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Direct numerical simulations of turbulent solid–liquid suspensions have been performed. The liquid is Newtonian, and the
particles are identical spheres. The spheres have a tendency to aggregate since they are attracted to one another as a result
of a square-well potential. The size of the particles is typically larger than the Kolmogorov scale, albeit of the same order of
magnitude. In such situations, the particle dynamics (including the aggregation process), and turbulence strongly interact
which explains the need for direct simulations. The lattice-Boltzmann method combined with an immersed boundary method
for representing the no-slip conditions at the spherical solid–liquid interfaces was used. The results show that the aggregate
size distributions depend on both the strength of particle–particle interactions and the intensity of the turbulence. VVC 2011
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Introduction

In many processes involving solid particle formation or
solids handling, particles have a tendency to stick together.
In crystallization processes crystals tend to agglomerate if
they are in a supersaturated environment.1,2 Suspension poly-
merization processes go through a ‘‘sticky-phase’’ with sig-
nificant levels of aggregation.3 In colloidal science, stabiliza-
tion of colloids (e.g., based on extending electrostatic dou-
ble-layers) is important, otherwise Van der Waals
interactions would induce aggregation.4 Promoting floccula-
tion is employed in minerals and mining applications to
enhance settling rates in gravity based separations.5 Previ-
ously we used terms like aggregation, agglomeration and
flocculation. In addition, cluster formation6 and coagulation7

are used to describe similar phenomena. In the rest of this
article the (more generic) term aggregation has been used.

Sometimes aggregation is a wanted phenomenon to effec-
tively grow particles for, e.g., making separation easier. It
also is a mechanism that potentially destroys a narrow parti-
cle-size distribution, and as a result could deteriorate product
quality. Much effort goes into preventing or promoting
aggregation, and much effort goes into repairing the harm
aggregation has done (e.g., in grinding and milling process
steps8). Regardless if aggregation is wanted or unwanted, it
is relevant to study the physical mechanisms underlying
aggregation for better control of processes and for better pro-
cess design. Given the multiscale character of many indus-
trial processes in general and solids-handling processes in
particular, there is a multitude of length and time scales that
needs to be considered. They range from the molecular level

of the microscopic mechanisms responsible for interaction
forces, to the size of the process equipment that is designed
to bring about transport processes (heat and mass transfer),
in many cases by generating a turbulent hydrodynamic envi-
ronment.

In this article, the focus is on the hydrodynamics related
to aggregation. With the solids suspended in a fluid phase,
hydrodynamics interact in various ways with aggregation
processes. The deformations in the fluid phase and associated
velocity gradients promote particle–particle collisions. De-
pendent sometimes on very intricate details (relative veloc-
ities before the collision, strength of the interparticle forces,
relative orientation of particles, the hydrodynamic and/or
chemical environment surrounding the colliding particles)
collision events lead to aggregation events. Next to fluid-
shear-induced (orthokinetic) aggregation, Brownian motion
causes collisions and so-called perikinetic aggregation. In
polydisperse systems different settling rates of different types
of particles make them collide. In this article, the primary
particles are assumed to be sufficiently large not to undergo
Brownian motion, and Brownian motion will not be consid-
ered as a collision and aggregation mechanism. Also net
gravity is discarded as a source of aggregation: we assume
strongly turbulent flow and monodisperse primary particles.

The same fluid deformations that promote collisions and
aggregation are also responsible for breakage of aggregates
due to the mechanical stresses they exert on them. In turbu-
lent flow, the hydrodynamic environment seen by an aggre-
gate largely depends on its size relative to the hydrodynamic
microscales (the Kolmogorov scale). For aggregates much
smaller than the Kolmogorov scale the surrounding flow has
a simple homogeneous structure that can be captured by a
single deformation tensor that continuously changes when
traveling with an aggregate through the turbulent flow. If the
aggregates have a size comparable to or larger than the
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Kolmogorov scale, their hydrodynamic environment gets in-
homogeneous and, therefore, more complex.

A large portion of the literature on aggregation modeling

deals with population balance equations (PBE’s) and effi-

cient ways to solve them. PBE’s are systems of equations

that keep track of aggregate size distributions (ASD’s) as a

function of time (and sometimes location) by considering

breakage, aggregation, and transport in physical and property

space. The latter includes growth and dissolution of aggre-

gates as a result of mass transfer with their environment.9

Advances in the field of PBE’s relate to solution strategies,

such as methods based on the moments of ASD’s10 and the

method of characteristics,11 and on the identification of the

mathematical structure of aggregation and breakage terms

that allow for ASD’s to reach a dynamic equilibrium.12 The

predictive power of PBE solutions critically depends on the

level of realism and detail contained in the breakage and

aggregation terms, including their dependence on the flow

physics.

In the context of population balances, the physical
descriptions of breakage due to flow13,14 date back quite
some time and are based on very simple notions of the flow
field surrounding aggregates.15,16 These notions are prone to
refinement in terms of a better representation of the hydrody-
namic environment, and in terms of improving estimates of
the actual hydrodynamic forces in aggregates immersed in
complex flow.17

In more recent literature, some of the aforementioned
issues identified prompted very detailed modeling of aggre-
gates in homogeneous deformation fields.7,18–23 The—in
such cases—small size of the aggregates compared to the
fluid dynamic microscales allows for a Stokes flow approxi-
mation at the particle level and, thus, for the use of, e.g.,
Stokesian dynamics24 to describe the interactions between
the primary particles (spheres in case of Stokesian dynamics)
forming aggregates, and the surrounding fluid. In such simu-
lations, the overall deformation field that agitates the Stoke-
sian dynamics is an input condition. It is, for instance, gener-
ated by means of computational fluid dynamics at the larger
scales23 or represents a canonical flow such as simple shear25

or purely extensional flow. This essentially assumes a one-
way coupling between the imposed flow at the larger scale
and the flow at the length scales of the aggregate: the flow
imposed on the aggregate generates deformation, breakage,
and clustering events that have impact on the flow directly
surrounding the aggregate. These effects are, however, not
fed back to the imposed flow. This is a fair assumption
given the wide separation of the turbulent microscale (repre-
sented by the imposed flow) and the scale of the (much
smaller) aggregates.

In this article, we remove the assumption of aggregates
being small compared to the Kolmogorov scale. This has a
few consequences. In the first place it implies that Reynolds
numbers based on aggregate size and even on primary parti-
cle size (the latter defined as Re ¼ a2 _c

m with _c the magnitude
of the deformation rate tensor, a the primary particle radius,
and v the kinematic viscosity of the liquid) are not necessar-
ily (much) smaller than unity and that inertial effects (of
fluid as well as of the particles) need to be resolved (and
Stokesian dynamics can not be applied). It also implies that
there is no clear length-scale distinction between Kolmo-
gorov-scale flow and aggregate-scale flow anymore. Both
scales overlap in an order-of-magnitude sense and directly

interact. Therefore, a direct, two-way coupling between the
turbulent microscales and the inhomogeneous fluid deforma-
tion experienced by, and generated by the moving, rotating,
and continuously restructuring aggregates needs to be estab-
lished.

