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Cross flow phenomena between connected sub-channels are studied by means of numerical simulations
based on lattice-Boltzmann discretization. The cross (that is lateral) transfer is largely due to macroscopic
instabilities developing at two shear layers. The characteristic size and advection velocity of the instabil-
ities favorably compare with experimental results from the literature on a geometrically similar system.
The strength of the cross flow strongly depends on the Reynolds number, with cross flow developing only
for Reynolds numbers (based on macroscopic flow quantities) larger than 1360. Mass transfer between
the sub-channels has been assessed by adding a passive scalar to the flow and solving its transport equa-
tion. As a result of the intimate connection of cross flow and lateral mass transfer, also the mass transfer
coefficient is a pronounced function of Re.
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1. Introduction

Flow phenomena as occurring in the interstitial space in tube
bundles in (nuclear) heat exchangers are relevant for the heat
transfer performance and mechanical stability of the equipment
[1,2]. The stability relates to forces induced by the large-scale
and often coherent flow structures that develop in such systems.
In case the main flow direction and the tube centerlines are per-
pendicular, complex vortex shedding patterns occur that strongly
depend on the arrangement of the tubes in the bundle [3]. In this
paper, however, the situation where tube centerlines and main
flow direction are essentially parallel is considered. In that situa-
tion large-scale flow structures develop at the free shear layers that
divide parts of the channels with different cross-sectional area [4].
These structures induce strong secondary flows (termed cross
flows in this paper) perpendicular to the (primary) streamwise
direction. In addition to their practical relevance for heat exchanging
equipment, the cross flow instabilities exhibit interesting fluid
mechanics as they show an intriguing transition from stable lami-
nar, via unstable laminar to turbulent flow with (as indicated above)
the development of large-scale structures and transverse transport.

As for essentially all transitional flows with coherent fluctua-
tions, their modeling is intricate. Since the turbulence is not fully
developed, and part of the fluctuations behave (semi) determinis-
tically, conditions for (conventional) turbulence closure are not
met. On the other hand, direct numerical simulations, i.e. simula-
tions that solve the Navier-Stokes equations without inferring a
turbulence model, require significant computational resources
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since the flow needs to be resolved down to its smallest scales.
In this paper, we explore the applicability and feasibility of direct
simulations of cross flow in a broad range of Reynolds numbers
(up to Re; = 0(10%), with the Re, based on macroscopic flow quan-
tities, see its definition below) facilitated by parallel processing
and an efficient numerical scheme. For its inherently parallel nat-
ure, and its efficiency not being hampered by geometrical com-
plexity we use the lattice-Boltzmann method for solving the
Navier-Stokes equations. We assess — specifically for the high
end of the Reynolds number range - the effects of spatial resolu-
tion on the numerical results. Since (from the application side) heat
transfer is an essential feature in tube bundles, we study the con-
tribution of cross flow to the lateral spreading of a passive scalar.
The convection-diffusion equation for the passive scalar is solved
by means of an explicit finite volume formulation with specific
attention for controlling numerical diffusion.

The aim of this paper is to resolve and visualize the instabilities
in a typical cross flow geometry at a range of Reynolds numbers
covering transitional flow; and to quantify to what extent cross
flow contributes to lateral scalar mixing. The results, at least those
at the higher Reynolds numbers considered here, also can act as a
benchmark for the performance of turbulence models applied to
the same flow system. The use of turbulence models becomes inev-
itable when simulating cross flows at the much higher Reynolds
numbers characteristic for (nuclear) industrial applications. Finally
the paper is a demonstration of the lattice-Boltzmann method cou-
pled to a finite volume scalar transport solver as an efficient tool
for simulations of transitional and turbulent flows.

The geometry and flow analysis as used here is inspired by the
experimental work due to Lexmond et al. [5] (2005), see Fig. 1.
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They reported particle image velocimetry (PIV) experiments in a
cross flow setup, where they quantified the occurrence of coherent
flow structures in terms of their size and the velocity with which
they were advected. Their results are used here as a means of
experimental validation, specifically in view of the simplifying
assumptions in terms of boundary conditions that were made to
help the feasibility of our simulations: Periodic conditions in the
streamwise direction were used in most of the simulations to save
on the computational effort related to entrance effects. As in the
experimental work, this paper will consider single phase, incom-
pressible, isothermal flow. In addition to the experiments the sim-
ulations consider the transport of a passive scalar.

This paper starts with a brief account of the flow geometry, and
the flow conditions including a summary of the experimental
observations of Lexmond et al. [5]. In the subsequent section the
numerical procedures for flow and scalar transport modeling are
described, and the parallelization strategy is outlined. In discussing
the results, we first show impressions of the flow structures that
were resolved. Then we perform a number of verifications, includ-
ing grid resolution tests and spectral analysis to assess the level
with which turbulence is being resolved. Subsequently the onset
of macroscopic instabilities and their dependence on the Reynolds
number will be presented and related to the experimental data.
Then scalar transport results will be discussed and lateral mixing
will be quantified. The final section summarizes and draws
conclusions.

