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We study by direct numerical simulation the role of spherical, solid, uniformly sized,
moving particles immersed in a fluid in spreading a passive scalar with high Schmidt
number dissolved in the fluid. The solid particles are one-way coupled to the fluid:
they agitate the fluid but they do not feel the presence of the fluid (they move as a
granular gas). The two independent variables in the simulations are the solids volume
fraction that we vary in the range of 10–45%, and the granular Reynolds number,
based on the particle diameter and the granular temperature, which has been varied
from 2.8 to 280. It is shown that the scalar spreading rate strongly decreases with
increasing solids volume fraction; the spreading appears to scale quite well with the
mean free path of the particles. At increasing granular Reynolds number the fluid flow
develops more small scale structures that enhance scalar spreading. We propose a
relation for an effective diffusion coefficient that describes the scalar spreading in
terms of the independent variables. � 2008 American Institute of Chemical Engineers AIChE
J, 54: 1741–1747, 2008
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Introduction

The simulation of dense gas-solid and liquid-solid flows has
great relevance for many applications in chemical and envi-
ronmental engineering. A large body of research has been
devoted to capture the dynamics of such systems in sets of
continuum equations, including closures,1,2 and in devising ef-
ficient numerical schemes to solve these. In continuum
approaches, the kinetics of individual particles is represented
by their collective transport properties in a way akin to classi-
cal kinetic theory. Driven by on one side increased computer
hardware performance, and progress in numerical methods, on
the other side a desire to reveal the often rate limiting proc-
esses at the particle scale, discrete particle methods (DPM) are
being developed. In the DPM the motion of each individual
particle (including its collision with other particles and with
walls) is tracked, whereas the interstitial gas or liquid flow is
solved in an approximate manner.3,4 Strong computers and
fast algorithms nowadays allow for DPM simulations with
many thousands of particles5 thus allowing for realistic simu-
lations of meso-scale effects in process equipment.

In chemical engineering, the applications driving the above
developments, however, usually involve more than the fluid
and granular dynamics, heat and (reactive) mass transfer
being prominent examples. To model the transport of a scalar
in the continuous phase, somehow the role of the particles in
the dispersion of the scalar needs to be taken into account.
So far this modeling is largely based on empirical dispersion
models as they can be found in e.g. the monograph by Lev-
enspiel6 and references therein. Interpretation of experimental
results on e.g. gas mixing in fluidized beds7–9 would benefit
from a more fundamental understanding of the contribution
of solids to scalar dispersion.

Also—in the context of computational fluid dynamics
(CFD) of turbulent disperse multiphase flows—it is quite
common to apply the analogy of transport of momentum by
eddies and of a scalar for estimating scalar eddy diffusion/
dispersion coefficients. It is questionable if such an approach
would be valid for systems with high volumetric disperse
phase loadings. In dense systems turbulence can hardly de-
velop due to the small interparticle spacings, leaving an eddy
diffusivity concept without a firm physical basis.

In the present study, numerical experiments are described
that directly probe the spreading of a passive scalar as a
result of solid particle motion. The moving particles agitate
the interstitial fluid. Subsequently the flow disperses the
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scalar dissolved in the fluid. Goals of the simulations are to
find out how the scalar spreading scales with the parameters
governing the particle and fluid motion such as the granular
temperature, the mean free path of the particles and the flu-
id’s viscosity, and to propose expressions for scalar disper-
sion coefficients.

The systems we study numerically consist of three-dimen-
sional periodic domains that contain solid particles and inter-
stitial fluid. The particles move as a granular gas with a con-
stant temperature, i.e. they move ballisticly through the fluid
and undergo fully elastic and smooth collisions. The particles
do not feel the presence of the fluid. At the fluid-solid inter-
faces, however, we impose a no-slip condition on the fluid.
In that manner the fluid responds to the particle motion and
gets agitated. Once this fluid-solid system is fully developed
we release a passive scalar in the fluid phase. By solving the
convection equation for the tracer with nonpenetration
boundary conditions at the solid surfaces, we observe how
the tracer spreads by the action of the moving solid particles
only. We do not consider mass transfer between the particles
and the fluid, the solid particles are only there to agitate the
fluid and thus mix the scalar dissolved in the fluid phase.