In our simulations, homogeneous, isotropic turbulence

(HIT) is generated in a cubic, fully periodic, three-dimen-

sional (3-D) domain through linear forcing.26 Linear forcing

is a computationally efficient way to establish HIT with a

preset overall power input. In linear forcing, the turbulence

is driven by a body force that is proportional to the local

fluid velocity with a proportionality constant that is a func-

tion of (overall) power input and turbulent kinetic energy.

With linear forcing we have control over the energy dissipa-

tion rate (and, thus, the Kolmogorov length scale) once sta-

tionary conditions are reached and dissipation balances

power input. In the turbulent field, uniformly sized, spherical

primary solid particles are released. The solids typically

occupy 10% of the total volume. In the simulations the solid

particles have finite size, and the solid–liquid interfaces are

resolved, that is, a no slip condition is imposed at the surfa-

ces of the moving (translating and rotating) spheres.
The particles are made sticky (i.e., they have a tendency

to aggregate) by means of a square-well potential defined by
a distance of interaction d, and a binding energy Eswp.

27 If
the centers of two approaching spheres come within a dis-
tance 2(a þ d) they exchange potential energy for kinetic
energy (by an amount Eswp per sphere). They then are within
one another’s square-well potential (SqWP) and are consid-
ered attached. Two attached spheres can only separate if
they are able to overcome the potential energy barrier
imposed by the SqWP with their kinetic energy (see the sub-
sequent section for a more detailed description). The param-
eters Eswp and d can, thus, be interpreted as the depth and
the width of the square well, respectively. Next to interacting
through the SqWP, the particles interact via the interstitial
fluid and through hard-sphere collisions. The combination of
turbulence and the SqWP produces a solid–liquid system in
which bonds between primary spheres are continuously
formed and broken, and an ASD evolves naturally to a
dynamically stationary state. Our main interest is how the
ASD depends on turbulence properties on one side, and the
interaction potential on the other.

The simulations are based on the lattice-Boltzmann
method for simulating fluid flow. The method and its appli-
cations have been discussed in review articles (e.g., by Chen
and Doolen28), and the monograph by Succi.29 The no-slip
conditions at the moving sphere surfaces are imposed
through an immersed boundary method.30,31 By applying the
immersed boundary method on each sphere surface we
resolve the solid–liquid interfaces and the hydrodynamic
force and torque acting on each sphere. The latter we use to
update their linear and rotational equations of motion. This
directly couples the solids and fluid phase, and fully
accounts for the finite size of the particles.

The article is organized as follows: we first define the
flow systems in terms of a set of dimensionless numbers that
span our physical parameter space. We then discuss the nu-
merical procedure and the modeling choices we made. The
numerical procedure adds to the parameter space, the most
important parameter being the (finite) size of our flow sys-
tems (relative to the particle size). When presenting the
results in the subsequent section first a few verification tests
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for the implementation of the SqWP (which is a novel part
in our computational procedure) are described. Then we
show results for aggregation in homogeneous, isotropic tur-
bulence with emphasis on aggregate size distributions and
aggregate fractal dimensions as a function of flow and parti-
cle properties. A summary and conclusions are given at the
end of the article.

Flow Systems

We consider fully periodic, cubic, 3-D domains of L3 vol-
ume that contain incompressible Newtonian fluid with den-
sity q, and kinematic viscosity v, and uniformly sized solid
spherical particles with radius a and density qp. The solids
volume fraction / is in the range 0.04 to 0.16; the aspect ra-
tio L

a in the range 21.3 to 64. Given the solid–liquid systems
we are interested in, the density ratio

qp
p has been set to a

fixed value of 4.0.
In the flow domain we create homogeneous, isotropic tur-

bulence through linear forcing.26 In linear forcing a body
force g (force per unit mass) that is proportional to the local
fluid velocity acts on the fluid g ¼ Au: with the proportion-
ality factor A ¼ e

3u2rms
, e the volume-averaged energy dissipa-

tion rate, and urms the volume-averaged root-mean-square
fluid velocity. One way to operate linear forcing is to set e
to a constant value (in space and time), and to determine A
each time step by updating urms each time step based on spa-
tial averaging of the actual flow field. This allows us to con-
trol the turbulence in terms of its energy dissipation rate
and, therefore, in terms of its Kolmogorov length-scale

gK ¼ m3
e

� �1=4
. In this way the ratio of Kolmogorov length

scale over primary particle size
gK
a is a dimensionless input

parameter to the simulations. As discussed in the Introduc-

tion, flow systems with ratios
gK
a smaller than unity have

been simulated.
Simulations involving resolved (finite-size) particles in

HIT in periodic cubic domains have been reported ear-
lier.32,33 In Ref. 33 the particles are released in a decaying
(nonforced) turbulent flow. In this article, the turbulence
needs to be sustained and, thus, forced given the relatively
long time scales of the aggregation process and our desire to
predict stationary ASD’s. For this we need a sufficiently
long time window with steady conditions for collecting
meaningful ASD’s and flow statistics.

The spheres interact via a square-well potential27 that
serves as the model mechanism for aggregation. If two
spheres (i and j) approach one another and reach a center-to-
center distance of 2(a þ d), they enter the square well and
are considered ‘‘attached’’. At that moment an attraction
potential kicks in that induces a stepwise change in the
velocities of spheres i and j, i.e., an amount J is instantane-
ously added to the relative radial approach velocity of the
two spheres

~upi ¼ upi þ 1

2
Jn; ~upj ¼ upj � 1

2
Jn (1)

with upi, upj pre-entry sphere velocities, and ~upi; ~upj post-entry

velocities, and J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Duij � n
� �2þ 2Duð Þ2

q
þ Duij � n. The unit

vector n points from the center of sphere i to the center of
sphere j, Duij : upj � upi, and Du is the parameter defining
the strength of the SqWP (see below). Note that for two
approaching spheres Duij � n\ 0, and, thus J ¼ 0 if Du ¼ 0
(i.e., a zero-strength SqWP).