2. Definition of the flow

Fig. 1 shows the flow geometry, and the coordinate system that
will be used throughout this paper. It is a straight channel with
uniform cross section consisting of two larger rectangular portions
(sub-channels) connected through a narrow slit. The primary flow
is in the positive x-direction. The cross section is left-right sym-
metric. In most of the simulations presented here, we will consider
periodic boundary conditions in the streamwise direction. In these
cases the flow is driven by a uniform body force f, in the positive
x-direction that represents an average pressure gradient: fo =
—%. In one case the flow in the channel is due to an inflow in
the x-direction, uniformly distributed over the cross-sectional area.
In that case the outflow has a zero-gradient boundary condition.

At the shear planes (which are the xz-planes at y = +Y% that sep-
arate the wide and narrow parts of the cross section) instabilities
develop, akin to the ones observed at a free shear layer as e.g. de-
scribed in the seminal paper by Brown and Roshko [6], a major dif-
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Fig. 1. Cross section through the channel which consists of two rectangular sub-
channels connected though a slit with height d, and definition of the coordinate
system. The dashed line indicates the primary plane of observation.

ference being the close proximity of the top wall. Free shear layers
have been investigated in great detail by numerous authors, e.g.
see the review by Ho and Huerre [7], and [8-12] for more recent
advancements in the field. A schematic of the instabilities occur-
ring in the specific geometry being studied here (as inspired by
the experimental work [5]) along with the definition of their char-
acteristic dimension S is given in Fig. 2. In line with the experimen-
tal work, a macroscopic Reynolds number (that fully defines this
single phase, isothermal flow) is based on the hydraulic diameter
of the channel (D, =%, with V the total volume of the channel,
and A the total wall surface area), and on the superficial velocity
Us = ﬁ (with ¢y the volumetric flow rate, and A the cross-sec-
tional area of the channel): Re; = ”Sf?". Given the geometrical layout
(Fig. 1) Dp = 1.157W = 8.097d with d the height of the slit connect-
ing the two sub-channels. As a result, a Reynolds number based on
the flow in the slit (length scale d, average velocity in the slit sig-
nificantly smaller than u;) would be typically one order of magni-
tude lower than Re.

It should be noted that in the simulations with periodic bound-
ary conditions Res cannot be set a priori. In steady state the (even-
tual) superficial velocity is the result of a force balance in
x-direction on the entire fluid volume: f,V = (t,,)A with (t,) the
average wall shear stress. For a priori characterizing the flow we
therefore have a second Reynolds number Re,, that is based on
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Fig. 2. Schematic view of cross flow in an xy-plane through the slit with a definition
of the structure size S.
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the wall shear velocity related to the average wall shear stress

Uy = /122 Re,, = 2P,

Fig. 2 is a schematic of the experimentally observed flow struc-
tures. At the shear layers instabilities develop that transport liquid
from left to right and vice versa. These secondary flow structures
are transported downstream with a well-defined speed (the struc-
ture velocity g ). In the experiments this speed is determined by
cross correlating time series of the transverse (y) velocity in two
monitor points in the center of the slit at a mutual distance Ax
in x-direction. The two signals are to some extent periodic and
have a delay time (determined from the cross correlation) t4 so
that Uy = ﬁ—;‘ The structure size S (see Fig. 2) follows from the fre-
quency (f) of the velocity time series and the structure velocity:
S =4wme The largest uncertainty in this analysis is the determina-
tion of the frequency given the phase jumps and other non-peri-
odic effects in the velocity time series. Among other results, Ref.
[5] reports structure velocity ratios %« and size ratios Sh as a func-
tion of the macroscopic Reynolds number Res. The experlmental
observations are mainly made in the xy-plane at z ={¢; this plane
is indicated by the dashed line in Fig. 1.

Clearly the periodic boundary conditions in streamwise direc-
tion as used in the simulations need to be considered with great
care. If the domain size in x-direction (L) is taken too small in rela-
tion to S, the flow will not develop instabilities at all, or will orga-
nize itself such that S = L. Therefore L should be taken significantly
larger than the expected size of the structures. Still, in the periodic
domain the structure size will be quantized (mS =L, with m an
integer number). To relate the computational and experimental re-
sults the sensitivity of S with respect to the choice of L has been
considered. In addition, also the simulation with non-periodic
streamwise boundary conditions has been used to check structure
sizes, and the distance required to fully develop unstable, periodic
flow.