The primary independent variables in the numerical
experiments are the solids phase volume fraction /, and
the Reynolds number based on the granular temperature Tg
of the particles Reg ¼

ffiffiffiffiffi
Tg

p
dp=m, with dp the particle diame-

ter, and m the fluid’s kinematic viscosity. To limit the pa-
rameter space, we give the dissolved scalar a very high
Schmidt number, i.e. we set the molecular diffusivity of
the passive scalar to zero. The (inevitable) numerical diffu-
sion is suppressed by using a total variation diminishing
(TVD) scheme in estimating convective fluxes.10 The level
of numerical diffusion is assessed by checking the effect
of grid refinement.

Numerical Procedure

We consider a fully periodic, three-dimensional, cubic do-
main with edge length L. In this cube we release N spherical
particles all having the same diameter dp. The solids volume

fraction of the system is / ¼ N
pd3p
6L3. The particles are given a

mean-square velocity of 2Tg, with Tg the granular tempera-
ture. The energy of the particulate system is fully contained
in translational motion—the particles do not rotate. The gran-
ular temperature is kept constant by letting the particles
undergo fully elastic and frictionless hard-sphere collisions.
After this (dry) granular system has evolved to a steady state,
we introduce the interstitial fluid. This fluid is one-way
coupled to the particles: the fluid responds to the particle
motion; the particles do not feel the fluid and continue their
granular motion.

The fluid flow we solve with the lattice-Boltzmann method
(LBM). For flows in complexly shaped domains with moving
boundaries, this method has proven its usefulness (see e.g.
the review article by Chen & Doolen11). In the LBM, the
computational domain is discretized into a number of lattice
nodes residing on a uniform, cubic grid. Fluid parcels move
from each node to its neighbors according to prescribed
rules. It can be proven by means of a Chapman-Enskog
expansion that, with the proper grid topology and collision
rules, this system obeys, in the low Mach number limit, the

incompressible Navier-Stokes equations.11,12 The specific
implementation used in our simulations has been described
by Somers,13 which is a variant of the widely used Lattice
BGK scheme to handle the collision integral (e.g., see Qian
et al.14). We use the scheme due to Somers, as it manifests a
more stable behaviour at low viscosities when compared to
LBGK.

In our code, the no-slip condition at the solid-fluid bounda-
ries is introduced through a forcing scheme.15–17 The forcing
scheme is akin to immersed boundary methods that have
been developed by among others Peskin and coworkers.18

The particle motion drives the fluid flow by demanding that
at the surface of the sphere the fluid velocity matches the
local velocity of the solid surface (since the spheres do not
rotate this is the linear particle velocity vp); in the forcing
scheme this is accomplished by imposing additional forces
on the fluid at the surface of the solid sphere (which is then
distributed to the lattice nodes in the vicinity of the particle
surface). The details of the implementation can be found
elsewhere.16,17

In our simulations, the diameter of each spherical particle
is specified and input diameter refers to this diameter scaled
by the lattice spacing. In the LB simulations, as the spherical
particle is represented by forces that are confined to a cubic
grid, the input diameter does not reflect the actual diameter
of the particle. A calibration procedure to estimate the effec-
tive diameter of this object (commonly referred to as the
hydrodynamic diameter) was introduced by Ladd.19 We
apply this scheme to estimate the hydrodynamic diameter of
the particles. The hydrodynamic diameter is recognized as
the diameter dp mentioned earlier.