In energy terms this means that on entering the square
well, potential energy is converted in kinetic energy by total
amount 2Eswp ¼ 2 1

2
mp Duð Þ2

� �
(with mp ¼ 4

3
pqpa

3 the mass
of one sphere). Since there are two spheres involved in the
process, on average each sphere gains Eswp kinetic energy.
Once in each other’s square well the spheres keep moving
under the influence of hydrodynamic forces and possibly
undergo hard-sphere collisions according to the two-parame-
ter model (restitution coefficient e and friction coefficient l)
due to34: In a hard-sphere collision, two particles i and j hav-
ing precollision linear and angular velocity upi, upj, xpi, and
xpj exchange momentum according to

ûpi ¼ upi þQ; ûpj ¼ upj �Q; x̂pi ¼ xpi þ 5

2a
n�Q;

x̂pj ¼ xpj þ 5

2a
n�Q ð2Þ

The superscript
ˆ
indicates post-collision quantities, and (as

before) n is the unit vector pointing from the center of
sphere i to the center of sphere j. The momentum exchange
vector Q can be decomposed in a normal and tangential part
Q ¼ Qnnþ Qtt. The tangential unit vector t is in the direc-
tion of the precollision slip velocity cc between the sphere
surfaces at the point of contact

cc ¼ Duij � ½Duij � n�n� axpi � n� axpj � n: (3)

In the collision model34 the components of the momentum
exchange vector are

Qn ¼ 1þ eð Þ
2

Duij � n

Qt ¼ min �lQn;
1

7
jccj

� � (4)

As indicated in the expression for Qt (Eq. 4), the colli-
sion switches between a slipping and a sticking collision
at �lQn ¼ 1

7
jccj. In some simulations the friction coeffi-

cient l was set to infinity which means that in such a
simulation a collision always is a sticking collision (with
Qt ¼ 1

7
jccj).

If two attached spheres move apart and reach a center-to-
center distance of 2(a þ d) they need sufficient kinetic
energy to escape the SqWP: they need a relative radial sepa-
ration velocity Duij � n (upon separation this inner product is
positive) of at least 2Du. If they are able to escape, kinetic
energy is converted back to potential energy upon escaping.
If they are not able to escape they reverse their relative ra-
dial velocity at the moment they reach the edge of the
square well and stay attached. The square-well potential is,
thus, defined by two parameters: its width d and its energy
Eswp. Rather than working with the energy, we will be work-
ing with Du in the remainder of this article. As indicated,
the two are related according to Eswp ¼ 1

2
mpðDuÞ2.

This leaves us with four parameters governing direct (as
opposed to hydrodynamic) particle–particle interactions. In
terms of dimensionless numbers these are the collision param-
eters e and l, and the square-well potential parameters d

a, and
Du
t with t ¼ (ve)1/4 the Kolmogorov velocity scale. In our
study we keep the restitution coefficient constant and equal to
e ¼ 1.0. The rationale for this is that for liquid–solid systems
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most of the energy dissipation takes place in the liquid, not so
much in the solid-solid contacts.35

To summarize the input parameter space in terms of
dimensionless numbers, they are the solids volume fraction
/, the domain size over sphere radius L

a, the solid over liquid
density ratio

qp
q , the ratio of Kolmogorov length scale over

particle radius
gK
a , the dimensionless width and depth of the

square well d
a and Du

t , and the restitution coefficient e, and
the friction coefficient l. The solid–liquid systems discussed
in this article only cover part of the parameter space. The
fixed parameters are

qp
q ¼ 4.0, e ¼ 1.0, and d

a ¼ 0:05. For the
friction coefficient we have taken two extreme values l ¼ 0
and l ! 1, i.e., perfectly smooth (frictionless) collisions,
and collisions where the particles exchange tangential mo-
mentum such that after the collisions the tangential velocity
at the point of contact is the same for the two spheres
involved in the collision. The impact of the remainder of the
dimensionless parameters on the aggregation process has
been investigated through parameter variation.

Modeling Approach

As in many of earlier works on direct simulations of liq-

uid–solid suspensions with full resolution of the interfaces, we

used the lattice-Boltzmann (LB) method28,29 to solve for the

flow of the interstitial liquid. The method has a uniform, cubic

grid (grid spacing D) on which fictitious fluid particles move

in a specific set of directions, and collide to mimic the behav-

ior of an incompressible, viscous fluid. The specific LB

scheme employed here is due to Somers36; also see Ref. 37.

The no-slip condition at the spheres’ surfaces was dealt with

by means of an immersed boundary (or forcing) method.30,31

In this method, the sphere surface is defined as a set of closely

spaced points (the typical spacing between points is 0.7 D),
not coinciding with lattice points. At these points the (interpo-

lated) fluid velocity is forced to the local velocity of the solid

surface according to a control algorithm. The local solid-sur-

face velocity has a translational and rotational contribution.

Adding up (discrete integration) per spherical particle of the

forces needed to maintain no-slip provides us with the (oppo-

site; action equals minus reaction) force the fluid exerts on the

spherical particle. Similarly the hydrodynamic torque exerted

on the particles can be determined. Forces and torques are sub-

sequently used to update the linear and rotational equations of

motion of each spherical particle.
We have validated and subsequently used this method

extensively to study the interaction of (static as well as mov-
ing) solid particles and Newtonian and non-Newtonian fluids.
For instance, simulation results of a single sphere sediment-
ing in a closed container were compared with PIV experi-
ments of the same system and showed good agreement in
terms of the sphere’s trajectory, as well as the flow field
induced by the motion of the falling sphere for (at least) Re
�30.38 For dense suspensions (with volume-averaged solids
volume fractions up to 0.53) Derksen and Sundaresan35 were
able to quantitatively correctly represent the onset and prop-
agation of instabilities (planar waves and two-dimensional
voids) of liquid–solid fluidization as experimentally observed
by Duru, Guazelli, and coworkers.39,40

It should be noted that having a spherical particle on a
cubic grid requires a calibration step, as earlier realized by
Ladd.41 He introduced the concept of a hydrodynamic radius.
The calibration involves placing a sphere with a given radius

ag in a fully periodic cubic domain in creeping flow and
(computationally) measuring its drag force. The hydrody-
namic radius a of that sphere is the radius for which the
measured drag force corresponds to the expression for the
drag force on a simple cubic array of spheres due to Ref. 42
which is a modification of the analytical expression due to
Hasimoto.43 Usually a is slightly bigger than ag with a � ag
typically equal to half a lattice spacing or less.

