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Direct numerical simulations of transitional and turbulent flows of purely viscous thix-
otropic liquids in stirred tanks have been performed. The simple thixotropy model used
is based on the notion of a network in the liquid with an integrity that builds up with fi-
nite rate under quiescent conditions, and breaks down under liquid deformation. We
solve a transport equation for the network integrity which is two-way coupled to the lat-
tice-Boltzmann-based flow solver. The liquid’s time scale characterized by the dimen-
sionless Deborah number shows a profound impact on the level of mobilization and the
flow patterns in the mixing tanks, especially if the time scale of the liquid is of the same
order as the circulation time in the tank. It is also demonstrated to what extent increas-
ing the impeller speed improves mobilization and mixing. VVC 2010 American Institute of

Chemical Engineers AIChE J, 56: 2236–2247, 2010
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Introduction

Processing and handling non-Newtonian liquids is abun-
dant in food, pharmaceutical, paper-and-pulp, and (petro)
chemical industries. Process design and process efficiency
directly interfere with the liquid’s rheological properties
since fluid flow and fluid deformation are part of virtually
any process step. An interesting and relevant subset of non-
Newtonian behavior is thixotropy. Thixotropic liquids show
time-dependence, i.e., their constitutive relations contain
terms related to the liquid’s deformation history. A typical
(micro physical/chemical) source of thixotropy is the pres-
ence of a structural network in the fluid that forms as a
result of long-range interactions between, e.g., macro-mole-
cules or microscopic solid particles dispersed in it. A
strongly developed network results in a liquid that is hard to
deform (highly viscous) and/or has elastic properties. Liquid
deformation tends to disintegrate the network. Since, usually,
the rate at which the network disintegrates under deforma-
tion, and builds up at quiescent conditions is finite (e.g., due

to transport limitations at the micro level), the local defor-
mation history in a Lagrangian frame of reference impacts
the local rheological behavior, hence thixotropy.

In many cases, agitation of thixotropic liquids in mixing
tanks is not so much done to mix the liquid at the molecular
or a mesoscopic level; it is in the first place done to mobi-
lize the liquid by breaking the network. The extent to which
this happens is an intricate interplay between time scales (of
the liquid and of the agitation), liquid inertia (relative to vis-
cous forces), and the geometrical layout of the tank. As an
example, we expect interesting hydrodynamics if macro-
scopic flow time scales such as the period of an impeller
revolution, or the liquid’s circulation time are of the same
order of magnitude as the time scales contained in the
liquid’s rheological behavior. As in many more situations
where interaction and competition of a multitude of phenom-
ena govern process behavior, numerical simulation is a ver-
satile way to reveal the interactions and to gain insight in
the relative importance of these phenomena as a function of
process conditions. If process conditions are externally con-
trollable, simulations may greatly support process design and
optimization.

In this article, a methodology is outlined for direct numer-
ical simulations involving thixotropic liquids agitated in
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mixing tanks. The numerical efficiency of the methodology
allows for fine grids so that transitional and mildly turbulent
flows can be fairly accurately resolved. In a recent article of
ours,1 the simulation methodology has been successfully
verified by comparing its results with analytical and semi-an-
alytical data of benchmark flows. The focus of the present
article is on the application of the methodology to agitation
for mobilizing and mixing thixotropic liquids.

A relatively simple thixotropy model has been adopted.
Also, the liquids considered are purely viscous, that is, no
visco-elastic effects have been incorporated. Despite these
limitations, the dimensionality of the parameter space is
much larger than it would be with simpler (Newtonian)
liquids. For this reason, we primarily limit our study to three
dependencies: the impact of the time scale related to net-
work build-up in the liquid (relative to the flow time scales)
on the level of mobilization, the effect of the impeller speed,
and the consequences of the agitation geometry. The latter
aspect is represented by comparing the performance of two
impellers typically used for turbulent agitation of Newtonian
liquids, viz., a Rushton turbine and a pitched-blade turbine
(PBT).

Literature on turbulent and transitional agitation of non-
Newtonian liquids is relatively scarce. It is mostly related to
shear-thinning and/or Bingham liquids with a time-independ-
ent rheology.2–6 Stirring yield-stress liquids in mixing tanks
usually results in the formation of a cavity around the impel-
ler: liquid only gets agitated in a part of the tank volume
around the impeller, and—as for thixotropic liquids—mobili-
zation is a key issue. Recently, agitation of thixotropic
liquids was studied experimentally and computationally.7

One of the main findings of that study was that the level of
realism of simulations would benefit from more refined mod-
els for fluid behavior and their computationally efficient
implementation in CFD codes. This very well relates to the
purpose of the present study.