3. Modeling set up

The lattice-Boltzmann method [13,14] has been used for simu-
lating the fluid flow. It is a particle-based method with excellent
scaling properties on parallel computer platforms, and with a com-
putational efficiency not being hampered by geometrical complex-
ity. The specific scheme employed here is due to Somers [15], see
also [16]. It is a variant of the widely used lattice BGK schemes
(see e.g. [17]). The way it deals with higher-order terms gives it en-
hanced stability at low viscosities which makes it well suited for
turbulence simulations [18-20]. No turbulence model has been ap-
plied, i.e. the lattice-Boltzmann method was used to directly solve
the Navier-Stokes equations.

Our implementation of the lattice-Boltzmann scheme makes
use of a uniform, cubic grid. In order to sufficiently resolve the
flow, it was considered essential to accurately capture the z-gradi-
ents in the slit. For this we took 15 spacings in the z-direction there
(4 =2), and checked the sensitivity of this choice for one specific
flow case by also performing simulations at 4 = and 4 = & The
use of a uniform, cubic grid implied that the linear dimensions B
and H (see Fig. 1) of the two sub-channels slightly changed (by
1/3 of a grid spacing, i.e. less than 0.5% of B) when changing the
spatial resolution. The aspect ratio & of the slit did not change from
one grid to the other.

Given the geometry only consisting of plane walls, the halfway
bounce-back rule (e.g. [14]) can be employed to achieve the no-slip
condition. As noted above, the entrance and exit planes (x = 0, and
x = L) are either periodic, or have an imposed, uniform velocity and
a £ = 0 condition respectively.

In addition to resolving the flow in the slit, also the flow in the
turbulent sub-channels needs to be resolved sufficiently. The grid

spacing relative to the Kolmogorov scale 7 based on the average
dissipation is equal to 4 = 45, for Re; ~ 10%, which is well below
155k as identified by Moin and Mahesh [21] as the scale above
which most of the dissipation occurs. More critical is the resolution
of the boundary layers in the turbulent sub-channels. The halfway
bounce-back rule places grid nodes at a distance 4 from no-slip
walls. At simulations with Res ~ 10%, these near- Wall points have
y+ =%4 ~ 2. In direct simulations of channel flow it is usually rec-
ommended to take the first near-wall point within y* =1 [22].
This condition has been relaxed somewhat here with a view to
computational feasibility and also since we focus on the shear lay-
ers and their associated large-scale structures for which a slit-
based Reynolds number may be more characteristic than the much
higher Re;. Still, the near-wall flow and the ability of the grid and
the numerical method to adequately resolve turbulence will be
further discussed in the subsequent section.

With a typical streamwise length of L = 10.67Dp, the number of
lattice nodes for a simulation is 54 million. Such grids require
3.9 Gbyte of memory for flow only simulations. Scalar transport
adds 0.9 Gbyte to this. The computer code was parallelized by
dividing the flow domain in equal portions in the x-direction (sub-
domains). The lattice-Boltzmann method only requires communi-
cation of subdomain boundary values so that excellent parallel
speed-up can be achieved, also when running on relatively low-
end, PC-based hardware connected through fast Ethernet. For the
above settings, the code is usually run on 12 CPU’s in parallel so
that less than 0.5 Gbyte of memory per CPU is required.

In order to quantify the level of cross-channel mixing, the trans-
port equation

Z+u-Ve=IV 1)

for a passive scalar with concentration ¢ and molecular diffusivity I”
was solved in conjunction with the flow field. The Schmidt number
Sc = ¥ was set to a fixed value of 10? throughout this work. This va-
lue is representative for a weakly diffusing dye in liquid. For the sys-
tem considered here it implies that scalar transport is dominated by
convection. The velocity field u in Eq. (1) is the result of the lattice-
Boltzmann simulation.

At the solid walls ¢ =0 is imposed as a boundary condition,
with n the wall-normal direction. In order to assess how much sca-
lar transfers from one sub-channel to the other, the scalar bound-
ary conditions in streamwise direction are not periodic. At x =0 in
one sub-channel (the one with y < —%) a concentration c=1 is
maintained, the other sub-channel and the liquid in the slit are
set to ¢ =0 there. In order to achieve a strong enough scalar flux
in the other channel (y > %) so that mass transfer from one channel
to the other can be estimated confidently the scalar passes twice
through the periodic flow domain: If the scalar reaches x =L it en-
ters again at x = 0 and travels until x = L (which in terms of the sca-
lar now corresponds to x = 2L) where it leaves according to a &£ =0
condition.

Eq. (1) is numerically solved with a finite volume scheme on the
same uniform, cubic grid as used for the lattice-Boltzmann scheme.
The finite volume scheme is explicitly stepped in time in an
Adams-Bashford manner. Since the time step constraints (mainly
related to limiting the compressibility of the lattice-Boltzmann
liquid) are stricter for the lattice-Boltzmann than for the finite
volume scheme the latter usually has bigger time steps (Atpy =
2 ---4At;p). An important issue when numerically solving transport
equations with finite volume formulations is controlling numerical
diffusion, specifically in the cases with high Schmidt numbers;
numerical diffusion should not overwhelm molecular diffusion,
and transport associated with numerical diffusion should certainly
not become comparable to large-scale convective transport. As in
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our previous works [23,24], TVD discretization with the superbee
flux limiter for the convective fluxes [25,26] was employed.