The dispersion of the passive scalar dissolved in the con-
tinuous phase fluid is simulated by numerically solving a
convection-diffusion equation for the scalar concentration c.
For this an explicit finite volume representation on the same
grid as used by the LBM is employed. To limit numerical
diffusion, we apply TVD discretization with the Superbee
flux limiter for the convective fluxes.20 We step in time
according to an (second order) Adams-Bashford scheme. The
molecular diffusion has been set to zero. We do not allow
scalar concentration inside the spherical particles. At the sur-
face of the particles, we impose the @c

@n ¼ 0 condition by
means of a ghost-cell technique21 that involves interpolation
of scalar concentrations.

The condition @c
@n ¼ 0 is also applied for assigning concen-

trations to grid nodes that get uncovered by a moving solid
particle. Since particles typically move less than 0.05 times
the lattice spacing per time step, an uncovered node always
is close to a solid particle interface. We draw the normal out
of the particle into the fluid at the position of the uncovered
node. By interpolation we determine the concentration on the
normal one additional grid spacing into the fluid and assign
that concentration to the uncovered node. In some situations
this cannot be done: it regularly occurs that a grid cell gets
uncovered in between two closely spaced particles moving
away from each other after a collision. The outward normal
from one particle then quickly penetrates the other particle
where no concentration data is available. In such cases we
assign the average concentration in the direct vicinity to the
uncovered grid node, while keeping that vicinity as small
as possible. Particles covering and uncovering grid nodes
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containing concentration information makes the simulations
not inherently mass conservative. In practice, however, the
total scalar mass over a simulation is constant within 0.2%.

We consider passive scalar transport in a fully developed
flow of particles and fluid. As initial condition for the scalar
concentration we give a thin yz-slab (with slab thickness dp/
4) of fluid a concentration c 5 1, and the rest of the fluid c
5 0. Subsequently we keep track of the spreading of the sca-
lar as a result of the fluid flow induced by the solid particle
motion. Typical sequences are given in Figure 1. The full,
three-dimensional data is reduced to a one-dimensional scalar

concentration function ~cðx; tÞ � 1
L2

RL
0

RL
0

cðx; y; z; tÞdydz. By

repeating the simulation M times and averaging the results
we get smooth ~cðx; tÞ profiles that we fit with a Gaussian

~cfitðx; tÞ ¼ a
rðtÞ ffiffiffiffi

2p
p exp

ðx�lÞ2
2rðtÞ2

� �
, see Figure 2. The default value

of the number of repetitions M has been set to 20. The only
fitting parameter is r; the other two parameters (a and l) are
a priori known and constant in time. They relate to the total
scalar mass released (a), and the average position of the sca-
lar l (which is the center position of the initial slab). We use
the way r develops in time as a measure for the scalar
dispersion.

In Figure 2 we see that for ‘‘short’’ times the simulated
concentration profile does not fit a Gaussian very well. This
is due to the top-hat initial concentration profile we imposed.
At later stages, however, the profiles are very much akin to
Gaussian functions, and the width of the fitted Gaussian is a
good measure for the scalar spreading.

Numerical Settings

The solids volume fractions that have been considered are
/ 5 0.10, 0.20, 0.30, 0.373, and 0.45. The cases with / 5
0.30 served as base cases. Verification tests regarding repro-

ducibility, grid refinement, time step, and domain size were
performed at this volume fraction. For each volume fraction
we vary the Reynolds number based on the granular tempera-
ture (Reg) by varying the fluid viscosity. The Reynolds num-
bers considered are 2.8, 28, 104, and 280.

The default values for the particle diameter dp is 16 lattice
spacings (dp5 16 in LB units). The default domain size L 5
100 (L 5 6.25 dp). The number of spheres in the computa-
tional domain determines /. The granular temperature is cho-
sen such that the solid particle velocities (a good measure of
which is

ffiffiffiffiffi
Tg

p
) stay well below the speed of sound of the lat-

tice-Boltzmann scheme: Tg is of the order of 1024, the speed
of sound is of order 1.