In previous articles,35,38,44,45 we have repeatedly checked
the impact of spatial resolution on the results of our simula-
tions and we consistently concluded that a resolution such that
a corresponds to six lattice spacing’s is sufficient for accurate
results (based on comparison with higher resolution simula-
tions and with experimental data) as long as particle-based
Reynolds numbers do not exceed values of the order of 50.
The simulations presented in this article all have a resolution
such that a ¼ 6D. Once the spatial resolution is fixed, the tem-
poral resolution of the LB simulations goes via the choice of
the kinematic viscosity. In all simulations discussed here the
viscous time scale a2

m corresponds to 7,200 time steps.
The fixed-grid simulations involving moderately dense

suspensions as discussed here require explicit inclusion of
subgrid lubrication forces.46 The expression for the radial
lubrication force on two equally sized solid spheres i and j
having relative velocity Duij : upj � upi reads

47

Flub ¼ 3

2
pqma2

1

s
n � Du ij

� �
; Flub;j ¼ �Flubn;

Flub;i ¼ Flubn ð5Þ
with s the smallest distance between the sphere surfaces s :
|xpj � xpi| � 2a, and (again, see before) n the unit vector
pointing from the center of sphere i to the center of sphere j.
Note that Eq. 5 is based on a creeping flow assumption in the
(narrow) space between closely spaced spheres undergoing

relative motion and, thus, valid for Res � sjDuij j
m �1. Tangen-

tial lubrication forces and torques have not been considered
since they are much weaker than the radial lubrication force;

the former scale with ln a
s

� �
, the latter (see Eq. 5) with a

s. The

expressions in Eq. 5 need to be tailored for use in lattice-
Boltzmann simulations46: (1) The lubrication force needs to be
switched off when sphere surfaces are sufficiently separated in
which case the LBM can accurately account for the
hydrodynamic interaction between the spheres (typically if s
[ D). (2) the lubrication force needs to saturate when solid
surfaces are very close to account for surface roughness and to
avoid very high levels of the lubrication force that could lead
to unphysical instabilities in the simulations.35

A smooth way to turn on and off the lubrication force has

been proposed in Ref. 46; instead of Eq. 5 one writes

Flub ¼ 3

2
pqma2

1

s
� 1

s0

� 	
n � Duij
� �

if s � s0;

and Flub ¼ 0 if s > s0 ð6Þ
with the modeling parameter s0 as the distance between
solid surfaces below which the lubrication force becomes
active. A second modeling parameter (s1) is the
distance below which the lubrication force gets saturated

Flub ¼ 3
2
pqma2 1

s1
� 1

so

� �
n � Duij
� �

if s � s1. The settings for the

lubrication force modeling parameters were s0 ¼ 0.2a and s1 ¼
2�10�4a. With this procedure and these settings accurate results
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for close-range hydrodynamic sphere-sphere interactions have
been reported.35,46

The spheres’ equations of linear and rotational motion
including resolved and unresolved (i.e., lubrication) forces
are integrated according to an Euler forward method. These
time-step driven updates are linked with an event-driven
algorithm that detects events related to the SqWP and to
hard-sphere collisions during the Euler time steps. Three
types of events are being considered (1) a hard-sphere colli-
sion, (2) two approaching spheres enter one another’s SqWP,
and (3) two spheres that move apart reach a center-to-center
distance of 2(a þ d), and attempt to leave one another’s
SqWP. Event (3) has two possible outcomes: the spheres
detach (if their relative velocity is sufficiently high), or do
not detach. Once an event is being detected, all particles are
frozen and the event is carried out which for all three event
types implies an update of the linear velocities (and also
angular velocities for event type (1) if l = 0) of the two
spheres involved in the event. Subsequently, all spheres con-
tinue moving until the end of the time step, or until the next
event.

Results

Verifications and preliminary simulations

In order to verify the simulation procedure and specifically
the implementation of the SqWP, a number of granular sim-
ulations were performed. In a granular simulation a collec-
tion of spheres moves through vacuum. A sphere only
changes velocity if it gets involved in one of the three events
as identified in the previous section. The granular simula-
tions are fully event-driven; for monitoring purposes, how-
ever, information regarding the system is stored at regular
time intervals.

The results shown in Figure 1 are for 128 granularly mov-
ing spheres in a fully periodic, 3-D, cubic domain. The size
of the domain is such that / ¼ 0.055. In the initial state the
spheres are randomly placed in the domain such that none of
the spheres is attached to another sphere which implies that
the system initially has the maximum possible potential
energy. The spheres are given random velocities: each veloc-
ity component of each sphere is sampled from a uniform dis-
tribution in the interval [�0.5u0, 0.5u0]. The top panel of
Figure 1 shows time series of the kinetic, potential, and total
energy if the restitution coefficient e ¼1.0, and friction coef-
ficient l ¼ 0.0. We see that total energy is conserved (with
accuracy comparable to machine accuracy), and that the sys-
tem reaches a stationary state approximately 300 a

u0
after

startup. If the restitution coefficient is reduced to e ¼ 0.999
the system loses energy and eventually (after an elapsed
time of 5000 a

u0
) comes to rest in the form of a single, large

aggregate (see the bottom panel of Figure 1).
In a second preliminary simulation fluid is added to the

system. To visualize the dynamics of aggregation and break-
age and its interaction with liquid flow, the liquid–solid sus-
pension is sheared by moving two parallel plates in opposite
direction with Re ¼ a2 _c

m ¼ 0:24. Periodic boundary conditions
apply in the streamwise (x), and transverse (y) direction. To
clearly see all spheres and to identify attachment of spheres,
the spheres centers are initially given equal y-coordinates
and are not allowed moving in the y-direction. The size of
the flow domain in y-direction is 4a. The simulations are
started from rest (liquid and solid have zero velocity), and
initially none of the spheres is attached to another sphere.

In Figure 2 it is shown how the flow develops in time,
and that aggregates are formed and broken. Figure 3 shows
a time series of the average number of sphere-sphere con-
tacts per sphere; it illustrates that the system reaches a
(dynamic) stationary state, with continuous attachment and
detachment of spheres.

Aggregation in HIT

We now turn to suspensions in homogeneous, isotropic
turbulence. Two base-cases were defined that only differ
with regards to the friction coefficient l: one base-case has
l ¼ 0, the other l ! 1. Next to friction and the fixed set-
tings as discussed previously, the physical dimensionless
numbers were: solids-volume fraction / ¼ 0.080, the Kol-
mogorov length scale over particle radius

gK
a ¼ 0:125 with gK

based on the input value of the energy dissipation rate in the
linear forcing scheme, and the dimensionless depth of the
square well Du

t ¼ 0:30. For easy reference, Table 1 summa-
rizes the dimensionless settings (except for L

a, see later) for
the two base-cases.

An important question is how large the (cubic) domain
needs to be to get representative results that are independent
of the domain size. This is particularly relevant since our
solid–liquid systems undergo aggregation and not only the pri-
mary sphere size should be much smaller than the domain
size, also the aggregate size should be (much) smaller than the
size of the domain to avoid the unphysical situation that an ag-
gregate strongly interacts with itself through the periodic
boundaries. Apart from aggregation and self-interaction
between aggregates, the turbulence imposes demands on the
domain size: it should have sufficient room to develop its wide
spectrum of length scales to be representative for the strong
turbulence in large-scale process equipment. Obviously, the

Figure 1. Energy time series E (normalized by initial
energy E0) of granular simulations.

