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In turbulent liquid mixing, the performance of a stirred tank is usually expressed as the
time it takes to homogenize a passive scalar concentration starting from a segregated
state. Numerical prediction of mixing times requires solving the flow field and the
associated passive scalar. A novel numerical approach is presented to passive scalar
mixing in an agitated tank. In addition to a large-eddy simulation based on lattice-
Boltzmann discretization of the Navier-Stokes equations, the convection-diffusion equa-
tion governing passive scalar transport has been solved by finite volume discretization.
Numerical diffusion has been effectively eliminated by applying a TVD scheme. With this
hybrid approach we study mixing in a Rushton turbine stirred vessel at Re � 24,000. The
simulations were designed such that their results can be critically assessed with experi-
mental data. The simulations are in (at least) qualitative agreement with the experiments,
and allow for assessment of how mixing times defined in various ways relate. Also the role
of the impeller size has been investigated. The numerical method needs improvement in
the sense that it is not exactly mass conservative, which likely is due to the fixed-grid
approach in combination with a non-fixed (revolving) impeller. © 2006 American Institute
of Chemical Engineers AIChE J, 52: 3696–3706, 2006
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Introduction
Experimental research on turbulent scalar mixing

Stirred tanks play an important role in the chemical, phar-
maceutical, food and water treatment industries. The quality of
paints, polymers, detergents, drugs and foodstuffs depends on
the layout and operating conditions of the stirred tank. As a
result, the mixing performance is of crucial importance to
achieve process optimization.

Much experimental research effort has been devoted to de-
scribing and understanding the velocity characteristics of tur-
bulent stirred tank flow (for example, Yianneskis et al., 1987;
Schäfer et al., 1998), together with the power required to drive
the stirrer (Rushton et al., 1950; Holmes et al., 1964). The

essential requirement of mixers in liquid systems is, however,
to bring together two or more fluids which are initially sepa-
rate. This implies the need for information of the scalar mixing
characteristics of the flow systems.

A global characterization of passive scalar mixing is the
mixing time. Roughly speaking, it is the time to achieve com-
plete (that is, over the whole vessel) homogenisation of an
inserted passive scalar. A large number of experimental studies
has focused on mixing performance in terms of the mixing time
for different tank, impeller, and injection configurations. Kram-
ers et al. (1953) were among the first to report on mixing time
in a propeller agitated tank as a function of the baffle position
and impeller rotational speed. Moo-Young et al. (1972) inves-
tigated the influence of Newtonian and non-Newtonian fluids in
different-flow configurations. Others have focused on the im-
peller configurations and/or operating conditions in transitional
and turbulent flow regions (Hoogendoorn and Den Hartog,
1967; Shiue and Wong, 1984; Sano and Usui, 1985; Bouw-
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mans et al., 1997; Distelhoff et al., 1997). Results of several
studies have been combined to empirical correlations, which
are of use for industrial applications (Prochazka and Landau,
1961; Sano and Usui, 1985; Ruszkowski, 1994).

In literature, there is no standardization of a mixing time
experiment. The passive tracer is injected at various injection
speeds, thereby, influencing the relative importance of jet mix-
ing and stirred mixing. The position of the injection point and
the number and position of monitor points are additional vari-
ables that are not standardized. Finally, the definition of what
is considered homogeneous varies from study to study. Most of
the studies report the mixing time based on a concentration %
(for example, Bouwmans et al. (1997) and Distelhoff et al.
(1997)), others determine mixing time by the variance of
concentration fluctuations (for example, Ruszkowski (1994)).
As a result, measured mixing times and mixing time correla-
tions should be viewed with great care. This is specifically
important when one wants to compare simulation results with
experimentally obtained mixing times. In executing and post-
processing the simulations, the experimental procedures (if
known) should be mimicked as closely as possible.