This article is organized in the following manner: First,
the flow geometries are introduced. Then, the liquid’s rheo-
logical model is described. Along with the geometrical char-
acteristics this allows us to define a set of dimensionless
numbers that are the coordinates of the parameter space we
will be partly exploring. The subsequent section briefly
describes the numerical methodology (more details are in
Ref. 1). In presenting the results, the focus is on the level of
mobilization and on the flow structures encountered. Next to
mobilization, also, the mixing performance in terms of the
time required to mix a passive scalar to a certain level of ho-
mogeneity (mixing time) will be discussed. The final section
summarizes the results and reiterates conclusions.

Flow Geometries

The baffled mixing tanks are filled to a level H ¼ T (with
T the tank diameter) with liquid, see Figure 1. A lid closes
off the surface, i.e., at the top a no-slip condition applies.
Agitation is performed by two different impellers, typically
used for turbulent agitation: a Rushton turbine and a
pitched-blade turbine (PBT), see Figure 1. The PBT has four
blades under an angle of 45�, mounted on a hub. This impel-
ler rotates such that it pumps in the downward direction.
The shaft of the PBT runs over the entire tank height. The

Rushton turbine has six short, vertical blades mounted on a
disk. The disk is mounted on a shaft that enters from the top
down to the level of the impeller. The primary flow induced
by this impeller is in the radial direction. The Rushton tur-
bine and the PBT both have a diameter equal to D ¼ T/3.
They rotate with an angular velocity of N revolutions per
second.

The choice of these standard impeller and tank configura-
tions allows for relating the present simulations of thixo-
tropic liquid flow with earlier works on Newtonian and also
Bingham liquid flow in similar geometries.

Thixotropy Model

The thixotropy model we use is based on work that dates
back to the late 1950s.8,9 More recently it has been applied by
Ferroir et al.10 in their analysis of particle sedimentation in
clay suspensions. It has been placed in a larger context of
thixotropy modeling in the review due to Mujumdar et al.11 In
the purely viscous (i.e., non-elastic) model, we keep track of a
scalar k that varies between 0 and 1 and indicates the integrity
of a structural network in the liquid (k ¼ 0: no network; k ¼
1: fully developed network). Its transport equation reads

@k
@t

þ ui
@k
@xi

¼ �k1 _ckþ k2 1� kð Þ (1)

(summation over repeated indices) with ui the ith component
of the fluid velocity vector, and _c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2dijdij
p

a generalized
deformation rate; dij ¼ 1

2

@uj
@xi

þ @ui
@xj

� �
is the rate of strain tensor.

The first term on the right hand side of Eq. 1 indicates
breakdown of the network due to liquid deformation; the
second term is responsible for build-up of the network with a
time constant 1

k2
associated to it. The network integrity is fed

back to the liquid flow by relating it to the apparent viscosity
ga. The simple model10 used here adopts a linear relation:

ga ¼ g1 1þ akð Þ (2)

In a homogeneous shear field with shear rate _c, the
steady-state solution to Eq. 1 reads

kss ¼ k2
k1 _cþ k2

(3)

The associated steady state viscosity is (combine Eqs. 2
and 3)

gss ¼ g1 1þ a
k2

k1 _cþ k2

� �
(4)

The parameter g1 can thus be interpreted as the infinite
shear viscosity. The zero-shear viscosity is g1(1 þ a). A
typical representation of the steady-state rheology (Eq. 4) is
given in Figure 2.

The thixotropic liquid as defined by Eqs. 1 and 2 has four
parameters: k1, k2, g1, a. This implies that once the flow
geometry is defined, four dimensionless numbers are needed
to fully pin down the flow conditions. Three of the dimen-
sionless numbers are quite straightforward: (1) a Reynolds
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number defined in the same way as traditionally done in
Newtonian stirred tank flow but now with g1: Re1 ¼ qND2

g1
;

(2) the ratio of zero-shear over infinite-shear viscosity a þ
1; and (3) a time-scale ratio that we term Deborah number:
Db ¼ N

k2
(having a Deborah number does not mean we con-

sider viscoelasticity). Db is the ratio of the time scale of the
liquid divided by a macroscopic flow time scale for which
we take the period of one impeller revolution (1N). The choice
of the fourth dimensionless number relates to the application
perspective. If the rheogram in Figure 2 is interpreted as that
of a (pseudo) Bingham liquid, the intercept of the asymptote
for high shear rates with the ordinate can be viewed as a
pseudo yield stress: sY ¼ g1a k2

k1
(see Figure 2). The fourth

dimensionless number then becomes a pseudo-Bingham
number: Bn ¼ sY

g1N ¼ a k2
k1

1
N. However, if the liquid is merely

interpreted as shear thinning, the ratio k2
k1

can be viewed as
the liquid’s ‘‘characteristic’’ shear rate _cc (characteristic in
the sense that the transition from zero-shear to infinite-shear
viscosity takes place around _c ¼ _cc, see Eq. 4) and the
dimensionless number would be typically chosen as

_cc
N . In

this article the Bingham liquid perspective will be taken, and

Figure 1. The two stirred tank geometries considered in this article.

