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Light scattering off Brownian particles in shear flow
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iastract. Brownian motion in simple shear flow is studied using the technique of dynamical
=0t scattering. In a conventional scattering experiment the effect of Brownian motion is
~~cured by that of (deterministic) particle convection. We describe an experimental setup in
wich both ellects are separated.

1. Introduction

Light scattering has been used successfully to study solutions of Brownian
particles in equilibrium. The erratically moving particle causes a fluctuating
scattered light intensity, which reveals the microscopic fluctuations of the
particle position. Many solutions, however, are not in equilibrium, the
simplest example is a sheared solution [2, 3, 7]. At first sight, dynamic light
scattering might be employed to probe the microscopic fluctuations of the
particle positions in the non-equilibrium case as well. However, it turns out
that in a conventional sctup more mundane effects associated with shear
dominate the fluctuation spectrum. Those effects, on the other hand, may be
quite interesting for laser-Doppler velocimetry, because they can be exploited
such as to procure the velocity gradient in a point [6]. In the present paper
we discuss light scattering experiments that do provide information about
the fluctuations in a fluid that undergoes shear. As the simplest possible case
we will describe its application in the case of non-interacting Brownian
particles.

2. Brownian motion

Colloidal particles in a host fluid exhibit Brownian motion. Collisions with
thermal fluid molecules provide the stochastic driving force of this motion.
The particle motion is damped by Stokes friction with the solvent fluid.
The microscopic cquation of motion, the Langevin equation, for a Brownian
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particle reads:

d*x dx

F"‘ }m = F(I), (1)

where x(¢) is its time-dependent position, and F(¢) is the random force. The
friction coefficient f§ for an isolated spherical particle with radius ¢, and mass
m in a fuid with dynamic viscosity n is § = 6mna/m, itis also the inverse of
the characteristic time of the velocity autocorrelation function. For large
times, such that / > ', an equation for a probability density P(x, /) of the
particle position may be derived from equation 1 [10]:

P ;
— = DVP. )

ct
The Stokes-FEinstein result:
(|Ax|?> = 2Dt. D = kT|6nna : (3)

expresses that the mean-square displacement of a free Brownian particle is
proportional to time. The diffusion coeflicient D is determined by the kinetic
energy of the fluid molecules, kT, and the Stokes resistance of a sphere,
6mya.

When a Brownian particle is subjected to simple shear (u, = uy + 7).
u, = 0), the Langevin equation becomes:

¢x 53— oy + F

T T Gy + uy) 1),

d’y - dy

e 2 = F

qe oy (1), (4)

where » is the shear rate. An at first sight surprising result is that for large
times, t > ', the mean-square displacement of a particle is proportional
to * [4, 8]. Strictly speaking there is then no longer dillusive behaviour.
Furthermore, the spreading of the particles becomes anisotropic; displace-
ments in the x direction are enhanced by the flow. An intuitive understanding
for this behaviour may be reached as follows. In the y direction there is
ordinary diffusion with rms displacement Ay =~ ('“. This gives risc to a
displacement in the x direction of (Ayy) ¢t ~ 1'%, resulting in a mean-square
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o ]. Schematical experimental setup for dynamic light scattering experiments. Light with
_svevector k, emerges from a laser and strikes the sample cell. The scattered light wavevector
& is defined through two pinholes.

displacement in x direction proportional to /. It is our aim to device
experimental techniques that are able to reveal this anomalous diffusion on
2 microscopic level.

3. Dynamic light scattering

Dynamic light scattering is an excellent tool for studying Brownian motion,
because motion on scales comparable to the wavelength of light can be
probed. Figure | shows an clementary light scattering experiment. A coherent
beam of light with wavevector k, simultancously hits a large number (V) of
Brownian particles. The detector is arranged such as to accept light that has
been scattered in the direction k. At its sensitive surface the detected electric
ficld amplitude is the sum of that scattered by particles located at x,(1):

N _
E(q, 1) = E E[][x,f(-t)]etqhhmn (3)
i=1

where the scattering vector ¢ = K, — k; and E, is the scattered field ampli-
tude. The scattered electric ficld fluctuates in time due to the particles’
Brownian motion. Information about the fluctuating particle positions is
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contained in the electric ficld autocorrelation function G

N

G‘”{q. 1 = 2 E (h*[x;\(ﬁ)]' h.'”[xf[I]]elq'Ix,u_r\. x.-..ttl}]>, (6)
i

o

where the angle brackets denote an ensemble average. In the case of non-
interacting Brownian particles the Cross terms containing j # K do not
contribute to the sum, and equation 6 reduces to the well known result [9)

(;‘ll}(.q‘ f) ~ @ [Jq‘." (

where D is the Srokes—Einstein diffusion coeflicient.