Potential of CFD on scalar mixing

First and foremost, numerical predictions of scalar mixing
require a realistic representation of the flow field, including its
turbulent characteristics. Simulations based on the Reynolds-
averaged Navier-Stokes (RANS) equations (contained in vari-
ous commercial software packages) provide a reasonably ac-
curate picture of the time-averaged flow field in the tank as a
whole. However, they invariably underpredict the turbulent
kinetic energy (that is, the fluctuation levels) in the impeller
discharge stream by about 50% (for example, Hartmann et al.,
2004b). This will certainly affect the predictions of the mixing
patterns and mixing time in stirred tanks.

Osman and Varley (1999), Jaworski et al. (2000) and Bu-
jalski et al. (2002) have reported mixing time predictions,
based on the RANS approach within a sliding mesh or multiple
frames of reference (MFR) framework. The sliding mesh
method is fully transient, while the MFR method provides a
steady-state approximation. With the same grid, the sliding
mesh approach is considered more accurate, but it is also much
more time-consuming compared to MFR. In spite of the use of
the sliding mesh approach, the predicted mixing times were
found, in general, 2–3 times higher than the measured values
(for example, Osman and Varley, 1999; Jaworski et al., 2000;
Bujalski et al., 2002), which is understandable with the under-
prediction of the turbulence levels in mind.

Large-eddy simulations (LES) are better capable of resolv-
ing the turbulent nature of the flow. In LES the flow is resolved
down to the level of the computational grid, that there is a clear
distinction between resolved and unresolved scales. If the grid
is sufficiently fine, the modeling of unresolved scales is less
complicated and speculative than RANS closure modeling,
leading to better predictions of (among other applications)
stirred-tank flow (Eggels, 1996; Derksen and Van den Akker,
1999; Hartmann et al., 2004b, a; Yeoh et al., 2004; Bakker and
Oshinowo, 2004). The LES methodology has been recently
applied for a mixing time simulation in the study reported by
Yeoh et al. (2005). Their simulation was designed to match the
experimental setup of Lee (1995).

In earlier work (Derksen and Van den Akker, 1999; Hart-
mann et al., 2004b, a) we have demonstrated that using lattice-
Boltzmann (LB) discretization of the Navier-Stokes equations
is highly beneficial for performing LES: the (parallel) compu-
tational efficiency (not hampered by the complexity of the
shape of the flow domain) allows for fine grids with still
reasonable run times. To solve passive scalar transport in the
LB-generated flow field we make use of a finite volume (FV)
technique. We do not use the LB method for this for two main
reasons, (1) It requires more computer memory (in fact solving
the convection diffusion equation for the scalar would require
as much memory as solving the Navier-Stokes equation for the
fluid flow), and (2) In finite volumes schemes, well-established
techniques are available to suppress numerical diffusion. In this
work we apply second-order TVD interpolation. We use ex-
plicit time-stepping, which maintains the parallel efficiency of
the simulations.

A fixed grid is used in our LB code; the (moving) parts of the
geometry (for example, the revolving impeller, the stationary
baffles) are represented through an immersed boundary
method. For representing moving walls in the scalar field, a
method (termed ghost-cell method here) has been developed
that imposes zero-normal-gradient boundary conditions at
(static and moving) solid walls at approximately the same
(off-grid) locations as the immersed boundary method for
imposing the no-slip conditions for the fluid flow.

In this article the methodology briefly sketched earlier will
be detailed, and critically evaluated. The results of the simu-
lations comprise full scalar fields evolving in time. This infor-
mation allows for assessing the sensitivity of the mixing time
with respect to its definition. The starting point is a numerical
representation of the mixing time experiment of Distelhoff et
al. (1997). Furthermore the scaling of the mixing time with
impeller size has been investigated.

Flow system

The stirred tank used in this work was a standard configu-
ration cylindrical tank of dia. T � 147 mm, with four equi-
spaced baffles of width 0.1T mounted along the perimeter of
the tank (Distelhoff et al., 1997). The liquid height was set
equal to the tank dia., H � T. The impeller was a six-bladed
Rushton turbine with standard dimensions, mounted at height
T/3. A schematic representation of the flow system is shown in
Figure 1. The flow system can be fully characterized by the
flow Reynolds number (Re � ND2/�) if geometric similarity is
maintained. With an impeller speed (N) of 10 s�1, D � T/3,
and a kinematic viscosity of 1.0 � 10�6 m2/s (tap water at room
temperature) the Reynolds number yields 24,000 (as also used
in Distelhoff et al., 1997). Next to D � T/3, also cases with
D � T/4, and D � T/ 2 have been considered.