Top: baffled tank with Rushton turbine (left: side view and right: top view); bottom: baffled tank with pitched-blade impeller. The (r, z)
coordinate system has its origins in the center at the bottom of the tank.

Figure 2. Steady-state rheology according to Eq. 4.

The infinite-shear viscosity is g1, the zero-shear viscosity is
g1(1 þ a). The pseudo yield stress sY is defined by extrap-
olating the infinite shear behavior towards _c ¼ 0.
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the pseudo-Bingham number will be used so that the four
dimensionless numbers are Re1, a, Db, and Bn.

Numerical Approach

The lattice-Boltzmann method (LBM) has been applied to
numerically solve the incompressible flow equations. The
method originates from the lattice-gas automaton concept as
conceived by Frisch et al.12 Lattice gases and lattice-Boltz-
mann fluids can be viewed as (fictitious) fluid particles mov-
ing over a regular lattice, and interacting with one another at
lattice sites. These interactions (collisions) give rise to vis-
cous behavior of the fluid, just as colliding/interacting mole-
cules do in real fluids. Since 1987, particle-based methods
for mimicking fluid flow have evolved strongly, as can be
witnessed from review articles and text books.13–16 More
recently, applications of the LBM in non-Newtonian fluid
mechanics have also been reported (e.g., Refs. 6,17,18). The
main reasons for using the LBM for fluid flow simulations
are its computational efficiency and its inherent parallelism,
both not being hampered by geometrical complexity.

In this article, the LBM formulation of Somers19 has been
used. It falls in the category of three-dimensional, 18 speed
(D3Q18) models. Its grid is uniform and cubic. Planar, no-
slip walls naturally follow when applying the bounce-back
condition. For non-planar and/or moving walls (that we have
in case we are simulating the flow in a cylindrical, baffled
mixing tank with a revolving impeller), an adaptive force
field technique (a.k.a. immersed boundary method) has been
used.20,21

To incorporate thixotropy, the viscosity needs to be made
dependent on the local value of the network parameter k
(Eq. 2), and, more importantly, the transport equation for the
network parameter (Eq. 1) needs to be solved. We solve Eq.
1 with an explicit finite volume discretization on the same
(uniform and cubic) grid as the LBM. A clear advantage of
using a finite volume formulation is the availability of meth-
ods for suppressing numerical diffusion. This is particularly
important in the present application since Eq. 1 does not
have a molecular or turbulent diffusion term; to correctly
solve Eq. 1, we cannot afford to have significant numerical
diffusion. As in previous works,22,23 TVD discretization with
the Superbee flux limiter for the convective fluxes24 was
used. We step in time according to an Euler explicit scheme.
This finite volume formulation for scalar transport does not
hamper the parallelism of the overall numerical approach.

The presence of a source term (i.e., the right-hand side) in
Eq. 1, combined with the explicit nature of the time stepping
in some (rare) cases (specifically related to large k2, i.e.,
quickly responding liquids) gives rise to unstable behavior.
This can be effectively countered by treating the right-hand
side semi-implicitly, i.e., by evaluating it for k at the new
time level. In that case the discrete version of Eq. 1 sche-
matically reads

kðnþ1Þ � kðnÞ

Dt
þ ui

@k
@xi

� �ðnÞ
¼ �k1 _c

ðnÞkðnþ1Þ þ k2 1� kðnþ1Þ
� �

(6)

with the upper index indicating the (discrete) time level.
Equation 6 can be rewritten as an explicit expression in k(nþ1)

since no spatial derivatives are evaluated at the new time level.
In an earlier article,1 we have shown that for situations where
an explicit formulation is stable, an implicit treatment of the
source term results only in insignificant differences with
explicit results.

Physical, Dimensionless, and Numerical Settings

The values for the infinite-shear viscosity g1 and the
zero-shear viscosity g1(1 þ a) were chosen such that
the flow in the mixing tanks would be mildly turbulent if the
liquid would be Newtonian with viscosity g1(Re1 of the
order of 104) and laminar with viscosity g1(1 þ a)
(Re1
1þa ¼ O 102ð Þ). With the lattice-Boltzmann flow solver (that
enables the use of fine grids) in place, these Reynolds num-
bers allow for direct numerical simulations (DNS). This way
we avoid the use of turbulence closure relations or subgrid-
scale modeling. With DNS, we fully resolve the (likely com-
plex) interactions between liquid properties and flow struc-
tures, without having to consider potential artefacts related
to turbulence modeling. Also, the state-of-the-art of turbu-
lence modeling of non-Newtonian liquid flow is not as
strongly developed as that of flow of Newtonian liquids.