128 solids spheres in a fully periodic cubic domain with

size L521.3a. Initial conditions: each velocity component

of each sphere is a random number with uniform distri-

bution in the interval [20.5u0, 0.5u0]; spheres are ran-

domly placed and are not attached. The square-well

potential has d
a
¼ 0:05 and Du

u0
¼ 0:4. Top panel e 5 1.0,

bottom panel e 5 0.999; Blue: kinetic energy; green:

potential energy; red: total energy. The insets in the bot-

tom panel are at tu0
a 5 500 and 5,000, respectively. [Color

figure can be viewed in the online issue, which is avail-

able at wiley onlinelibrary.com.]
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domain size is limited by the finite computational resources
(time and memory) available. To investigate domain size
effects, each of the two physical systems identified in Table 1
was simulated in cubic domains with four different vertex
lengths: L ¼ 128 ¼ 21.3a, L ¼ 192 ¼ 32a, L ¼ 256 ¼ 42.7a,
L ¼ 384 ¼ 64a (as indicated earlier, the sphere radius a has
not been varied and corresponds to six lattice spacing’s).

All simulations reported here were run in sequential (single-
cpu) mode. The computational effort obviously strongly depends
on the system size. The largest simulations (with L ¼ 64a) have
3843 � 5.66 �107 LB cells and contain almost 5,000 spheres.
They take up approximately 11 Gbyte of memory. Completing
one viscous time unit a2

m takes about 2 weeks on an Opteron
8431 (2.4 GHz) processor. The simulations scale almost per-

fectly with the grid size so that the corresponding case with L ¼
128 completes one viscous time unit in half a day.

To start with, we present results as to how the turbulently
agitated suspensions evolve to a stationary state in Figure 4.
The initial condition is a liquid velocity field u : (ux, uy,
uz) that sinusoidally varies in space ux ¼ u0sin(2py/k0), uy ¼
u0sin(2pz/k0), uz ¼ u0sin(2px/k0) (to start a simulation a non-
zero velocity field is required since the turbulence forcing is
proportional to the fluid velocity); we set Re0 � u0a

m ¼ 48. If
we slightly offset the wavelength from L divided by an inte-
ger number (typically k0 ¼ 1:01 L

4
) the system quickly gener-

ates turbulence. This form of initial condition was chosen as
it is a simple way to guarantee an initially divergence free
velocity field. If the fluid flow is initialized such that !�u
= 0, the weakly compressible lattice-Boltzmann method in
combination with linear forcing develops (initially very
weak) density waves that slowly but steadily grow with
time. This is unwanted given the long runs we need to first
reach steady-state turbulence and steady ASD’s and, subse-
quently, to obtain converged flow and particle statistics. The
solids are randomly released in the cubic domain such that
none of the spheres is attached to another sphere, and ini-
tially have zero velocity. Given the large computer runtime
for the largest domain (L ¼ 384), their time series are
shorter than for the other simulations. They are, however,
long enough for reaching a stationary state.

Since in the larger flow domains the turbulence is allowed
to generate larger structures, the time to steady state (as meas-

ured in viscous time units a2

m ) gets longer for larger L (see

Figure 4). Three variables have been tracked in Figure 4: the

ratio
gK
a (with now based on the actual dissipation in the liquid

phase only—this needs to be stated explicitly since the
immersed boundary method that we use to impose no-slip at
sphere surfaces implies fictitious fluid inside the solids; the
dissipation in this fluid is not considered when gK is deter-
mined); the number of attachment points per sphere (nc) as a
metric for the level of aggregation; and a turbulence Reynolds

Figure 2. Sticky spherical particles in the shear flow
generated by two flat parallel plates moving
in opposite direction _c ¼ 2u0

H .

From top to bottom: snapshots at t _c ¼ 2; 40; 80; 120 after

startup from rest. Periodic conditions apply in x and y
direction; the spheres are not allowed to move in y-
direction Re ¼ a2 _c

m
¼ 0:24; e ¼ 1:0; da ¼ 0:05; Du

a _c ¼ 0:25;
H
a ¼ 10:0. The colors indicate fluid velocity magnitude.

Cross section through the center of the channel; the

width of the channel in y-direction is 4a. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3. Situation as defined in Figure 2.

Time series of the average number of sphere-sphere con-

tacts per sphere.

Table 1. Base-case Input Settings; Bold Face: Variables Fixed Throughout this Paper; Normal Print: Variables that have been
Varied Later in this Article

Base-case #
qp
q / gK

a
d
a

Du
t e l s0

a
s1
a

1 4.0 0.08 0.125 0.05 0.30 1.0 0 0.2 2�10�4

2 4.0 0.08 0.125 0.05 0.30 1.0 1 0.2 2�10�4
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number based on the volume-average root-mean-square veloc-
ity in the liquid and the primary sphere radius Rea � urmsa

m . The

Taylor microscale kT in case of HIT is 32 kT ¼ 15mu2rms
e

� �1=2

.

For our base-case situations kr � 1.8a so that

ReT � urmskT
m � 1:8Rea.

The stable time series (after reaching steady state) of the
ratio

gK
a
, and the good agreement between its preset and

actual values (preset 0.125, time-averaged actual 0.129)
shows that the linear forcing procedure is able to maintain a
constant, desired dissipation rate; also in the presence of sol-
ids. The dissipation rate is independent of the size of the
computational domain, which it should be.

The steady state level of Rea does depend on domain size
L; if the domain gets larger, Rea gets larger which means
that the turbulent kinetic energy (TKE) per unit fluid mass
increases. This is due to the larger, energy containing struc-
tures that fit in the larger domains. To quantify this, turbu-
lent kinetic energy spectra are shown in Figure 5. The spec-
tra for different domain sizes more or less overlap for the
higher wave numbers j ¼ 2p

k . This is because the simulations
with different domain sizes have the same dissipation rate
and, therefore, develop the same small-scale turbulence. If
we discard the simulations in the smallest domain (L ¼ 128)
the spectra only deviate significantly for the smaller wave
numbers with 10log(ja)\ �0.5, i.e., for flow structures with
sizes larger than 2pa

10�0:5 � 20a. As a result of this, the turbu-
lent environment of the primary particles and also of small
aggregates can be considered (statistically) similar for the
simulations at different domain size, as long as L 	 192.
This is likely the reason why the average number of contacts
per sphere (bottom panels of Figure 4) is approximately in-
dependent of the domain size, again as long as L 	 192.