Results

Verifications

A number of verification tests were performed for cases
with / 5 0.30. In the first place we checked reproducibility,
i.e. if the size of the ensemble M (520) that we base our fit-
ting procedure on is large enough to get reproducible results.
In conjunction with reproducibility we checked the influence
of the domain length in x-direction. As can be seen in Fig-
ures 1 and 2, at some stage in time the concentration profile
gets a width comparable to the size L of the domain. The
periodic conditions then make the scalar leaving the domain
on the right hand side enter on the left hand side, inhibiting
a fit with a single Gaussian. One of the options for extending
the time span of some of the simulations is enlarging the do-
main size in x-direction. Figure 3 shows results on reproduci-
bility and on the effect of doubling the domain size in x-
direction in the form of evolutions of r as a function of
time. The r vs. t curves are well reproducible (deviations
less then 4%). Extending the domain size allows for longer

Figure 1. Snapshots of concentration contours in xz
cross sections through the cubic domain.

The white disks represent the particles that all have the
same size but different distance to the plane of cross sec-
tion. Top four panels: / 5 0.30 and Reg5 2.8 at (from left

to right)
t

ffiffiffiffiffiffi
ðTgÞ

p
dp

50.05, 1.96, 3.88, and 5.79 respectively.

Bottom four panels have the same parameters except now
Reg5 104. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 2. Simulated (dashed lines) and fitted (solid
lines) one-dimensional concentration pro-
files at three instants in time.
t

ffiffiffiffiffiffi
ðTgÞ

p
dp

50.43, 2.16, and 4.33. / 5 0.30 and Reg5 104.
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runs thus getting a clearer view on the functional relationship
between the concentration profile width and time.

With a view to (numerical) diffusion the effect of spatial
resolution should be checked. In the simulations, the molecu-
lar diffusion has been set to zero in order to only probe the
effect of the particle motion and associated fluid flow on
spreading the scalar. Inevitably however, numerical diffusion
takes place, and will potentially broaden the concentration
profiles in an unphysical manner. Since numerical diffusion
is a pronounced function of the grid spacing, systematically
refining the grid gives us insight in to what extent the results
of the simulations are affected by numerical diffusion. We
carried out simulations at / 5 0.30 at three levels of resolu-
tion: dp 5 12, 16, and 24, and show results in Figure 4. The
mutual differences between the curves are slightly higher
than the levels of statistical uncertainty (the latter to be esti-
mated from Figure 3). Also the curve with the highest resolu-
tion (dp5 24) is systematically below the curves related to
coarser grids, indicating some numerical diffusion effects
(although this may be counteracted by the fact that the dp 5
16 curve is mostly above the dp 5 12 curve). We conclude
that if there is an effect of numerical diffusion on the scalar
spreading rate, its extent is a few percent at most.

The next check relates to the temporal resolution of the
simulations. In terms of numerical (LB) units, the time step
actually is the time unit: Dt 5 1. The physical conditions are
fully defined by the solids volume fraction and the granular
Reynolds number. At a specific spatial resolution this leaves
us one degree of freedom which is the time step related to
physical terms. We can choose the granular temperature (and
then the viscosity is fixed through the required Reynolds
number), or vice versa. The higher the granular temperature
(and thus the higher the viscosity), the greater the time step

in physical terms. In the two simulations of which the
spreading results are shown in Figure 5, the solids volume
fraction (/ 5 0.30), the Reynolds number (Reg 5 2.8) and
the spatial resolution (dp 5 16) are the same. In one case the
Reynolds number was reached by setting Tg5 2.98 3 1024

and m 5 0.1, in the other by Tg5 7.45 3 1025 and m 5 0.05.
In the latter case the time step in physical terms is twice as

Figure 3. Concentration profile width r as a function of
time for three statistically independent repeti-
tions with / 5 0.30 and Reg5 2.8 on a cubic
L3 domain (thin solid curve, dotted curve,
dashed curve).

The thick solid curve has the same settings except for the
domain size in x-direction and the time span of the simula-
tions. Both were doubled.

Figure 4. Concentration profile width r as a function of
time at three levels of spatial resolution for
/ 5 0.30 and Reg5 2.8.