A fundamental problem in the interpretation of dynamic light scattering
is the relation between the desired field correlation function and the measured
intensity correlation function, G™(q, 1). The often quoted relation:

thl{q‘ N o= 1 + ||G<_11(q‘ I)ll (&)

is only valid if the ficld fluctuations obey Gaussian statistics [9]. This is the
case when the scattered light intensity is the sum of a large number of
independent contributions, it is, however not the casc when the particle
number inside the measuring volume fluctuates significantly.

4. Dynamic light scattering in shear flow

The first study of light scattering in shear flow was reported by Fuller ¢t al
[5]. Their main interest was in point measurcments of velocity gradients. ne
in Brownian moton. As we will demonstrate here. in a conventional expes

_imental setup fAuctuations due to Brownian motion are obscured by
modulation of the correlation function due to particles traversing the sca
tering volume. To this aim we factorize the cnsemble average in equation
in a part involving the phases and a part involving the amplitude:

N _
GUg. 1) = L f[xj((m<c'“"‘-'“'"‘-"”’”>,v (
i=1

which is permitted if the linear size of the scattering volume is large W
respect Lo the wavelength of the used light. The particle position may
written as the sum of a deterministic component due to convection and
stochastic part. X(1)., due to Brownian motion:

x;(1) — x,(0) = tluy + y(0)y)e, + % (1) — X,(0), i
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where u, is the mean flow velocity in the scattering volume. Accordingly, the
first-order correlation function can be written as:

(6) .

G":“((], [) o 2 !(x!)c:q_.,-{-'m+|'..'..'].'<e:q‘p'&_,r.fl ‘Tc_.-f.(PJI>. (l”
fr=1
non-

not In case of simple shear we quote the following result for the last factor in

L [9): equation 11 [5]:
-

(7) B(g. 1) = (4’0 i_,(ﬂ}]) = o PlU=GO g =g Vel (12)
ring We next approximate the sum in equation 11 with an integral over the
red scattering volume that is defined by the cross-section of the laser beam and

the acceptance cone of the light collecting optics:

(8) N S i . _

O Z ![xj((})]c!q_.ll.an+_.|,-l_).r = Cl{ln".Hr_Jl’ |[. d_{x!(x)c.«,{\j ...'. (13)

i=1 =
the

of The correlation function is then the product of three time-dependent factors.
cle One is associated with Brownian motion, whereas the other two are connected

with (deterministic) convection. Equation 13 embodies the convective time-
scales. The time dependence contained in the first factor in the right-hand
side of equation 13 will vanish when an intensity-correlation is measured
and this factor will be multiplied by its complex conjugate. The second
Al factor is a spatial Fourier transform of the intensity distribution /(x) over
m’ the scattering volume. It is characterized by a time-scale T, = (q.yL)~",
3 where L is the size of the scattering volume, Generally /(x) is a Gaussian and
.a the second factor will decay on a time t,. From equation 12 it follows that
! the influence of shear on diffusion is observed on a time-scale Ty = 3 0,

P However, this time-scale will always be much larger than 7 their ratio
] equals L/4, that is the macroscopic size of the scattering volume over the
wavelength of light. Due to the finite signal to noise ratio in the experiment
only the phenomenon associated with the shortest time-scale will be obsery-

) able. Thus, the influence of shear on diffusion will be obscured by the effect
of the deterministic motion of the particles.