Simulation Procedure
Large eddy simulation

For the simulation of flow at industrially relevant Reynolds
numbers (that is, at strongly turbulent conditions), direct sim-
ulation of the flow is not feasible and turbulence modeling is
required. In an LES, the small scales in the flow are assumed
to be universal and isotropic, and the effect the small scales
have on the larger scales is modeled with a subgrid-scale (SGS)

AIChE Journal November 2006 Vol. 52, No. 11 Published on behalf of the AIChE DOI 10.1002/aic 3697



model. The filtering of the small-scale motion is based on the
assumption that the motion of the smallest scales is isotropic in
nature and that the subgrid-scale energy is dissipated via an
inertial subrange that has a geometry independent character.
The SGS model applied in this research is a standard Smago-
rinsky model (Smagorinsky, 1963). For more details on the
LES methodology used we refer to Hartmann et al. (2004b, a)
and Derksen and Van den Akker (1999). A lattice-Boltzmann
method (Chen and Doolen, 1998) was used for solving the
filtered momentum equations. The specific scheme we used
was introduced by Somers (1993). The entire tank was simu-
lated on a uniform, cubic computational grid. Inside the com-
putational domain, the noslip boundary conditions at the cy-
lindrical tank wall, the baffles, the impeller, and the impeller
shaft were imposed by an immersed boundary technique
(termed adaptive force-field technique in (Derksen and Van
den Akker, 1999)).

Scalar transport

In order to describe scalar transport, the convection-diffu-
sion equation needs to be solved. Eggels and Somers (1995)
have performed scalar transport calculations on free convective
cavity flow with the lattice-Boltzmann discretization scheme.
This scheme is more memory intensive than a finite volume
formulation of the convection-diffusion equation. In a finite
volume discretization we only need to store two or three
(depending on the time integrator; Euler-forward or Adams-
Bashford, respectively) double precision values per grid node,
whereas the lattice-Boltzmann discretization typically requires
18 single-precision variables per grid node.

The convection-diffusion equation in compressible form
reads

���

�t
�

�uj��

� xj
�

�

� xj
���

��

� xj
� � S� (1)

with � the density of the continuous phase, � a general scalar,
uj the resolved velocity (component j), � the diffusion coeffi-
cient, and S� a source term. The effect of the unresolved fluid
motion on the transport of the scalar is represented through an
eddy diffusivity �e.

The diffusion coefficient � in Eq. 1 is the sum of the
molecular diffusion, and eddy diffusion � � �mol � �e. The
eddy diffusivity is taken proportional to the eddy viscosity
emerging from the Smagorinsky subgrid-scale model; the pro-

portionality constant being the inverse turbulent Schmidt num-
ber Sct � �e/�e. We take Sct � 0.7. The reason it is taken
smaller than one is that in liquid systems with molecular
Schmidt numbers of the order of 103, the scalar spectrum
contains higher frequencies than the dynamic spectrum, and,
therefore, subgrid-scale scalar eddy diffusion is stronger than
momentum diffusion due to subgrid-scale eddies. We expect
the simulation results to be hardly sensitive to the choice of Sct:
subgrid-scale fluid motion is at least one-order of magnitude
weaker than resolved fluid motion (Derksen, 2003). The latter
will dominate the evolution of the scalar concentration field.

Since the LB scheme is a compressible scheme, we have
implemented the discretized form of the compressible convec-
tion-diffusion equation. In this context it should be noted that
the maximum velocity (which is approximately the tip speed)
is set sufficiently low (approximately 0.1 in LB units) for
meeting the incompressibility limit in the lattice-Boltzmann
scheme.