For the smallest simulations (L ¼ 128), the number of
contacts per sphere is clearly different, and also the spectra
deviate over larger portions of the wave number space (Fig-
ure 5), and we conclude that such a domain is too small. In

the case with l ! 1 a stationary state is actually not reached
if L ¼ 128; the number of contacts per sphere keeps increas-
ing. Closer inspection reveals that the spheres keep on aggre-
gating and tend to form a single, big aggregate. If (for L 	
192) steady-state nc values are compared between l ¼ 0 and l
! 1, friction induces higher levels of attachment of spheres
and, thus, probably larger aggregates. Aggregate size distribu-
tions will be discussed in the next subsection.

The bottom panel of Figure 5 shows a comparison

between a single-phase (liquid only) spectrum, and solid–liq-

uid spectra (the latter are the same data as in the top panels

for L ¼ 256): The presence of solids enhances TKE for

high-wave numbers at the expense of TKE for lower wave

numbers which is a known effect that has been reported in

earlier computational studies.32,33

Aggregates: size distribution and structure

We now turn to the structure and size of the aggregates
that are continuously formed and broken as a result of the
turbulent flow. In Figure 6 instantaneous realizations of par-
ticle configurations are given. From the panel related to L ¼
128 it may be more clear that—as argued previously—this
domain is too small for a domain-size-independent represen-
tation of the turbulence-aggregation interaction; larger
domains are clearly needed. The bottom panels of Figure 6
show the largest aggregates at a certain (arbitrary) moment
in time, suggesting larger aggregates when collisions
between primary spheres are frictional. They also suggest a
fairly open aggregate structure, i.e., relatively low-fractal
dimensions. An impression of the flow field the particles
move in is given in Figure 7. The main purpose of Figure 7
is to show that the size of the smaller flow structures is com-
parable to the size of the primary particles as should be
since

gK
a \1. Van Vliet et al.48 suggest that if a flow is

visualized in a way similar as in Figure 7, the smallest scales
that show up have a size of the order of 10 gK.

Figure 4. Time series of key variables of aggregating spheres in homogeneous isotropic turbulence.

From top to bottom: Kolmogorov length scale over particle radius, particle-size-based Reynolds number Rea � urmsa
m
, number of

sphere-sphere contacts per sphere. Left: frictionless collisions (l 5 0), right: l fi 0. The colors indicate domain size. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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To make the observations in Figure 6 regarding the aggre-
gates more quantitative and also to further investigate do-
main-size effects, time-averaged ASD’s were determined.
The ASD’s presented in this article are by aggregate mass
(which is the same as by aggregate volume or by aggregate
size in terms of the number of primary spheres nagg given
the monodisperse primary spheres). To determine ASD’s we
took a large number of instantaneous realizations during the
stationary portion (t 	 5 a2

m ) of the time series shown in Fig-
ure 4 (except for the case with L ¼ 128 and l ! 1 that
did not become steady; for this case we also started building
an ASD from t ¼ 5 a2

m on). The size distributions for the
same cases for which we showed the time series in Figure 4
are given in Figure 8. For l ¼ 0 the ASD is fairly independ-
ent of L as long as L 	 192; the case with L ¼ 128 deviates
strongly. The mass-averaged aggregate sizes are hnaggi ¼
2.60, 2.07, 1.97, 1.88 for L ¼ 128, 192, 256, 384, respec-
tively, which (beyond L ¼ 128) shows a weak trend toward
smaller hnaggi for larger domains. This may be due to the
stronger turbulence (albeit at the larger scales only) for the
larger domains. Also for l ! 1 ASD’s are similar if L 	
192. The average aggregate sizes are (in the order small to
large domain) 4.63, 2.42, 2.27, and 2.22, i.e., slightly but
significantly larger than for l ¼ 0.

Based on what was learned previously, a number of simu-

lations were performed all having L ¼ 256 and l ! 1. The

settings for
gK
a , /, and

Du
t were varied: we took the base-case

conditions (Table 1) and one-by-one increased and decreased

each of these three dimensionless numbers (total of six addi-

tional simulations). Note that changing one dimensionless

number and keeping the rest the same sometimes implies

changing more than one physical parameter. For instance, a

decrease in the ratio
gK
a was achieved by increasing the

energy dissipation rate, thus, reducing the Kolmogorov

length scale. At the same time the Kolmogorov velocity

scale t increases. In order to keep Du
t constant, we increase

Dt (and thus the binding energy) by the same factor as t
increases.

The resulting ASD’s are presented in Figure 9. A striking

observation is that the aggregating solid–liquid systems can

quickly get unstable, i.e., do not reach a dynamically station-

ary ASD. If the depth of the square well Du
t is increased

from 0.30 to 0.35 (an increase by a factor of 1.36 in the

binding energy which is proportional to (Du)2) the system

slowly but consistently keeps on aggregating without reach-

ing a steady ASD; see the lower panel of Figure 9 and its

inset. If the solids volume fraction is increased from / ¼
0.08 (base-case) to 0.16 a large aggregate consisting of the

order of 2,000 primary spheres is formed (the total number

of primary spheres in this simulation is 2,960), surrounded

by a number of smaller aggregates and primary spheres; see

the middle panel of Figure 9 plus inset.
Apart from the unstable nature of some of the aggregating

solid–liquid systems, the results in terms of ASD’s follow
expected trends: For a given primary particle size, a decrease
in

gK
a means a decrease in the Kolmogorov length scale as a

result of an increasing energy dissipation rate. Since (unless
stated otherwise) the ASD’s were obtained during a station-
ary time window, dissipation is in equilibrium with power
input, and higher dissipation implies higher power input and,
thus, stronger turbulence. The results in the top panel of Fig-
ure 9, therefore, show a shift toward smaller aggregate sizes
if the power input is increased. Starting at the highest value
of

gK
a , from one case to the next the power input increases by

a factor of 4. For
gK
a ¼ 0.181, 0.129, 0.091, the respective

mass-average aggregate sizes hnaggi are 3.99, 2.27, and 1.71.
The average aggregate size is approximately linear in

gK
a in

the (fairly narrow) range considered here.
In the aforementioned discussion the denser suspensions

(/ ¼ 0.16) we investigated became unstable. The more

dilute suspension with / ¼ 0.04 develops much smaller

aggregates compared to the base-case, largely because colli-

sions are much less frequent in the dilute suspension (middle

panel of Figure 9). Also the influence of the depth of the

square-well follows our intuition: the shallower interaction

potential leads to smaller aggregates; the deeper well to

larger aggregates (bottom panel of Figure 9).
Next to aggregate size, aggregate structure has been

investigated. A frequently used metric for this is the frac-
tal dimension (symbol df) of aggregates (e.g., Ref. 6).
Fractal dimensions span the range from one (needle and
fiber-shaped aggregates) to three (compact, near-spherically
shaped aggregates). The experimental and computational
literature dealing with structuring of aggregates in laminar
flows and turbulent flows such that

gK
a [[1 indicates a de-

pendency of the fractal dimension on the deformation

Figure 5. Power spectral density of turbulent kinetic
energy as a function of dimensionless wave
number ja after steady state has been
reached.