H Summarizing, the naive light scattering experiment produces a correlation

o function that consists of a peak at r = 0 whose width is inversely propor-

) tional to the size of the scattering volume. Experimental information about
the diffusion factor B(q, 1) would become accessible if one could somehow
shift this peak to positive times 7,, and measure its height which is propor-

l tional to B(q, f,). An inspection of equation 13 teaches that this would be
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Fig. 2. Scattering geometry in shear flow with two beams k,. k. Scattered light is detected in
the direction of k..

possible by adding a second scattering vector. Figure 2 shows the scattering
geometry with two incident beams that has been chosen in our experiment.
The clectric field at the photomultiplier surface is:

N ) \

E(q, G- 1) = 5 (E,[x,(D]e" 0 4 B [x,(1)]e™ o (14)

I

where q;, = k; — k.j=12 The first-order correlation function 1s a sum
of four terms. Two of them arc the familiar G"(q,. 1) and G (g, 1)s
whereas the more interesting cross products read:

FO(q,, @ 1) = Bla, D™ [ @xE,Ef e
+ B(q,, r}ci—rmuu-' \AdEA‘Eg*E] e;-.‘(-\fh%;'ﬂ_ (15)
where Aq = ¢, — @ 18 chosen perpendicular to the flow dircction:
Agq - x = Agy. The two Fourier integrals over the mixed profile functions

E.E* and E*E, in equation 15 are similar to that in equation 13, how-
ever. the origin of ume is shifted to £, = Ag/(2.7)- and 1, = —Agl(qi7)-
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Provided that the physics of the present experiment allows application of
the Siegert rclation (cquation 8), the intensity correlation [unction cquals
one plus the square of |GV(q,, 1) + G"(qs, 1) + F"(q,. q,. 1)]. The
resulting correlation function will therefore have two peaks. one 1s located
at r = 0 and is described by |G'"(q,, 1) + G'"(q,, 1)|*. the other one is
located at t = Ag/(q,, 7). Because the peaks are shifted in time with respect
to one another, squaring leads to vanishing cross products. The secondary
peak results from the first term on the right-hand side in equation 135, the
height of this peak is gauged by | B(q. ¢)|*. The phase factor in equation 15,
involving u, will give rise to a unity prefactor in case of intensity correlation.
The position z, of the secondary peak can be varied by varying Aq. i.c. by
varying the mutual beam angle. or by changing the shear rate 7.

5. Experimental

The scattering geometry of Fig. 2 was realised in the experimental
sctup shown in Fig. 3. The flow was gencrated in a Couette device with

correlator

fluid

suspension

Fig. 3. Experimental setup described in this article. Two laser beams cross between the counter-
rotating cylinders of a Couctte device. the reference beam is used (o monitor the position of
the scattering volume.
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counter-rotating cylinders. The radial position of the center of the scattering
volume was chosen such that u, = 0. this ensured that number fluctuations
duc to flow will be small. In order 10 facilitate the adjustment of the location
of the scattering volume, a glass cylinder 18 placed concentric with the scatter-
ing volume. All of the apparatus within its perimeter, including fluid and glass
cylinders of the Couette apparatus, had a umform refractive index at
5 — 514.5nm. Theindex matching fluid in which the particles were suspended
was a mixture of tetracthylene glycol and glycerol. We used polystyrene
spheres with 0.19 pm diameter and volume {raction 75 % 10 . The laser
beam emerged from an Argon ion laser operated at 514.5nm, and was
subsequently divided into three parts in a modified Koster prism. Two
beams cntered the Couelte device. the third beam was used to check and
control the position of the crossing region in the fluid. This setup enabled
us to alter the beam crossing angle while keeping the crossing region fixed
in space by rotating a Mirror and translating 2 small prism such that the
reference beam remained at a fixed position. A quadrant diode monitored
the reference beam position Lo an accuracy of approximately 5 pum. Scattered
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Fig. 4. Measured normalized photon correlation function; the upper part 1s an enlargement
of the lower part. The full line represcnts & Gaussian [unction that has been fitted to the
experimental results.
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Fig. 5. (a) Dots: position of the sccondary peak as u function of inverse angular velocity. Fuyll
line: expected behaviour for a mutual beam angle of 16°, (b} Dots: log of height of secondary

peak as a function of delay time. Full line: prediction based on equation 12 (see text), the line
has been shified vertically,

light passed through a pinhole-lens combination and was transported to the
photomultiplier using a multimode optical fiber. The photomultiplier signal
consists ol a time series of pulses, each pulse representing a detected photon.
After amplification and discrimination the logical photon signal was fed into
a digital correlator. The. measured photon correlation function is propor-
tional to the intensity, or sccond-order, correlation function.