The tanks to be simulated are of lab-scale size with a tank
volume of typically 10 l. Ten liter tanks with geometrical
layouts as given in Figure 1 have a diameter T ¼ 0.234 m.
The impeller diameter D ¼ T/3 ¼ 0.078 m. With a liquid
having g1 ¼ 10�2 Pa � s and q ¼ 103 kg/m3, we generate
mildly turbulent flow if the impeller spins with N ¼ 10 rev/
s: Re1 ¼ 6 � 103. Commonly used thixotropic liquids have
time constants in the range of 0.1–10 s (see e.g., Dullaert
and Mewis25), so that the Deborah numbers fall in the range
of 1–100.

In this article, we only explore part of the four-dimen-
sional parameter space as defined by the four dimensionless
numbers Re1, Db, Bn, and a þ 1. The viscosity ratio a þ 1
has been set to a fixed value of 100. This way we ensure
laminar flow if the network would be fully developed (k ¼ 1
everywhere). Three Deborah numbers will be considered: 1,
10, and 100. In addition, cases will be discussed where the
liquid has a time-independent, shear thinning rheology
according to Eq. 4. Effectively this implies that the liquid
adapts infinitely fast so that 1

k2
! 0 and Db ¼ 0. For these

four Db numbers, the base-case impeller speed has been cho-
sen such that Re1 ¼ 6 � 103 and Bn ¼ 100. Under these
conditions (tank size, impeller speed, other liquid properties),
Bn ¼ 100 corresponds to a (pseudo) yield stress of sY ¼ 10
N/m2, which is a typical yield stress for a clay suspension.
As we will see, under these base-case conditions the liquid
sometimes gets only partially (and sometimes only margin-
ally) mobilized. To check, to what extent increasing the
impeller speed helps in mobilizing the liquid, also higher
impeller speeds are investigated. At higher impeller speeds
Re1 and Db increase, while Bn decreases.

In its basic implementation (as used in this study), the lat-
tice-Boltzmann method applies a uniform, cubic grid. The
spatial resolution of the grid was such that the tank diameter
T equals 180 grid spacings D (D ¼ T/180). The time step is
such that the impellers revolves once in 2000 time steps.
The rotation of the impeller in the static grid is represented
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by an immersed boundary technique. To assess grid effects,
two flow cases were also simulated on a grid with resolution
D ¼ T/240, and compared with their T/180 counterparts in
terms of global characteristics as well as the spatial distribu-
tion of the structure parameter k in the stirred tank.

As the default situation, the simulations were started with
a zero liquid velocity field and a uniform network parameter
k ¼ 1 (fully developed network). This mimics the common
situation that the liquid has been standing still for sufficient
time to develop a network after which we turn on the agita-
tion to mobilize it. In a few cases we also started spinning
the impellers from a liquid without a network (k ¼ 0
throughout the tank). Our primary interests are in how the
flow develops towards a (quasi) steady state, what flow
structures can be observed in (quasi) steady state, and what

the influence of the Deborah number and the impeller speed
is on all this.

Results

Flow evolution from startup

To assess how the flow in the tank evolves from a zero-
velocity, fully networked (k ¼ 1) state towards a quasi
steady, agitated state we show in Figure 3 time series of the
tank-averaged network parameter hki for Db ¼ 10 (and fur-
ther base-case conditions, Re1 ¼ 6 � 103, Bn ¼ 100, a þ 1
¼ 100) for the two impellers considered. Obviously, agita-
tion breaks down the network to a large extent. At Db ¼ 10,
it does so on a time scale of a few tens of impeller revolu-
tions, with differences between the two impellers. In fact,
the route towards steady state with the Rushton turbine is
quite peculiar. After some 40 revolutions—when it looks
like a steady state with hki � 0.33 has been established—hki
starts increasing slightly, however, significantly with a final
steady state that has hki � 0.39 reached after about 100
impeller revolutions. At the same Deborah number, the flow
generated by the PBT goes seemingly to a steady state via a
simpler decay process that takes �40 revolutions.

To interpret the evolution of the mobilization process at
Db ¼ 10 in more detail, scalar distributions in the vertical,
mid-baffle plane at various stages are given in Figure 4. The
Rushton turbine first reduces the network parameter in its
direct vicinity after which the breakdown process spreads
throughout the tank. The slight increase of hki that sets in
after 40 impeller revolutions as observed in Figure 3 is due
to an intricate interplay between macro-scale flow and thix-
otropy effects. The strong radial stream emerging from the
impeller and hitting the tank wall starts deflecting more and

Figure 3. Time series of the tank average network pa-
rameter hki for Db 5 10, starting at t 5 0
from a zero flow field and k 5 1 everywhere.

Solid line: pitched blade turbine; dashed line: Rushton tur-
bine.