The high value of the Schmidt number implies that the fine sca-
lar scales are much smaller than the fine flow scales: 1, = #,,Sc"/2
with #p and 7k the Batchelor and Kolmogorov scale respectively.
With the current grids we in general do not resolve the Batchelor
scale. However, we do resolve the macroscopic scalar distributions.
This serves the purpose we have for the scalar transport computa-
tions: quantifying the levels of macroscopic, cross-channel
transport.

4. Flow field results
4.1. Flow impressions

As the base-case we consider the flow simulation at Re; = 9300
in an x-periodic domain with length L=10.67D; at a resolution
such that the gridspacing A of the uniform, cubic grid corresponds
to 4 = -L. This case will be used to illustrate the basic flow features,
to demonstrate the way the flow is analyzed in terms of structure
speed and structure size, and to check the sensitivity of the simu-
lation results with respect to numerical parameters and choices
regarding boundary conditions.

In Fig. 3, various cross sections through the flow in terms of
velocity vector fields are given for a single flow realization. The
xy-cross section, halfway through the slit (z = 4) has the meander-
ing pattern characteristic for the cross flow phenomenon. The close
proximity of walls makes the flow in the slit much slower than the
flow in the sub-channels. The flow-normal (yz) cross section shows
significant communication between the two sub-channels via the
slit. This cross section also reveals the typical turbulent character
of channel flows with turbulence being generated in the shear lay-
ers near the walls. The xz-cross section (at a distance of y* =27
from a no-slip wall) shows the streaky patterns (low-speed
streaks) characteristic of near-wall turbulence. As can also be ob-
served, the cross flow adds to the turbulence: in the low-z part
of the xz-cross section turbulent activity is significantly higher than
in the rest of the sub-channel.

In what follows now, we focus on the large-scale flow structures
in the xy-cross section at z = 4. Experiments [5] showed that these
structures are transported in the streamwise direction with a well-
defined velocity. In Fig. 4a time series are plotted of the y-velocity
in the center of the slit at three different axial locations with spacing
Ax = 0.889Dy. These three signals are clearly correlated. Their time
lags can be quantified by determining cross correlation functions
(Fig. 4b): C(1) = ““%(E9) The spacing Ax divided by the peak posi-
tions of the cross correlation functions 74 is the structure speed:
Ustruce = ﬁ—:. For this specific case we find s = 0.709u,. The experi-
mental value [5] at roughly the same Reynolds number is 0.8u.

During the simulations, velocity information in the entire z = ¢
plane was stored at regular time intervals (Atsore = 0.118 ﬁ—f for the
base-case simulation). With this information the time-averaged
shape of the large-scale flow structure in the z = ¢ plane has been
determined by averaging the stored velocity fields, whereby first
each field is shifted back in the x-direction according to the earlier
determined structure velocity: The jth field is shifted over a nega-
tive x-distance of (j — 1)Atsore Ustruce- A Tesult of this conditional
averaging is the velocity vector field as depicted in Fig. 5. It shows
a coherent flow with four macroscopic structures fitting in the
space between x = 0 and x = L. The fourfold periodicity of the flow
is not perfect though. The second structure from the left is longer
than the other three. The pattern as observed in Fig. 5 appeared
insensitive to the length of the time-averaging window (as long
as it was bigger than ~252—:), Given the long averaging time used

to determine Fig. 5 (95 %“) we do not believe that the non-period-
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Fig. 3. Velocity vector plots in three cross sections through the flow for a single flow
realization of the base-case. Top-left: xy-plane at z = ‘%; in this plot the velocity
vector u — usey is drawn for every 10th node in x, and every 5th node in y-direction.
Top-right: xz-plane for y = —% —0.06W; u—use, every 4th node in x and
y-direction. Bottom: yz-plane at x=0; every 2nd node in y and z-direction. The
reference vectors per panel relate the vector lengths to us.

icity is a lack of statistical convergence; it more likely reflects the
flow trying to select a structure size S different from L divided by
an integer number. On average, the macro flow structure has a size
S =L =2.67Dy. At this Reynolds number (~10%) the experiments
[5] report a size of 2.9Dy,.
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Fig. 4. (a) Time series of the transverse (y) velocity in the center of the slit at three axial locations (x = 0, x = 4x, x = 2Ax, with Ax = 0.889D},). (b) Cross-correlations of the
three signals. Note that for the 0 to — 2Ax correlation function the time 7 has been normalized with %. Base-case simulation.
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Fig. 5. Conditionally time-averaged velocity field in the z = ¢ plane. The flow was averaged over a time period of 95 ‘u’—f. The vectors represent u — uy 4,€y, With uy 4, the average

x-velocity in the plane under consideration. Base-case simulation.