A proper definition of the scattering volume in this experiment requires
that three lines pass through one point, namely the two incident beams and
the line defined by the collecting optics. The analysis sketched in the
previous section implies that misalignment of the detector optics results in
oscillatory correlation functions. This observation was used as a tool for
alignment: the detector was adjusted by micrometer screws such that the
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correlation function ceased to show oscillations. The size of the resulting
scattering volume was 30 x 100 x 100 um.

6. Results and conclusions

Figure 4 shows an example of a measured double-peaked photon correlation
function. The two relevant parameters, the position and the height of the
secondary peak are found by fitting a Gaussian function. Figure 5a shows
the secondary peak position as a function of the inverse rotating velocity
w(=~y"") of the counter-rotating cylinders of the Couette device. The two
incident beams cross under an angle of 16°. The predicted relation between
f, and y is also drawn in the figure, and demonstrates that the present setup
allows point measurements ol shear rates. Figure 5b shows the log of the
measured sccondary peak height as a function of the peak delay time #,. The
delay time was varied by varying the shear rate while keeping the beam
crossing angle constant, as a consequence, the product y¢(= Ag/q,) is also
constant. At a beam crossing angle of 16° and a scattering wavevector k|
which is perpendicular to the bisector of the incident beams, y¢ = 0.28.
When 3¢ is constant, B(q. 1), which embodies the Brownian motion, is a
negative exponential function of time (equation 12). This is in agreement
with the observed behavior, however, deviations are evident at short times
(high shear rates). and long times (low shear rates). Work is in progress to
elucidate their cause.

There have been carlier reports of an attempt to measure Brownian
motion in a sheared fluid [1]. The present experiment is, to our knowledge,
the first to demonstrate the feasibility of a two-beam setup. Apart from the
fundamental interest in obtaining information about non-equilibrium fluids,
there are a few important practical ramifications. First, we have again
demonstrated the possibility of point measurements of the shear rate [6].
Second, our method could be used to obtain information about the sizes of
particles in a sheared fluid; this would be of relevance in those situations
where the particle size may alter due to shear stress. There are also quite a
few experimental intricacies which still need to be mastered. The most
important experimental circumstance is the definition of the scattering
volume, which requires an extremely stable setup.

References

I. Ackerson. B.J. and Clark, N.A.; Dynamic light scattering at low rates ol shear. Journal
de Physique 42 (1981) 929-936.

. Beyens, D., Gbadamassi, M. and Boyer, L.: Light-scattering study ol a critical mixture
with shear flow. Physical Review Letters 43 (1979) 1253-1256.

[ 29




10.

Light scattering off Brownian particles 231

Clark, N.A. and Ackerson, B.J.: Observation of the coupling of concentration fluctu-
ations (o steady-shear flow. Physical Review Letters 44 (1980) 1368-1371.

_ Foister. R.T. and van de Ven, T.G.M.: Diflusion of Brownian particles in shear flow.

Journal of Fluid Mechanics 96 {1980) 105-132.

_ Fuller. G.G.. Raltison, .M., Schmidt, R.L. and Leal, L.G.: The measurement of velocity

gradients in laminar flow by homodyne light-scatiering Spectroscopy. Journal of Fluid
Mechanics 100 (1980) 555-575.

_ Keveloh, C. and Staude W. Determination ol velocity gradients with scattered light

cross-correlation measurements. Applied Optics 22 (1983) 333-338.

_ Machta, J., Oppenheim, 1. and Procaccia, 1.: Light scattering and pair-correlation func-

tions in fluids with nonuniform velocity ficlds. Physical Review Lefters 42 (1979) 1368~
1371.

. San Miguel, M. and Sancho, J.M.: Brownian motion in shear flow. Physica 99A (1979)

357-364.

_ Schaetzel, K. Correlation techniques in dynamic light scattering. Applied Physicy B42

(1987) 193-213.
Wang. M.C. and Uhlenbeck, G.E.: On the theory of Brownian motion. Review of Modern
Physics 17 (1945) 323 -342.