Figure 4. Instantaneous realizations of the k-field in the vertical plane midway between baffles.

Base-cases with Db ¼ 10. Top row: Rushton turbine flow at (from left to right) 10, 40, 70, 100, and 180 impeller revolutions after start-
up; bottom row: pitched blade turbine flow after 10, 30, 90, 93, and 95 impeller revolutions. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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more downwards, thereby favoring the strength of the flow
in the lower part of the tank, and weakening the flow in the
upper part of the tank. This is a positive feedback process: It
allows the network in the upper part of the tank to recover,
which further contributes to the downward deflection of the
impeller stream and weakening the flow in the upper part
even further. After roughly 100 revolutions, the flow has set-
tled in a state with strong flow in the volume below the
impeller, and weak flow (and marginal mobilization) in the
volume above.

At Db ¼ 10, also, the flow generated by the PBT goes
through interesting transitional stages (Figure 4, bottom pan-
els), very much different from the flow generated by the
Rushton turbine though. Initially, the stream emerging from
this axially pumping impeller gets deflected radially and hits
the tank wall approximately at z ¼ 0.2 T in a (left-right in
Figure 4) symmetric pattern. After �80 impeller revolutions,
this pattern gets unstable and left-right symmetry is broken.
Now from time to time the impeller stream reaches much
lower vertical locations and then gets pushed up again allow-
ing the stream at the other side to reach lower in a quasi per-
iodic manner. To illustrate this unstable behavior, we show
(in Figure 5) a time series of k in a point in the lower-left
corner of the plane shown in Figure 4. After a quick decline
of k (first 20 revolutions, see Figure 5), the flow goes
through a stage with slow development of the local network
parameter (between 20 and 80 revolutions) after which the
quasi periodic behavior sets in with a period time of the
order of five impeller revolutions.

The Deborah number (and thus the time-dependent nature
of the liquids) appears to be a crucial parameter for the level
of mobilization and (related) flow structures in the tank. In
Figure 6, we show how much differently hki evolves in the
mixing tanks if Db ¼ 1, 10, or 100. It is worthwhile noting
that under steady, homogeneous shear conditions the three
liquids, as used in Figure 6, display exactly the same shear-
thinning behavior (according to Eq. 4).

The lower the Deborah number, the faster the flow reaches
(quasi) steady state and also the higher the steady-state hki.
For low Deborah numbers, the liquid responds quickly to
deformation (and absence of deformation). Therefore, the
regions in the liquid undergoing strong deformation due to
agitation (notably the impeller-swept volume, and the impel-
ler stream) largely overlap with regions of low k. Given the
liquid’s quick response, the low-k regions do not get a

chance to be transported to the rest of the tank, leaving that
part quite inactive (similar to cavern formation with Bing-
ham liquids) and giving rise to relatively high tank-averaged
network parameters. As we discussed earlier, the interactions
between liquid and flow time scales give rise to a complex
evolution of the flow for Db ¼ 10. If Db increases further to
100, the delay between the moment the deformation is
applied to the liquid and the destruction of the network
increases, so that high deformation regions get dislocated
from low viscosity regions. Similarly, more quiescent
regions not necessarily get the chance to develop high appa-
rent viscosities. At Db ¼ 100, the liquid is responding so
slow that the network parameter k gets fairly uniformly dis-
tributed in the tank (in a way this is analogous with very
slow chemical reactions occurring in turbulent flow; if the
time scales of the reactions are large compared to the flow
time scales, chemical species concentrations tend to uniform-
ity allowing the use of ideally mixed CSTR concepts).

In Figure 7, we show typical distributions of k after quasi
steady state has been reached for Db ¼ 0, 1, and 100. For
Db ¼ 0, the transport equation in k (Eq. 1) does not need to
be solved; it can be determined directly from the local _c and
Eq. 3. Comparison of infinitely fast liquids (Db ¼ 0) and
time-dependent liquids agitated such that Db ¼ 1 shows
minor differences. This implies that the liquid’s time de-
pendence plays a minor role if it is agitated at Db ¼ 1. At
the other side of the spectrum, for large Db (Db ¼ 100), k
gets (more or less) uniformly distributed throughout the
tank. For the specific cases considered here we expect
laminar flow; the uniformity of k results in a uniform and
relatively high viscosity: for the Rushton turbine in quasi
steady state hki � 0.30 so that hgai � 30 g1 and
Reh i ¼ qND2

gah i � 200; for the pitched blade turbine, the

Figure 5. Time series of k at the point 2r
T ¼ 0:91;

z
T ¼ 0:056 in the mid-baffle plane for the PBT
case with Db 5 10.

Figure 6. Time series of the tank average network pa-
rameter hki for three Deborah numbers as
indicated.