Figure 5. Concentration profile width r as a function of
time for / 5 0.30 and Reg52.8.

The curve denoted by m 5 0.1 has a twice as large time
step in physical terms as the curve with m 5 0.05 (see the
text for details).

1744 DOI 10.1002/aic Published on behalf of the AIChE July 2008 Vol. 54, No. 7 AIChE Journal



small as in the former case. The difference between the two
results is not significant in view of the statistical uncertainties
that were discussed in relation to Figure 3.

Scaling scalar spreading

There is a very distinct effect of the solids volume fraction
on scalar spreading. In Figure 6 we show that the scalar
spreading increases significantly with decreasing solids vol-
ume fraction. This is not a surprising result. The mean-free-
path (MFP, symbol k) of the solid particles increases with
decreasing solids volume fraction (for dilute gases this is an
inversely proportional relationship). If the particles are able
to travel longer in a certain direction, they take with them
the scalar over longer distances. This notion suggests that it

makes sense to scale the scalar spreading as a function of
time in terms of collisional parameters, viz. the MFP and the
collision frequency of the particles. This we do in Figure 7.
It shows the scalar spreading as a function of time for all the
four Reynolds numbers we have considered. The MFP k and
the collision frequency fc were directly determined from the
simulations. Their values are given in Table 1. For each
Reynolds number, the curves taken at different solids volume
fraction get quite close to one another. There is a systematic
difference though. The curves related to the higher solids
volume fractions are slightly but systematically above the
ones with lower /; apparently the scaling with k and fc
slightly overcompensates the differences as observed when

scaling with dp and
dpffiffiffiffi
Tg

p (Figure 6). Note that for increasing

the dimensionless time span t�fc of the simulations with the
lower solids volume fractions we made use of simulations on
domains that where twice as long in the x-direction (com-
pared to the two lateral (y and z) directions), as well as in
LB time.

Also shown in Figure 7 is the (by the eye) best fit through
the bundle of curves according to the function r

k ¼
ffiffiffiffiffiffiffi
atfc

p
,

with a the only fitting parameter. We estimate this rather
coarse way of fitting to be roughly 68% accurate in a. We
see that despite the uncertainties involved, the dimensionless
parameter a clearly depends on the granular Reynolds num-
ber. Figure 8 shows a plot of a versus 10 logðRegÞ. Based on
the trend lines in this graph we speculate that for low Reyn-
olds numbers (Reg� 10) a is constant, and that for higher

Figure 6. Concentration profile width r as a function of
time for various solids volume fractions.

Left panel: Reg5 2.8; right panel: Reg 5 28.

Figure 7. Concentration profile width r as a function of
time for various solids volume fractions.

Time has been scaled with the collision frequency fc, r with
the MFP k. Panels a, b, c, and d respectively have Reg5
2.8, 28, 104, and 280. The fit also included is the function
r
k ¼

ffiffiffiffiffiffiffiffi
atfc

p
. The fitting parameter a differs per panel and

is 0.9, 1.1, 1.4, and 1.5, respectively.

Table 1. Characterization of the Granular Systems

/ (2) Tg (LB units) k (LB units) fc (LB units)

0.10 3.18�1024 14.900 1.56�1023

0.20 3.18�1024 5.400 4.31�1023

0.30 2.98�1024 2.490 9.05�1023

0.373 3.01�1024 1.530 1.48�1022

0.45 3.01�1024 0.891 2.54�1022

All systems in this table have cubic periodic domains with L 5 100 (LB
units), and uniformly sized particles with dp 5 16 (LB units).

Figure 8. Fit parameter a as a function of the granular
Reynolds number Reg.