Top: the same solid–liquid systems as in Figure 4. Bot-

tom: comparison between a single-phase spectrum (/ 5
0) with the solid–liquid spectra for L 5 256. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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levels and flow topology experienced by the aggregates
(e.g., Ref. 23).

A commonly used way of determining the fractal dimen-

sion of an ensemble of aggregates goes via their radius of

gyration.6 Since our aggregates consist of identical spherical

particles, Rg can be determined according to R2
g ¼ 1

naggPnagg
i¼1 jxi � xcj2, with nagg the number of primary spheres in

the aggregate, xi the center position of primary sphere i, and

the center of gravity of the aggregate xc ¼ 1
nagg

Pnagg
i¼1 xi. The

aggregate size nagg and its radius of gyration scale according

to nagg ! Rdf
g . For determining the fractal dimension of an

ensemble of aggregates the standard procedure is to double-

logarithmically plot aggregate size vs. radius of gyration (in

an experiment they can be measured independently,23 in a

simulation they are directly available), and fit a straight line

through the data points. The slope of the line is df. To be

consistent with the literature, the same procedure is followed

here. It should be noted, however, that applying the proce-

dure requires making a few choices. Their impact on the out-

come (df) is discussed later. Only simulations with L ¼ 256

have been analyzed in terms of df.
In Figure 10,

Rg

a is plotted vs. nagg for one specific simula-
tion (base case with l ! 1, see Table 1). Each dot in the
figure represents an aggregate as observed in snapshots taken
under steady-state conditions in a time interval with length

15 a2

m . The total number of dots in Figure 10 is approximately

56,000. The discrete nature of the aggregates is clear from

the horizontal bands in Figure 10 that relate to the smaller
aggregates. The wide extent of the cloud of points, and the
many smaller than larger aggregates, make it not straightfor-
ward to unambiguously fit a linear function. Next to the
great many dots, Figure 10 contains six linear function fits.
The three solid lines represent fits according to

nagg ¼ a Rg

a

� �df
with two degrees-of-freedom (DoF’s) a and

df per fit. Each solid line relates to a different minimum ag-
gregate size the fit is based on. The black line is based on
all aggregates (nagg 	 2), the blue and red solid lines are
based on nagg 	 4 and nagg 	 16, respectively. This was
done to assess the effect of the small aggregates on the out-
come of the fitting process. The slopes and, thus, fractal
dimensions based on these fits are 1.53, 1.63, and 1.30,
respectively. The fit for nagg 	 16 clearly deviates from the
other two, and so does its intercept with the ordinate (a). In
the literature6 the following correlation for a has been sug-

gested a ¼ 4.5d�2:1
f . The a’s of the fits with nagg 	 2 (a ¼

1.87), and nagg 	 16 (a ¼ 1.76) are well in line with this
correlation; the fit for nagg 	 16 (a ¼ 3.72) not, and we dis-
miss the latter fit.

The dashed lines in Figure 10 only have df as the fitting
parameter. In these one-DoF fits we require the linear func-
tion to go through the a priori known average radius of

gyration of a sphere doublet; for nagg ¼ 2 :
Rg

a ¼ 1þ dffiffiffiffi
3a

p . The

colors of the dashed lines relate to the minimum aggregate
size involved in the fit in the same way as the colors of the
solid lines. The fractal dimensions for the one-DoF fits are

Figure 6. Single realizations of aggregates in cubic domains.

Top: primary spheres colored by the size of the aggregate they are part of (red: nagg < 4; yellow: 4 � nagg < 7; green: 7 � nagg <10;
blue: nagg 	 10). Top-left: L 5 128; top-right L 5 384. Base-case with l fi ‘. Bottom: the four biggest aggregates for base-cases with

L 5 384; left l fi ‘ (red nagg 5 60, yellow nagg 5 150, green nagg 5 65, blue nagg 5 105, and the red aggregate connects through the

periodic boundaries); right l 5 0 (red: nagg 5 32, yellow: nagg 5 46, green nagg 5 31, blue: nagg 5 41; the yellow aggregate connects

through the periodic boundaries). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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1.49, 1.53, and 1.64. The five fits (the sixth was dismissed,
see before) have average df ¼ 1.56 and standard deviation
0.07. We propose df ¼ 1.56 
 0.07.

Given the wide extent of the cloud of points in the Rg vs nagg
plots and the related ambiguity in fitting df, the fractal dimen-
sion may not be the best way to quantify aggregate structure as
encountered in our simulations. However, since df is a widely
used quantity in the literature, we analyzed all of our simula-
tions with domain size L ¼ 256 in terms of fractal dimension.
Our earlier observations regarding the fitting procedure led us
to base fractal dimensions on one-DoF fits for aggregates with
sizes larger or equal than four primary spheres (nagg 	 4). We
estimate the uncertainty in df to be of order 0.1.

The fractal dimensions are given in Table 2. According to
these results, the turbulent flow is unable to make dense
aggregates; df hardly exceeds 1.7 and gets as low as 1.4.

Such values for fractal dimension are typical for diffusion-lim-
ited aggregation,49 not so much for aggregation in turbulent
flows.50 We speculate that this seeming paradox is a conse-
quence of the primary spheres being larger than the Kolmo-
gorov scale. The common condition for making dense aggre-
gates in turbulent flow is that

gK
a [[ 1, not

gK
a ¼ Oð0:1Þ as is the

case here. If
gK
a [[1 the fluid deformation experienced by the

primary particles and aggregates is homogeneous (albeit time-
dependent). This is fundamentally different from the inhomo-
geneous, turbulent (and thus erratic) flow experienced by the
solids if

gK
a ¼ Oð0:1Þ. Given the results for fractal dimension

(Table 2), the erratic nature of the flow at the scale of the
aggregates brings about aggregation akin to a diffusive pro-
cess. The fractal dimension increasing if

gK
a gets larger tenta-

tively supports this view as an increase of
gK
a moves us closer

to the more common situation with
gK
a [[1.

The other dependencies in Table 1 (slightly compacter
aggregates for a stronger square-well potential and for a

Figure 8. Aggregate size distributions by mass for the
cases defined in Figure 4.

Comparison between frictionless (left) and frictional

(right) collisions, and effects of system size. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 7. Cross section through the base-case flow
with l fi ‘ and L 5 384.