Top panel: pitched-blade turbine; bottom panel: Rushton
turbine.
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network is on average a bit more developed resulting in
Reh i ¼ qND2

gah i � 150.
For the k-fields depicted in Figure 7 at Db ¼ 1 and Db ¼

100, the corresponding velocity vector plots are given in Fig-
ure 8. For the pitched-blade turbine at Db ¼ 1, the impeller
stream is transitional/turbulent whereas the liquid in the
upper half of the tank is virtually immobile. As expected, at
Db ¼ 100 the flow is laminar, however, with a better overall
mobility compared to the Db ¼ 1 case. Compared to the
pitched-blade turbine, the radial stream being redirected up
and down at the tank wall generated by the Rushton turbine
helps in mobilization at Db ¼ 1. At Db ¼ 100, the two
impellers perform similarly in terms of liquid agitation.

An obvious way of enhancing liquid mobility is increasing
the impeller speed N. Since changing N has consequences
for three of the four dimensionless numbers that have been
identified earlier, we have chosen to present the simulation
results directly as a function of the impeller speed relative to
the base-case impeller speed (that gave rise to Re1 ¼ 6 �
103, Bn ¼ 100): Figure 9 shows the impact of impeller speed
on the eventual (steady-state) tank-averaged network param-
eter kh i (averaging over tank volume and time). The differ-
ent liquids have been identified by their Deborah numbers
under base case impeller speed (denoted Db-base in Figure
9). The network breaks down to an increasing extent with an

increase of the impeller speed; approximately in an exponen-
tial manner (the dashed trend line in Figure 9 represents
kh i ¼ 10

�b N
Nbase with b ¼ 0.43).

Slower liquids (liquids with higher Db-base values) benefit
relatively more from increasing the impeller speed than
faster liquids, especially in terms of the enhanced agitation
mobilizing bigger parts of the tank. This is illustrated for
two pitched-blade turbine cases in Figure 10. This figure
shows velocity vectors at an impeller speed that is three
times higher than the vector fields of Figure 8 (for the rest
the conditions are the same). Figure 10 indicates more active
volume for Db-base ¼ 100 compared to Db-base ¼ 1. The k
contour plots (Figure 11) confirm this with lower network
parameters in the upper part of the tank for higher Db-base.
The Rushton turbine cases show a qualitatively similar trend
(not shown for brevity).

All simulations so far were at a spatial resolution such
that the tank diameter is spanned by 180 lattice spacings: D
¼ T/180. To assess grid effects, two Rushton turbine flow
cases that we did with D ¼ T/180 were repeated with D ¼
T/240. For the latter we used a parallel implementation of
the computer code; usually running on 6 cpu’s in parallel. If
we compare the evolution of the tank-average structure pa-
rameter hki, the simulations at the two resolutions agree
very well, see Figure 12. Looking into more detail reveals

Figure 7. Instantaneous realizations of the k-field in the vertical plane midway between baffles after quasi steady
state has been reached.

Top row: pitched blade turbine flow with (from left to right) Db ¼ 0, 1, and 100. Bottom row: Rushton turbine flow with (from left to
right) Db ¼ 0, 1, and 100. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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some deviation though: in Figure 13 time-averaged, impel-
ler-angle-resolved structure parameters over a vertical cross
section are shown. The case with higher spatial resolution
shows slightly better mobilization (lower k) in the upper
parts of the tank volume. Generally speaking, however, the
results with different resolution agree reasonably well.

Passive scalar transport

Next to mobilization, also mixing is at issue when agitat-
ing thixotropic liquids. To quantify mixing, in a few of the
simulations discussed above a passive scalar has been
tracked during the start-up and quasi steady state stages the
simulations are going through. We specifically study
the base-case flow generated with a PBT at Db ¼ 10, and
the same case with a three times higher impeller speed. For
reference, also a Newtonian system with the base-case Reyn-
olds number (Re ¼ 6000) has been simulated.

The default initial conditions for the velocity and network
integrity apply (zero flow, fully developed network). As the
initial condition for the passive scalar, we set its concentra-
tion to c ¼ 1 in the upper half of the tank (z � H

2
, z defined

in Figure 1) and c ¼ 0 in the rest of the tank. For c we solve
a convection-diffusion equation: @c

@t þ ui
@c
@xi

¼ C @2c
@x2i

. The nu-
merical method used for solving the passive scalar concen-
tration field is the same as used for solving k, i.e., TVD dis-
cretization and Euler forward time stepping with the same
(uniform cubic) grid as used for k. In the computer code, the
diffusivity has been set to C ¼ 10�3 g1

q . In turbulent flow,
such a low value makes the microscopic scalar scales much
smaller than the microscopic turbulence scales and full reso-
lution of the micro scalar scales is generally not achieved. In
the simulations—specifically those with strong turbulence—
the effective diffusivity is largely determined by the grid re-
solution. However, the simulated concentration fields
(reflecting a low-passed filtered version of the actual fields)

Figure 8. Snapshot of velocity vectors in the mid-baffle plane in the tank equipped with a pitched blade turbine for
Db 5 1 (top-left) and Db 5 100 (top-right), and with a Rushton turbine for Db 5 1 (bottom-left) and Db 5
100 (bottom-right) after quasi steady state has been reached.