The dashed lines indicate trends.
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Reg a could be linearly increasing with 10 logðRegÞ. In Fig-
ure 9 we show snapshots of the fluid velocity vector field in
a cross section through the flow domains at two different
Reynolds numbers. The two panels are at exactly the same
particle configuration (particle positions and velocities). For
low Reynolds numbers the fluid flow and thus the scalar
spreading are largely slaved to the kinematics of the particle
motion; the flow does not develop structures smaller than
those related to the particle field (see Figure 9a). At higher
Reynolds numbers, the now more inertial flow develops
eddies that play a role in enhancing scalar spreading, see
Figure 9b.

If the scalar spreading were a process that could be
described with a single effective diffusion coefficient D, the
way r depends on time is r ¼ ffiffiffiffiffiffiffiffi

2Dt
p

. Relating that to the
way we fitted our scalar spreading results ðrk ¼

ffiffiffiffiffiffiffi
atfc

p Þ gives
D ¼ 1

2
ak2fc. The latter expression along with a functional

relationship for the dependence of a on Reg could serve as
closure for the dispersion term in the scalar transport equa-
tion to be solved in conjunction with e.g. DPM simulations,
or Euler-Euler simulations of gas–solid or liquid–solid flows.

A from a theoretical viewpoint interesting situation occurs
in the limit / ! 0. Since k / /�1, and fc / /, in this limit
the effective diffusion coefficient D ¼ 1

2
ak2fc would go to in-

finity. This divergence is due to the concept of diffusion that
requires particles to collide with one another (or with bound-
ing walls). If particles do not collide, the scalar is essentially
convected by the moving particles and r tends to get propor-
tional to time (instead of proportional to

ffiffi
t

p
).

Summary

In this article we discussed mixing as a result of solid par-
ticle motion. We set up fully resolved, one-way coupled nu-
merical simulations: moving spherical particles immersed in
a fluid drive fluid motion; the interstitial fluid, however, does
not influence the particle motion. This way we could control
the conditions of the numerical experiment and could focus
on the impact of two key variables (viz. the solids volume

fraction, and the granular Reynolds number) on scalar
spreading. To limit the parameter space, the role of molecu-
lar diffusion of the passive scalar was not considered in this
paper. The scalar was supposed to have zero molecular diffu-
sivity (infinite Schmidt number limit).

First the numerical procedure was verified. A grid refine-
ment study revealed largely grid independent results, which
demonstrated that spreading is hardly due to numerical diffu-
sion. Furthermore, the scalar spreading was shown to be re-
producible, and independent of other numerical settings.

The results show that scalar spreading increases with
decreasing solids volume fraction, and increases with increas-
ing granular Reynolds number. The former effect is thought
to be due to the longer mean-free-path (MFP) k for lower
solids volume fractions. The longer the MFP, the more effec-
tively the scalar is carried around. Indeed, if we scale the
scalar spreading as a function of time with particle collision
parameters (the collision frequency, and the MFP), the
spreading functions become more universal. However, there
clearly is no complete universality. Especially the lower sol-
ids volume fraction (�0.2) cases deviate from the ‘‘master
curve.’’

A tentative fit of the scalar spreading with a Ht-function
showed that the effective diffusion coefficient could be writ-
ten as D ¼ 1

2
ak2fc, with fc the collision frequency, and a a

parameter of the order 1 which depends on the granular
Reynolds number. In the range of Reynolds numbers consid-
ered in this paper, a is a monotonically rising function of
Reg. The increase of a is due to the development of small-
scale flow structures at higher Reynolds numbers.

Future research will focus on the role of particle rotation
in scalar spreading, and on the effects a particle size distribu-
tion (as opposed to monosized particles) might have. Further-
more, we will apply the engineering correlations for scalar
dispersion that were proposed here to scalar spreading in
inhomogeneous systems such us fluidized beds. For the
meso-scale we could compare (scalar transport in) direct sim-
ulations of liquid-solid fluidization,22 with ones employing
closure relations.

Figure 9. Cross sections through the flow domains in terms of fluid velocity vectors for / 5 0.373.

Left, Reg5 2.8; right, Reg5 104. Both panels have exactly the same particle configuration (particle positions and velocities), and the same
fluid velocity vector scaling.
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