The black-white discs are cross sections of the primary

spheres; the colors indicate nondimensional instantane-

ous velocity magnitudes (

ffiffi
2
3

q
k). [Color figure can be

viewed in the online issue, which is available at wileyon-

linelibrary.com.]

Figure 9. ASD’s by mass for L 5 256 domains, aver-
aged over the time-interval 5 � tm

a2
< 20; effects

of physical settings.

From top to bottom: effect of
gK
a ; solids volume fraction /

(the inset has an extended abscissa to show the large

aggregates for / 5 0.16); (the inset shows the number of

contacts per sphere as a function of time for Du

t
5 0.35 to

indicate its nonstationary behavior in the averaging time-

window). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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higher solids volume fraction) were to be expected: stronger
attraction between primary spheres makes more compact
aggregates; with more solids in an isotropic flow there is
less room to build and sustain long, slender aggregates.

Summary and Conclusions

In this article, we have presented detailed simulations of
turbulent solid–liquid suspensions with the solids having a
tendency to aggregate. The focus is on how turbulence inter-
acts with the aggregation process. Turbulence plays a dual
role: in the first place it promotes collisions that potentially
lead to aggregation events, in the second place its fluid defor-
mation induces disruptive forces on aggregates that can lead
to breakage. At the same time, the presence of solids also
couples back to the turbulence: the solid particles enhance
small-scale turbulence, particularly in the moderately dense
(solids volume fraction of the order of 10%) suspensions stud-
ied here. The systems considered are relatively simple: (1) the
solid particles are spherical, and all have the same size, (2)
the turbulence is homogeneous and isotropic and the flow do-
main is fully periodic, and (3) the interaction potential that is
the reason for aggregation is a simple square-well potential.

In the simulations the solids and fluid phase are fully
coupled, and the flow around the finite-size particles is
resolved, except for when spheres are in very close proximity;
then the resolved hydrodynamic forces on the spheres are sup-
plemented with analytic expressions for radial lubrication
forces. The turbulence is generated through linear forcing and
is resolved down to the Kolmogorov scale. The square-well
potential as aggregation mechanism was chosen for its sim-
plicity. It only has two parameters and can be computationally
efficiently combined with an event driven hard-sphere colli-
sion algorithm. We need the tight coupling between solid and
fluid and the high level of detail including resolution of the
flow around the particles since the Kolmogorov scale is of the
same order of magnitude as the size of the primary particles
and microturbulence, and the aggregation process have com-
parable and, therefore, interacting length scales.

The periodic flow domains need to be sufficiently large to

develop a dynamically stationary aggregate size distribution.

In investigating the impact of domain size we observed an

increase in turbulent kinetic energy with increasing domain

size. This was because the differently sized cases had the same

turbulence microscale (same e and m). Since e / u3rms
L , TKE !

u2rms ! (eL)2/3, i.e., at constant dissipation rate larger domains

are able to generate more kinetic energy and larger turbulent

structures. What matters for the aggregation process, however,

is the energy contained in the length scales up to the sizes of

the aggregates, and we were able to generate aggregate size

distribution that were fairly independent of the size of the flow

domain, as long as L 	 32a.
We clearly observed how stronger turbulence shifts aggre-

gate-size distributions toward smaller aggregates, and how
stronger interaction potentials make aggregates bigger. A
fairly moderate increase in Du

t turned a stationary, stable aggre-
gate size distribution unstable, generating a single, large ag-
gregate with a size comparable to the size of the domain. A
similar instability occurred when the solids volume fraction
was increased. In addition to the square-well potential, spheres
interact through hard-sphere collisions. The friction coefficient
related to the hard-sphere collisions was shown to have influ-
ence on the aggregate size distribution.

The aggregate structures were quantified by their fractal
dimensions df. To determine these, of large ensembles of aggre-
gates, size nagg, and radius of gyration Rg were determined, and

the relationship nagg ¼ a Rg

a

� �df
was fitted. This analysis showed

quite wide scatter and related uncertainty in the fitting parame-
ters a and df. Despite this uncertainty, it is clear that the aggre-
gates have an open structure characterized by low-fractal
dimension df hardly exceeded 1.7. We explain this by the er-
ratic/diffusive nature of the particle motion in a turbulent field
where particles are generally larger than the Kolmogorov scale.

Ehrl et al.50 observed in their experiments (with
gK
a [[1)

that the radius of gyration Rg scaled with the energy dissipa-
tion rate e according to Rg ! e�0.25. In our simulations
(with

gK
a ¼ Oð0:1Þ) tentatively nagg ! gK ! e�0.25, so that

Rg ! e�0.25/df which clearly is a different scaling than in the
experiments,50 since in our simulations df � 1.4�1.7. For
this and additional reasons, the way df depends on

gK
a

deserves attention in future research. It is known that dense
(high-dimensional) aggregates are formed in turbulent flow if
gK
a [[1. The open structure for relatively small

gK
a (O(0.1)) as

observed in this study, therefore, has to become denser upon
increasing

gK
a . In order go toward (much) higher

gK
a with sim-

ulation like the ones presented here, however, we need
(much) larger flow domains. Resolution requirements dictate the
sphere radius a to be typically six lattice spacing’s, we, thus,

Figure 10. Radius of gyration
Rg

a vs. aggregate size.

Base case with l fi ‘. Dots: individual aggregates. Lines:

fits with nagg / R
df
g with df the fractal dimension. Solid

lines: fits with two degrees-of-freedom; dashed lines: fits

with one degree-of-freedom (see text). Black lines: fit for

all aggregates; blue: fit only for nagg 	 4; red: fit only for

nagg 	 16s. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Table 2. Fractal Dimensions (df) of Aggregates as a Function

of Flow Conditions and SqWP Parameters*

Main feature l gK/a / Du/t df 
 0.1

zero friction base-case 0 0.13 0.080 0.30 1.49
1friction base-case 1 0.13 0.080 0.30 1.53

stronger turbulence 1 0.091 0.080 0.30 1.44
weaker turbulence 1 0.18 0.080 0.30 1.66
more dilute suspension 1 0.13 0.040 0.30 1.37
denser suspension 1 0.13 0.16 0.30 1.71
weaker SqWP 1 0.13 0.080 0.25 1.44
stronger SqWP 1 0.13 0.080 0.35 1.67

*In addition to the given conditions the default settings apply. The system
size is L¼256 in all cases.
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need to increase gK. In order to have a sufficiently wide spectrum
of turbulent length scales we then also have to increase the mac-
roscopic turbulent scales, hence, consider larger flow domains.
Larger domains are very well doable given that the simulations
presented here are all sequential. Parallelization would lead the
way to larger simulations. Note that some modeling/software
challenges would need to be overcome in a parallel code, specifi-
cally related to its event- driven components.
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