For reasons of simplicity, we consider in the following
discussion on the discretization of the convection diffusion
equation the one-dimensional (1-D) version of Eq. 1. Extension
to multiple dimensions is straightforward. Integration over a
finite volume �V, and over time �t, and using the Gauss
theorem leads to

�V

�t
���i�i�

n�1 � ��i�i�
n� � �FC��i��1/ 2�

n � �FC��i��1/ 2�
n

� �FD�i��1/ 2�
n ��i�1

n � �i
n� � �FD�i��1/ 2�

n ��i
n � �i�1

n � (2)

where FC and FD are convective and diffusive prefactors, for
example

FC;i��1/ 2� � ��uA�i��1/ 2� (3)

and

FD;i��1/ 2� � �A��

� �
i��1/ 2�

(4)

where u is the normal (resolved) velocity through the cell face
with surface A.

The density, normal velocity components and the diffusion
coefficient at the cell faces are approximated by linear inter-

Figure 1. Rushton turbine stirred tank.
Cross-section of the tank (left). Plan view and cross-section of the impeller (right). At the top level there is a lid. The impeller is a Rushton
turbine mounted at height T/3 and has a dia. T/3. In the simulations presented in this work, impeller sizes of T/4 and T/ 2 have been used
as well.
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polation between the surrounding cell nodes values. For rea-
sons of simplicity, the time discretization in Eq. 2 is first-order
Euler forward. We have implemented a second order accurate
Adams-Bashford time discretization scheme.

The convection-diffusion equation is solved on the LES grid,
and the time step is the same as the LES time step. The finite
volume formulation presented is fully explicit; the update of
the scalar value at cell node i, and time instant n is determined
by the scalar values, velocity components and density at cell
node i, and its surrounding nodes at time instant n � 1. An
explicit scheme has restrictions on the time step in order to
guarantee stability. However, the time step used for the LES is
very small, and no stability problems were encountered in the
scalar transport calculations.

The cell face values of the general scalar �, needed for the
convection terms (the first two terms on the right hand side of
Eq. 2), have been approximated with a second-order TVD
(total variation diminishing) scheme, that has been introduced
by Harten (1983). This scheme belongs to the family of high-
resolution schemes and does not suffer from numerical diffu-
sion (in contrast to first order upwind, power-law and hybrid
schemes (Patankar, 1980)), and it is unconditionally stable
(contrary to central differences and QUICK (Leonard, 1979)).
Following Roe (1981), the face value �i�(1/ 2) is written as the
sum of a diffusive first-order upwind term and an antidiffusive
one

�i��1/ 2� � �i �
1

2
��ri��1/ 2����i�1 � �i� (5)

The antidiffusive part is multiplied by the flux limiter func-
tion �(r), which is a nonlinear function of r. The factor r is the
upwind ratio of consecutive gradients of the solution and reads

ri��1/ 2� �
�i�1 � �i

�i � �i�1
(6)

According to Wang and Hutter (2001), the so-called super-
bee flux limiter is the least diffusive of all acceptable limiters.
Therefore, we have used the superbee limiter throughout our
simulations. The superbee limiter is defined as:

��r� � max	0, min	1, 2r
, min	r, 2

 (7)

Ghost cell technique for scalar boundary conditions

The Neumann boundary condition at the non-square or mov-
ing (off-grid) objects in the flow domain are imposed by means
of a newly developed method, which is applicable in the
explicit formulation of the finite volume scheme. With our
novel technique, the offgrid walls are more accurately repre-
sented (especially the impeller walls) compared to approximat-
ing the walls by stair step shapes. The algorithm makes use of
ghost cells (that is, boundary cells with their cell centers
outside the flow domain) in order to impose a zeronormal-
gradient scalar constraint (that is, Neumann boundary condi-
tion) at the walls.