4.2. Verifications

Before investigating to what extent the characteristics of the
macroscopic structures depend on the Reynolds number Res, we
first investigate the effects of numerical and other non-physical
settings in the simulations: grid spacing, domain length, and
boundary conditions in the x-direction.

Grid effects have been assessed by performing simulations at
a Reynolds number close to the Reynolds number associated
with the base-case at a higher (4=4) and at a lower (4 =)
grid resolution. For computational reasons, the higher resolution
simulation had a shorter domain length: L=3.56D; instead of
L=10.67Dy. This forced the system to only contain one macro-
scopic flow structure which prohibits comparisons in terms of
structure size and also structure speed. We did, however, com-
pare the three resolutions in terms of the (unconditionally) aver-

aged streamwise velocity profile at z=4, see Fig. 6. If the

number of grid spacings per slit height d is an even number
(as with 4 = £ and 4 = &) flow information at z = ¢ was interpo-
lated from the grid layers right above and below z = 4. In Fig. 6
also experimental results are displayed. These results were ob-
tained by [27] in the same flow rig, and with the same PIV setup
as employed by [5]. The simulation results at different resolu-
tions agree quite well. The experiment apparently had some
trouble maintaining symmetry. The resemblance between the
experimental and computational profiles is fairly good; the main
deviations between experiment and simulation occur at the out-
er regions of the profiles, near the side walls. Lexmond et al. [5]
have published an average velocity profile in the same xy-plane,
however at a lower Reynolds number: Re;=2690. Again, this
profile compares reasonably well with our simulation results at
Re; =2700 (Fig. 7).
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Fig. 6. Average streamwise velocity as a function of y at z :% Closely spaced
symbols: PIV experiments (Mahmood, 2008); dotted curve: simulation with 4 = &;
dashed curve: 4 = £ (base-case); solid curve: 4 =&

As mentioned above, resolution of the wall boundary layers in
the base-case simulation requires careful consideration since the
y* < 1 criterion for the nearest wall grid point is not met. In spite
of this, the base-case simulation captures the viscous sublayer
velocity profile u*=y", see Fig. 8. This figure displays the time
and streamwise averaged axial velocity profile close to the lower
wall of the sub-channels in terms of wall units (with y+ = #-2
the dimensionless distance from the wall, and u* = ;*). Fig. 8 also
shows the effects of refining and coarsening the grid with an im-
proved representation of the log-layer on the finer grid.

The turbulent nature of the flow under base-case conditions is
further underlined by the one-dimensional wavenumber spectra

udug

0.5

yIlw

Fig. 7. Average streamwise velocity as a function of y at z=4. Symbols: PIV
experiments (Lexmond et al, 2005) at Res;=2690; solid curve: simulations at
Re, = 2700 at a resolution 4 = &,

20

ut
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Fig. 8. Axial velocity profile in wall units recorded at the positions as indicated in
the schematic, that is halfway the two sub-channels, close to their lower walls.

t = w u* = gx. Square symbols: base-case simulation; plusses: lower resolu-
tion (4 = 4); triangles: higher resolution (4 = 4).

as given in Fig. 9 with k] = ky o and Si = “‘;#) (the components i
are streamwise (s), lateral (). and wall-normal (n); ii;(k,) is the
Fourier transform of uyx); * denotes the complex conjugate). The
spectra show an inertial and a viscous range, and the usual distri-
bution of the kinetic energy over the streamwise, lateral, and wall-
normal directions which depends on the distance from the wall.
They largely agree with simulated and measured near-wall turbu-
lence spectra reported in the literature (e.g. [28]).

The base-case and low resolution case have also been compared
in terms of structure velocity and size (Fig. 10). In terms of the
strength and scale of the macroscopic structures the two simula-
tions agree well. The structure velocity for the low resolution case
Was Ugyyee = 0.747v5, versus 0.709ug for the base-case. A minor
portion of this difference can be explained by the fact that the
Reynolds number of the coarser case is some 10% higher than the
base-case Reynolds number; as we will see, the structure velocity
increases with Re;.

y'=24 y'=7.4
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Fig. 9. One-dimensional spectra in wall units for the base-case simulation. The

symbols k; and S;; are defined in the text.
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Fig. 10. Contours of conditionally averaged transverse (y) velocity in the z = ¢ plane for (from top to bottom) the base-case; a case with double the length of the base-case and
for the rest the same conditions; a case with the same Res as the base-case but with lower spatial resolution (4 = 4 instead of 4 = £).