AIChE Journal September 2010 Vol. 56, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 2243



serve the purpose of quantifying the macroscopic transport
of the passive scalar.

Passive scalar concentrations in a vertical field, midway
between baffles, are shown in Figure 14. At Re ¼ 6000, the
Newtonian liquid is clearly turbulently agitated. At tN ¼ 20,
the scalar field still remembers its initial status with high
concentration in the top part and low concentration at the
bottom; at tN ¼ 40, the tank’s content is largely mixed with,
however, still some high concentration spots at the top sur-

face. Compared with this, the base-case with Db ¼ 10 (and
Re1 ¼ 6000, Bn ¼ 100, a þ 1 ¼ 100) gets poorly mixed.
The limited liquid mobilization of the top of the tank as wit-
nessed in Figure 4 translates in concentrations remaining
close to c ¼ 1 for at least 40 impeller revolutions. The co-
herence of structures and left-right symmetry in Figure 14
(middle panels) indicates laminar flow. Increasing the impel-
ler speed by a factor of three turns the flow into a turbulent
one and enables mobilization and mixing throughout the
tank (Figure 14, bottom panels).

The observations in Figure 14 are quantified and moni-
tored over longer periods of time by means of the normal-
ized standard deviation r of the concentration in a vertical,
mid-baffle plane through the center of the tank. The standard
deviation as a function of time is based on vertical snapshots
of the passive scalar field like the ones presented in Figure
14: r2 tð Þ ¼ 1

c2av tð ÞA
RR

c2 x; tð Þ � c2av tð Þ� �
dA with A the plane’s

surface area and cav tð Þ ¼ 1
A

RR
c x; tð Þ dA the plane-averaged

concentration. Figure 15 shows the r time series and reflect
the observations made in Figure 14. By 74 impeller revolu-
tions, the standard deviation for the Newtonian case has
reduced by two orders of magnitude. The base-case with Db
¼ 10 only reaches down to a level of r ¼ 0.21 after 120
impeller revolutions and appears to be leveling off at that
stage. Increasing the impeller speed by a factor of three
helps in bringing down the passive scalar standard deviation;
it gets to a level of 0.032 after 120 impeller revolutions.

Summary and Outlook

In this article, a procedure for detailed simulations of flow
of thixotropic liquids is applied to transitional and mildly
turbulent agitated tank flow. Thixotropy is considered to be
the result of the finite rate response of the integrity of a

Figure 9. Time and tank-average network parameter
kh i as a function of impeller speed relative to
the base-case impeller speed.

Time averaging was performed after (quasi) steady state
was reached. The dashed line illustrates the general trend.

Figure 10. Snapshot of velocity vectors in a vertical, mid-baffle plane.

Pitched-blade turbine flow with Db-base ¼ 1 (left), and Db-base ¼ 100 (right), and three times the impeller speed as the base-case.
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network in the liquid to local flow conditions. The thixotropy
model used is very simple: It is purely viscous, it assumes
linear relations for network build-up and breakdown (the lat-
ter due to deformation), and a linear relation between appa-
rent viscosity and network integrity. This simple model,
however, already comes with four parameters. Where single-
phase mixing tank flow of Newtonian liquids can be
captured by a single dimensionless number—the Reynolds
number—(once the tank and impeller geometry in terms of
aspect ratios has been defined, and if the tank does not have
a free surface), we now need four dimensionless numbers to
pin down the flow conditions. In this article, these dimen-
sionless numbers are a Reynolds number Re1 based on the
infinite-shear viscosity, a Deborah number Db being the time
scale of the liquid relative to the time of a single impeller
revolution, a pseudo-Bingham number Bn, and the ratio of
zero-shear over infinite-shear viscosity. The aim of this arti-
cle is to see how thixotropy qualitatively impacts global
flow structures and mixing and liquid mobilization in agi-
tated tanks. For this, we explore part of the dimensionless
parameter space and consider two different agitation devices,
viz., a tank agitated by a Rushton turbine and one by a
pitched-blade turbine. Exploring the full parameter space is
unpractical given its four-dimensionality combined with the
significant computational effort per simulation. In our base-
case simulations, we fix the Reynolds number to
Re1 ¼ 6� 103, which allows us to perform DNS, the Bing-
ham number to Bn ¼ 100, which translates to a pseudo yield
stress of order 10 N/m2 in our lab-scale (10 l) setups, and
the viscosity ratio to 100.