The scalar update is executed only for the cells with their
centers inside the flow domain. In order to update the scalar in
a cell near a wall, the scalar value in the neighbouring ghost

cell is needed. The procedure for the determination of the
scalar ghost cell value is shown in Figure 2. We consider a
curved wall immersed in a Cartesian grid. Two scalar values on
a line through the ghost cell center and perpendicular to the
wall are estimated through bi-linear interpolation of the sur-
rounding cell nodes. The spacing between the positions of the
two estimated scalar values and the ghost cell center is taken
equal to the lattice spacing. The scalar value at the ghost cell is
determined via second order extrapolation with the two scalar
values and the zero-normal-gradient constraint at the wall.

The ghost cell method is unconditionally stable, which is
desirable in the explicit finite volume formulation. Other tech-
niques that make use of body-fitted cells (socalled cut cells,
Tucker and Pan (1999); Calhoun and LeVeque (2000)) will
fail, as the allowable time-step scales with the cell volume. A
drawback of the proposed technique is that it does not auto-
matically guarantee scalar mass conservation.

Setup of the simulations

Mixing time simulations have been performed in a Rushton
turbine stirred tank. The experimental benchmark case studied,
is based on Distelhoff et al. (1997). A key parameter dominat-
ing the mixing time is the impeller diameter according to the
correlation proposed by Sano and Usui (1985), and Rusz-
kowski (1994). We have investigated the influence of the
impeller diameter on the mixing time by means of three flow
simulations, each with a different impeller diameter. The tank
over impeller diameter ratios were T/D � 2, T/D � 3 and
T/D � 4. The Reynolds number in each of the simulations was
24,000.

For the coupled LES/scalar mixing simulations, a cubic,
Cartesian grid of 2403 lattice cells was defined. The diameter of
the tank equals 240 lattice spacings, and, hence, the spatial
resolution equals T/ 240 which corresponds to 0.6125 mm in
the experiment. The temporal resolution is limited by the
lattice-Boltzmann method. In order to meet the incompressibil-
ity limit in the lattice-Boltzmann discretization scheme, the tip
speed of the impeller was set to approximately 0.1 lattice
spacings per timestep. As a result, the impeller speed is differ-
ent for the three impeller types. For the T/D � 2, 3, 4 cases
the impeller makes a full revolution in 3,600, 2,400 and 1,800
time steps, respectively.

The memory requirements of the simulation are proportional
to the grid size, resulting in an executable of about 2 GByte.

Figure 2. Determination of the scalar ghost cell value.
White cells are flow cells, grey cells are the ghost cells, black
cells are exterior cells.
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The simulations were performed on an in-house PC cluster
with eight Athlon 1,800� MHz processors using an MPI
message passing tool for communication within the parallel
code. To calculate one time step takes about 58 s wall-clock
time, hence an impeller revolution takes 1–2 days.

The scalar was injected in a quasi-steady state flow. This
state was reached after 10–40 impeller revolutions (depending
on the impeller size) starting from rest. Steady-state was
checked by monitoring the total kinetic energy of the flow as a
function of time.

Next to the impeller size, the injection position of the passive
scalar has been varied. Four injection positions have been
chosen, and as a result, four scalar mixing calculations have
been performed simultaneously per flow simulation. An over-
view of the different cases is given in Table 1. Please note that
� increases in the direction of the impeller rotation.

Case 3A resembles the Distelhoff et al. (1997) experiment.
The feed position is located at the top of the tank in a mid-way
baffle plane (that is, � � 0°) at 0.17T from the tank centerline.
Cases 2A and 4A have the same feed location and dimension
of the feed pipe, but with tank over impeller ratio’s T/D � 2
and T/D � 4, respectively.

Cases 2B, 3B and 4B have the feed pipe location at 0.1T
above the top of the impeller blade, and at a radial position
halfway the impeller blade. Cases 2C, 3C and 4C have the feed
pipe located at disk height at 0.1T from the impeller tip. In
cases 2D, 3D and 4D the passive scalar is injected in the wake
of a baffle (that is, at 5° angle with respect to the baffle) at 0.8T
axial height.