Also in Fig. 10 is the result of a simulation with twice the length
and the same resolution as the base-case. Now eight instead of four
structures fit in the domain length, giving rise to the same (aver-
age) structure size. It should be noted that the double-length sim-
ulation was started from a zero-flow field, not from connecting two
copies of the developed base-case field. The structures in the dou-
ble-length simulation have a velocity of 0.706us which is very close
to the base-case value.

So far we considered simulations with periodic boundary con-
ditions in the streamwise (x) direction. Given that in an experi-
ment it is quite impossible to create such conditions, and
(more importantly) that periodic conditions in the present cases
of (quasi) x-periodic flows lead to stepwise changes in the struc-
ture size S (only an integer number of structures fit in the peri-
odic domain) the effect of the streamwise boundary conditions
on the formation of large-scale flow structures has been checked.
For this a simulation with the same spatial resolution as the
base-case (4 =-) was set up. At the inlet a uniform velocity
u;; was imposed (so that the superficial velocity us = u;,), and at
the exit 2 =0 for all variables. The case had Re, = “: = 9200.
In order to give this system the chance to develop macroscopic
instabilities a domain length of L = 29.6D;, was chosen. Cross flow
instabilities akin to the ones observed with periodic boundary
conditions indeed developed, see Fig. 11. This contour plot illus-
trates the onset of instabilities at the shear planes (y=+Y%),
starting at x ~ 8.5Dy, and getting fully developed at a distance
X ~ 20Dy, from the inlet. This fully developed portion can be di-
rectly compared with the x-periodic base-case. In a qualitative
sense this is done in Fig. 11 by showing a snapshot of the
base-case flow at the same color and length scale as the non-
periodic simulation. Both cases indeed have similar large-scale
structure sizes.

The non-periodic simulation does not directly allow for an anal-
ysis of the structure size by conditional averaging of x-shifted
velocity fields as done for the periodic cases. It does allow, how-
ever, for a time-correlation analysis to determine the structure
velocity. Fig. 12 shows cross correlation functions of time series
in the fully developed flow region, from which a structure velocity
Ugiruce = 0.685Us can be derived. This agrees quite well with the
structure velocity of the base-case (0.709u;). The correlation func-
tion is less pronounced than the one related to the base-case
(Fig. 4b) indicating less coherent flow.

The above results demonstrate the feasibility of periodic bound-
ary conditions to mimic the main cross flow characteristics, and
also the (computational) reason for applying them: they prevent
us from spending much computational effort in simulating the on-
set of instabilities. Roughly 2/3 of the domain as shown in Fig. 11
(top panel) is used for this. Also the level of grid sensitivity has
been assessed, showing that 4 = £ is an acceptable resolution for
capturing the flow’s essentials in the slit and the shear layers as
well as the turbulence in the sub-channels.

4.3. Reynolds number effects

In addition to the base-case (Res = 9300), the flow system with
periodic boundary conditions, a domain length of L=10.67Dp,
and a resolution such that 4 = - has been simulated for seven
additional Reynolds numbers (Res= 18,800, 12,700, 4900, 2700,
1550, 1360 and 980).

At the three highest Reynolds numbers spatial resolution limi-
tations are definitely at issue, specifically related to the boundary
layers in the sub-channels. Turbulence spectra at Res= 18,800,
however, show that the grid recovers the dissipation range
(Fig. 13) and hint at physically sound turbulence at the highest

Fig. 11. Single realizations of the transverse (y) velocities in the plane z = ¢ for the case with uniform inlet velocity and zero-gradient outlet (top), and for the (x-periodic)

base-case (bottom).
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Fig. 12. Cross correlation functions of the transverse velocity in the center of the slit
of the points at x=26.34D; and x=27.16D;, (dashed line), and the points at
x=27.16D; and x = 27.98D, (solid line) for the case with uniform inlet velocity and
zero-gradient outlet.

Reynolds number considered here. Comparison with the spectra at
Re; =9300 (Fig. 9) reveal a slight widening of the wavenumber
range as Re; increases.

In terms of the large-scale flow structures, the main Reynolds
number effect is the reduction of the strength and the coherence
of the cross flow when the Reynolds number is reduced, see
Fig. 14. This figure shows the conditionally averaged (shifted) flow
at different Reynolds numbers. At Re; = 980 cross flow is absent, as
also illustrated in Fig. 14. These results are in qualitative agree-
ment with the experiments [5] that saw a weakening of structure
strength and a steep increase in structure size if Re; approaches
1400, coming from higher values. In the range 2000 < Re; <
10,000 the structure size in the experiments is independent of
Res in agreement with the simulations, albeit that in the latter
the structure size is quantized, i.e. gradual changes are not possi-
ble. The velocity with which the large-scale structures are advected
decreases relative to the superficial velocity with decreasing Rey-
nolds number (Fig. 15, top panel). In the same figure it is also indi-
cated how the Reynolds number based on the wall shear velocity
(Rey,) relates to Re,.
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Fig. 13. One-dimensional spectra in wall units for Res = 18,800. The resolution is
such that 4 = &,
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Fig. 14. Average velocity contour plots in the z=¢ plane at various Reynolds
numbers. Top four panels: conditionally averaged transverse (y) velocity at
Res = 18,800, 9300, 4900, 2700, and 1550 (top to bottom). Bottom panel: average
streamwise (x) velocity at Re; = 980.