The primary characteristic of thixotropy is the effect of
the deformation history on the liquid’s rheological behavior.
In terms of the dimensionless numbers considered here, thix-
otropic liquids give rise to non-zero Deborah number. For
this reason, we studied the effect the Deborah number has
on the flow. Comparing flows with Db ¼ 1 and Db ¼ 0
only shows marginal differences, which implies that the
liquid’s time dependence is not strongly felt if its time scale
is of the order of the time required for one impeller revolu-

tion. At Db ¼ 100, i.e., at the other side of the Db-range
considered, a slow evolutions towards a fairly homogeneous
distribution of the network parameter is observed resulting
in—given the rest of the conditions—laminar flow. The uni-
formity is due to the large delay between deformation and
network breakdown, and the slow build-up of the network
under quiescent conditions. The more intriguing situations

Figure 11. Snapshots of k-contours for three times the base-case impeller speed.

Pitched-blade turbine flow with (from left to right) Db-base ¼ 1, 10, and 100, respectively. Note the small high-k spots in the upper cor-
ners of the right panel. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 12. Time series of tank average structure hki pa-
rameter for simulations with different spatial
resolution.

Dashed curves: D ¼ T
180

; solid curves: D ¼ T
240

. Top: Re ¼
6000, Db ¼ 1 starting from a zero flow field and k ¼ 0
everywhere. Bottom: Re ¼ 18,000, Db ¼ 30 (Db-base ¼
10) starting from a zero flow field with k ¼ 1 everywhere.
Rushton turbine.
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occur when Db ¼ 10. These cases show the strongest inter-
action between flow and liquid time scale, the reason prob-
ably being that the liquid time scale now gets comparable to
the circulation time of the liquid in the tank (the flow num-
bers for the Rushton turbine and PBT are roughly equal to
one which results in a circulation time of �20/N, e.g., as
shown in Ref. 26). The Rushton turbine flow at Db ¼ 10
slowly (over some 100 revolutions) evolves to the undesired
situation with strong flow underneath the impeller, and a
largely immobile volume above. The flow generated by

the PBT develops a coherent instability with a frequency of
0.2 N.

Given the sometimes poorly mobilized tank volumes, we
subsequently studied to what extent increasing the impeller
speed improves overall mobilization (the latter is character-
ized by the steady-state, volume averaged network integrity
parameter kh i). It does so in a fairly universal manner, i.e.,
quite independent of the base-case Deborah number or
impeller type; tentatively according to an exponential func-
tion: kh i ¼ 10

�b N
Nbase with b ¼ 0.43.

Passive scalar mixing is largely slaved to the levels of liq-
uid mobilization achieved by the impeller. As shown for a
few cases, limited mobilization keeps parts of the tank vol-
ume unmixed for long times. Again, the effect of increasing
the impeller speed has been studied.

Figure 13. Averaged k-contours in the vertical, mid-
baffle plane for Rushton turbine simulations.

These are impeller-angle resolved averages, i.e., the aver-
ages are conditioned with the impeller angle. In the panels
shown, the condition is such that an impeller blade is in
the mid-baffle plane. Top row: Re ¼ 6000, Db ¼ 1; left
resolution such that D ¼ T

180
, right D ¼ T

240
. Bottom row:

Re ¼ 18,000, Db ¼ 30 (Db-base ¼ 10); left resolution
such that D ¼ T

180
, right D ¼ T

240
. [Color figure can be

viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 14. Instantaneous passive scalar concentrations
in vertical mid-baffle planes.

Left panels: 20 revolutions after start up; right panels: 40
revolutions after start up. Top: Newtonian liquid agitated
at Re ¼ 6000; middle: base-case with Db ¼ 10; bottom:
Db-base ¼ 10 with a three times higher impeller speed.
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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The results presented in this article are largely qualitative
and sensitive to the specific thixotropy model chosen. How-
ever, they do show the rich response of stirred tank flow to
thixotropy. Furthermore, the methodology as outlined here is
generic and can be easily adapted to more complicated
(albeit viscous) rheological liquid descriptions. The method
is computationally efficient (as demonstrated by the signifi-
cant number of flow systems and the significant numbers of
impeller revolutions per flow system simulated) and geomet-
rically flexible so that attacking practical mixing and mobili-
zation problems is within reach. By means of parallelization
the spatial resolution can be easily enhanced. This helps in
extending the range of Reynolds numbers for which DNS
can be performed.
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Figure 15. Time series of the passive scalar standard
deviation r in the vertical, mid-baffle plane.

Solid curve: base case with Db ¼ 10; dashed curve: Db-
base ¼ 10 with three times the base case impeller speed;
dotted curve: Newtonian liquid agitated at Re ¼ 6 � 103.
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