In all of our simulations the injection time was set to half an
impeller revolution (that is, Nt � 0.5). This agrees with the
tracer injection times in the experiments being less than 1% of
a typical mixing time (Distelhoff et al., 1997).

Time traces of the scalar concentration were recorded at
various monitoring points positioned in accordance with Dis-
telhoff et al. (1997). A total of 32 monitoring points were set in
the four vertical planes mid-way between two baffles. The
points were located at 0.19T, and 0.67T axial heights at r/T �
0.126, 0.252, 0.361, 0.469, respectively.

Results
Snapshots of the scalar concentration field

Figure 3 gives an impression of the scalar mixing process in
the Rushton turbine stirred tank (Case 3A; T/D � 3) during

the course of the simulation. In the first stage of the mixing
process, high-concentration, macroscopic structures are identi-
fied that are advected by the flow from the tracer injection point
(at the top of the tank) toward the impeller region. Such
structures resemble those observed in visualization experi-
ments in stirred-tank flow (such as the planar laser induced
fluorescence (PLIF) experiments of Houcine et al. (1994).
These structures are vigorously mixed once they hit the turbu-
lence generated by the revolving impeller. After about 30
impeller revolutions, the scalar concentration is heading toward
a homogeneous distribution.

The impact of the impeller diameter on the duration of the
mixing process is illustrated in Figure 4. In this case, the
passive scalar is injected 0.1T above the impeller disk. Again,

Table 1. Numerical Setup

Case T/D Feed: r/T Feed: z/T Feed: � Feed: rp/T

2A 2 0.17 1 0° 0.0238
2B 2 0.1875 0.483 0° 0.0125
2C 2 0.35 0.333 0° 0.0125
2D 2 0.475 0.8 320° 0.0125
3A 3 0.17 1 0° 0.0238
3B 3 0.125 0.467 0° 0.0125
3C 3 0.211 0.333 0° 0.0125
3D 3 0.475 0.8 320° 0.0125
4A 4 0.17 1 0° 0.0238
4B 4 0.09375 0.458 0° 0.0125
4C 4 0.225 0.333 0° 0.0125
4D 4 0.475 0.8 320° 0.0125

The parameters varied are the impeller diameter and the feed location. Please
note that � increases in the direction of the impeller rotation, and � � 0° is a
mid-way baffle plane. rp is the feed pipe radius. Figure 3. Case 3A (T/D � 3): instantaneous realizations

of the scalar field in a mid-way baffle plane.
The scalar is injected at the top of the tank (black dot in the
graphs).

Figure 4. Instantaneous realizations of the scalar field
(Cases 4B (T/D � 4), 3B (T/D � 3), 2B (T/D � 2)
in upper, middle and lower graphs, respec-
tively) in a mid-way baffle plane.
The scalar is injected 0.1T above the impeller (black dot in
the graphs).
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high-concentration macroscopic structures are identified in all
cases presented. The impeller diameter significantly influences
the mixing process: the mixing time decreases at increasing
impeller diameter. While in case 4B (T/D � 4) more than 32
revolutions are needed to reach a more or less homogeneous-
scalar distribution, in case 2B (T/D � 2) only 8 revolutions are
necessary to reach a similar situation.

Time series

In Figure 5 we compare simulated and experimentally mea-
sured time series of case 3A at four monitoring points (that is,
two radial positions and two-axial heights) in a vertical midway
baffle plane at � � 90°. We show two sets of simulated curves.
One set with the full temporal resolution of the simulations
(Figures 5a and 5d), and one set that has been filtered compa-
rable to the filtering done in the experiments by Distelhoff et al.
(1997) (Figures 5b and 5e). From a qualitative comparison
between the simulated (Figure 5a,b,d and e), and experimen-
tally measured (Figure 5c and f) time series it may be con-
cluded that the time series compare well in terms of the path of
the curves and the mixing timescale. The time-step used in the
simulations is a factor of 20 smaller than the sampling time in
the experiments. As a result, the simulated time-series show
more concentration fluctuations compared to the experimen-
tally measured time series.