The onset of the cross flow instability is illustrated in Fig. 16.
Here we show a time series of the transverse velocity in the center
of the slit. The starting point (t=0) is the (stable) solution at
Re; =980. At t=0 the kinematic viscosity is reduced by a factor
0.625, and the simulation is continued with that new viscosity.
The flow quickly develops cross flow in the slit with an amplitude
that increases in time. At fD“—; ~ 200, however, the periodicity breaks
down and the signal gets incoherent. As can be seen from the sin-
gle flow realizations in Fig. 16, at that stage the cross flow triggers a
transition from laminar to mildly turbulent flow in the two sub-
channels. This transition feeds back to the cross flow in the slit
leading to less coherent cross flow. After g’—; ~ 200 the flow rate sta-
bilized at a level such that Re; = 1550.

We did not succeed in reaching a stable periodic state - i.e. a
state with cross flow having constant amplitude in the slit and
laminar flow in the sub-channels. For instance, at Re; = 1360 the
flow turned steady with zero transverse velocity (much like the
flow at Res = 980) and stayed so for a period of ﬁ—g = 45 after which
the simulation was aborted.
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Fig. 15. Structure velocity relative to superficial velocity versus Reg (top panel), and
the Reynolds number based on the wall shear velocity Re, versus Re; (bottom
panel).

5. Scalar transport results

Once the flow is fully developed, a passive scalar is injected in
the sub-channel with y < —¥%: at x=0 a scalar concentration ¢ =1
is maintained in the entire cross section of this sub-channel. What

subsequently happens in the plane with z = ¢ is shown in Fig. 17:
the scalar gets advected by the turbulent flow and spreads in
streamwise and lateral direction, the latter due to cross flow. In
Fig. 17 the domain has length 2L. As explained above, the flow field
in the range L < x < 2L is a copy of the one with 0 < x < L. Scalar leav-
ing at x =L, however, reenters at x=0 and makes a second run
through the same flow field before it really leaves. At that stage,
part of the scalar has made its way to the other sub-channel (with
y > %) as can be seen in the yz-cross section in Fig. 18 (note the dif-
ference in color scale between Figs. 17 and 18). Mass transfer be-
tween the two sub-channels has been quantified by equating the
amount of scalar transported in one channel with the amount
transported in the other channel.

Quasi steady state in terms of the scalar field in the entire chan-
nel is reached when t > 40‘3—2 after the moment scalar injection was
started. After the start-up phase we see that the scalar flow rate
through the sub-channel with y >Y% (symbol ¢,.y,) is highly
intermittent: the cross flow through the slit intermittently drives
scalar into, and extracts scalar from the channel with y >¥%
(Fig. 19). The time-averaged scalar concentration taken over a per-
iod 562 beyond t =402 is given in Fig. 20, and shows lateral
spreading.

The time-averaged, lateral scalar transfer flux through the slit
between the two sub-channels can be characterized with an aver-
age mass transfer coefficient k: (¢;) = kAc with (¢;) the average
scalar flux in lateral direction through the slit, and Ac the macro-
scopic concentration difference between the two sub-channels
(Ac is virtually constant and equal to 1 given the small amount
of scalar being cross-transferred over the limited length of the
channel). In the above terms, the rate with which the scalar is
transported by the y > % sub-channel in the streamwise direction
should increase linearly with x: (¢, i) = fx’; kdAcdx = k(x — xo)
dAc (with the slit height d in the role of mass exchange surface
per unit length, and xq the axial location where scalar starts enter-
ing the y > % sub-channel). Given the on average uniform flow
conditions in x-direction, k is independent of x. The linear increase
of (¢y.w,2) With x is actually observed, see Fig. 21. The mass trans-
fer coefficient k then follows from the slope of a straight line fitted
through the points in Fig. 21.
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Fig. 16. Top: time series of the transverse (y) velocity in the center of the slit starting from a steady state solution at Res = 980. The flow evolves towards Res = 1550. Bottom:
snapshots of the flow in yz-cross sections in terms of velocity vectors at (from left to right) % = 134, 197, and 298.
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Fig. 17. Scalar concentration in the z = ¢ plane at four moments after starting its release in fully developed flow at x=0 in the sub-channel with negative y. From top to

bottom: %‘: =9.30, 18.6, 27.9, 37.1. Base-case.

Fig. 18. Instantaneous realization of the scalar concentration in the
x=1.92L = 20.5D;, plane after quasi steady scalar transport conditions have been
reached. Base-case.

