Ri as indicated.

Fig. 8. Rise velocity of the interface as a function of Ri at various Reynolds numbers.
Data points are only given when a coherent rising motion if the interface for at least
0 6 tN 6 100 could be identified in time series as presented in Fig. 7.

Fig. 9. Scalar standard deviation in the mid-baffle plane (r) as a function of time;
comparison of different Richardson numbers at Re = 6000. The dashed curve has
Ri = 0.0. The solid curves have Ri = 0.03125, 0.0625, 0.125, and 0.25 in the order as
indicated. The inset is the scalar field for Ri = 0.0 when 2r = 0.05 (at tN = 40). The
color scale of the inset is the same as in Fig. 2. (For interpretation of the references
to colours in this figure legend, the reader is referred to the web version of this
paper.)

Fig. 10. The mixing time based on scalar standard deviation sr versus Ri.
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The vorticity levels of the tip vortices and their locations agree
well between the three grids. More subtle differences between the
grids can be observed as well: the decay of vorticity (i.e. its dissi-
pation) along the downward and subsequently sideways directed
impeller stream is stronger for the courser grids. Also the boundary
layers (most clearly visible above the bottom and along the lower
part of the tank’s side wall) are better resolved by the finer grid, i.e.
they show slightly higher vorticity levels. These effects of resolu-
tion were to be expected. They, however, do not strongly impact
the overall flow in the tank which confirms the conclusions regard-
ing the weak impact of resolution on mixing time as discussed
above and presented in Fig. 13.

In Fig. 15 we compare impeller-angle resolved (with the impel-
ler blades crossing the field of view) turbulent kinetic energy
between the three grids. Again we see fairly good overall agree-
ment. The main difference is the shape and somewhat larger size
of the area with high turbulent kinetic energy underneath the
impeller for the simulation on the finest grid.

5. Summary, conclusions and outlook

Homogenization of initially segregated and stably stratified sys-
tems consisting of two miscible liquids with different density and
the same kinematic viscosity by an axially pumping impeller was
studied computationally. We restricted ourselves to flows with rel-
atively low Reynolds numbers (in the range of 3000–12,000) to be
able to solve the flow equations without explicitly modeling turbu-
lence (in e.g. a large-eddy or RANS-based manner); this to avoid
potential artifacts as a result of turbulence closure. This obviously
limits the practical relevance of the presented work since most

practical, industrial scale mixing systems operate at (much) higher
Reynolds numbers.

The flow solution procedure was assessed in terms of its grid
sensitivity which was considered important given our ambition
to directly solve the flow, and specifically relevant since we needed
to solve for the transport of a scalar that keeps track of the density
(and thus buoyancy) field. The high Schmidt number (and there-
fore low diffusivity) makes the scalar field most sensitive with re-
spect to resolution issues. A small but systematic impact of the grid

Fig. 11. Vertical concentration profiles h~ci. Comparison of simulations with
different resolution. Top panel: Re = 6000, Ri = 0.25; bottom panel: Re = 3000,
Ri = 1.0. The solid curves are at t = 17.5/N, the dotted curves at t = 47.5/N, and the
dashed curves at t = 97.5/N. The thicker curves relate to the finer grid (D = T/240),
the thinner curves to the coarser (default) grid (D = T/180).

Fig. 12. Interface location zi as a function of time; comparison between different
grids; triangles relate to the finer grid, (D = T/240), squares to the coarser (default)
grid (D = T/180). Top panel: Re = 6000, Ri = 0.25; bottom panel: Re = 3000, Ri = 1.0.

Fig. 13. Scalar standard deviation in the mid-baffle plane (r) as a function of time;
comparison between three different grids; short-dashed curve: the fine grid (D = T/
330), solid curve: intermediate grid, (D = T/240), long-dashed curve: the coarser
(default) grid (D = T/180). Re = 12,000, Ri = 0.0625.
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spacing on the homogenization process was observed, specifically
at the highest Reynolds number (12,000). We conclude that the
resolution has had limited impact on the quantitative results as
presented here. For identifying physical mechanisms and trends
in our flow systems it is felt that the simulations were sufficiently
resolved. The grid-refinement study also provides estimates as to
how big numerical errors might be. Experimental work is needed
to further assess accuracy.

Broadly speaking two flow regimes were identified. For ‘‘low’’
Richardson numbers the homogenization process is akin to the
process with Ri = 0 and light and heavy liquid macro-mix through
large, three-dimensional structures. For ‘‘larger’’ Richardson num-
bers the tank content maintains an identifiable, fairly horizontal
interface with the light liquid above, and a denser liquid mixture
below. The interface rises because of erosion: turbulence at the

interface erodes light liquid that subsequently is drawn down by
the impeller and well mixed in the volume below the interface.
The boundary between the two flow regimes is not sharp. For
the entire Reynolds number range considered the erosion regime
could be observed for Ri = 0.5 and up. At Re = 3000 (the lowest
Reynolds number) also at Ri = 0.25 erosion dominated homogeni-
zation. The rest of the cases did not show a clear and coherently
rising interface. At the lowest Richardson number (0.03125)
homogenization was roughly as fast as at Ri = 0.

An important purpose of presenting this work is to invite exper-
imentalists to study similar flow systems in the lab. If necessary (or
desired), two miscible liquids with different density and viscosity
could be used for the experiments. As long as the viscosity (and
density) as a function of the mixture composition is known, our
simulation procedure should be able to represent the experiment.

Fig. 14. Impeller-angle-resolved averaged vorticity component in the direction normal to the plane of view. Mid-baffle plane. Positive vorticity implies counter-clockwise
rotation. Top row: the impeller blades cross the plane of view; bottom row: the impeller blades make an angle of 36� with the plane of view. From left to right: D = T/180,
D = T/240, D = T/330. Re = 12,000, Ri = 0.0625. (For interpretation to colours in this figure, the reader is referred to the web version of this paper.)

Fig. 15. Impeller-angle-resolved averaged turbulent kinetic energy in the mid-baffle plane. The impeller blades are in the plane of view. From left to right: D = T/180, D = T/
240, D = T/330. Re = 12,000, Ri = 0.0625. (For interpretation to colours in this figure, the reader is referred to the web version of this paper.)
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