0.06

The flow cases at the other Reynolds numbers have also been
analyzed in the above manner, and mass transfer coefficients have
been determined (see Fig. 22). As can be anticipated, the non-
dimensional mass transfer coefficient u% depends on the Reynolds
number. Our observations of a weakening cross flow with decreas-
ing Reynolds number are reflected here: the lower the Reynolds
number, the weaker the cross flow and thus the lower k. The rela-
tively large uncertainty of the first two non-zero data points is due
to the very limited amount of scalar that makes its way across the
slit over the length 2L making the estimate of the (¢,.,,) versus x
slope uncertain. The three points with the highest Reynolds
numbers have approximately - within a 10% range - the same
non-dimensional mass transfer coefficients. In the absence if cross
flow (i.e. at Res < 1360) the only transfer mechanism is molecular
diffusion which is marginal.
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Fig. 19. Scalar flux in the sub-channel with y > % at x = L (dashed curve), and x = 1.92L (solid curve) as a function of time. Base-case.
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Fig. 20. Time-averaged (averaging window 40 < {s < 96) scalar concentration in the plane z = %’ Base-case.
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Fig. 21. Time-averaged scalar flux in the sub-channel with y > ¥ as a function of x

under quasi steady conditions. The straight, dashed line is a least-squares fit
through the points with B > 5. Base-case.
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Fig. 22. Mass-transfer coefficient as a function of Re;. Where no error bars are given
the uncertainty is comparable to the size of the symbol.

6. Summary

Numerical simulations of the laminar, transitional and turbu-
lent flow in a long channel with uniform cross section have been
performed. The cross section consists of two sub-channels con-
nected by a narrow slit. The single phase flows considered were
isothermal and incompressible. For discretizing the Navier-Stokes
equations the lattice-Boltzmann method [14] was used. No turbu-
lence modelling was used. The focus of the study was on the onset
of flow instabilities, their characteristic size and velocity, and the
level of cross flow and related mass transfer between the sub-
channels.

The cross flow is due to instabilities that develop at the free
shear layers at the interfaces between the sub-channels and the
slit. We observed the onset of the instabilities at a Reynolds num-
bers (based on macroscopic flow quantities) of 1550. They generate
a meandering flow pattern in the slit. At the latter Reynolds num-
ber, the cross flow triggers a transition to turbulence in the two
sub-channels. At higher Reynolds numbers (Re > 9000), the trans-
verse velocities are of the order of 0.1 times the streamwise super-
ficial velocity in the channel.

The numerical procedure for performing the simulations has
been verified and assessed by comparing its results with experi-
mental data from the literature, and by checking grid effects; the
three-dimensional grid has been refined/coarsened such that the
finest and coarsest grids differed by a factor of two in linear spac-

ing. Fairly good agreement between simulations and experiment
was achieved in terms of average streamwise velocity profiles,
with the numerical results largely insensitive to the grid resolu-
tion. Also the velocity with which the cross flow structures were
advected, and their size agreed reasonably well with the experi-
mental data. Turbulence spectra derived from the flow in the
sub-channels showed resolution up to the viscous wavenumber
range. Boundary layers in the sub-channels were well resolved
with the finest grid. With the default grid (that has a 33% larger
grid spacing compared to the finest grid) deviations of up to 10%
in the logarithmic wall layer were observed.

For computational reasons, most of the simulations were car-
ried out in domains with periodic conditions in streamwise direc-
tion. This allows for only an integer amount of structures in the
domain. It was, however, verified that the size (Ilength) of the struc-
tures was independent of the length of the computational domain,
and that structures with similar properties also develop if non-
periodic boundary conditions were applied.

With the motivation of the research in mind (heat transfer in
tube bundles), the flow simulations have been directly coupled
with the transport of a passive scalar. Its transport equation was
solved by means of a finite volume solver on the same grid as used
by the lattice-Boltzmann method. The cross flow transfers the sca-
lar between the two sub-channels in a highly intermittent way.
From the scalar transport calculations mass transfer coefficients
have been derived that describe the level of time-averaged interac-
tion between the sub-channels. With the strength of the cross flow,
mass transfer increases with Re. At the high end of the Reynolds
number range considered here (9300 < Re; < 18,800) the mass trans-
fer coefficient is 0.0076 (£0.0003) times the superficial velocity.

A goal for further research is to systematically study the effects
of the channel geometry on the level of cross mass transfer with a
view to e.g. process or equipment optimization. From a practical
and also scientific point of view, a very interesting challenge is to
extend the present simulation procedure to multiphase (gas-
liquid) flow in order to describe the heat and mass transfer in boil-
ing systems. This could go along the lines of two-fluid modelling,
preferably without inferring turbulence modelling, i.e. directly
solving the dynamic equations for two interpenetrating continua.
In a lattice-Boltzmann context, interesting progress has recently
been reported in [29].
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