The simulated time series at z/T � 0.19 show a delayed
response on the tracer injection (0 	 Nt 	 0.5) compared to
the time series at z/T � 0.67, which is to be expected as the
tracer is injected at the top of the tank. The experimental time
series show an earlier response on the tracer injection com-
pared to the simulated time series. This could be due to mo-
mentum associated with the injection in the experiment. From
the description in the experimental paper (Distelhoff et al.,
1997) it is not clear what the momentum is associated with
injecting the tracer dye. In the simulations, the tracer was added
without adding any momentum.

Mixing time and coefficient of mixing

The mixing time �m, is the time required to mix the added
passive tracer with the contents of the tank until a certain

degree of uniformity is achieved. The precise definition of a
certain degree of uniformity gives rise to confusion and ambi-
guity. If we determine it from a concentration time trace at one
location in the tank, then ideally that location has to represent
the state of mixing of the entire vessel. Distelhoff et al. (1997)
measured mixing times where the concentration variations
were smaller than 10%, 5% and 1% of the fully mixed con-
centration. These concentrations are called the 90%, 95% and
99% concentration. The mixing times defined by the 90% and
95% concentration varied by up to 27% and 21%, respectively,
between different regions of the tank. These uncertainties can
be reduced by averaging the measurements obtained simulta-
neously at several locations. The variation over the vessel
between the mixing times for the 99% concentration was found
substantially smaller. Based on these observations, Distelhoff
et al. (1997) based their mixing time on the 99% concentration.

Another way of defining a degree of mixing is through the
spatial variance of the concentration measured at various po-
sitions in the tank. In order to have a precise definition of
mixing times, the coefficient of mixing is introduced. It is
defined as

cmix � ��¥i �ci � c�

c� � 2

�Vi

¥i �Vi
� (8)

where index i stands for the location of the monitoring point
with volume �V, and i � 1, . . . , K, where K is the total
number of monitoring points. The volume averaged mean
concentration c� , is calculated as

c� �
¥i �ci�Vi�

¥i �Vi
(9)

The method provides the concentration variance of points in
different regions of the tank. In order to relate the coefficient of
mixing to a concentration % (for example, the 99% concentra-
tion) we have performed a numerical experiment that is ex-
plained in the appendix. The result is a linear relationship with
a negative slope between cmix, and the concentration %

cmix � 0.17�100 � c%

30 � (10)

where c% is the concentration %.
The coefficient of mixing as a function of time calculated

from the concentrations at the 32 monitoring points is shown in
Figure 6, where all cases have been summarized in three
graphs. In Figure 6a the data is missing for Nt � 2, due to a
processing error. The three graphs show similarities. In the first
stage of the mixing process, the macroscopic high-concentra-
tion structures are broken up and mixed into smaller structures
with lower concentration. The coefficient of mixing strongly
fluctuates with a value higher than one, and no clear trend is
observed. In the second stage, all three graphs reveal an expo-
nential decay of the coefficient of mixing. This has also been
observed in Ruszkowski’s experiments (Ruszkowski, 1994). In
the final stage of the simulations, the coefficient of mixing

Figure 5. Case 3A (T/D � 3): simulated (a,d), filtered sim-
ulated (b,e) and experimental (c,f) time series
at four monitoring points in a mid-way baffle
plane (� � 90°).
The time series shown in Figures (a–c) are at axial position
z/T � 0.67 and those in Figures (d–f) are at axial position
z/T � 0.19.
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stabilizes at the value of approximately 0.02. According to Eq.
10, this value corresponds with the 96%–97% concentration,
which means that concentration fluctuations of 3%–4% re-
main. This is clearly unphysical, and these fluctuations are
attributed to the numerics.

Table 2 lists the value of the 90%, 95% and 99% mixing
times, respectively for all cases. These mixing times are eval-
uated by intersection of the fitted straight lines (implying
exponential decay), and the horizontal lines corresponding to
the 90%, 95% and 99% concentration, respectively (see Figure
6). For case 3A, which is the mixing case studied by Distelhoff
et al. (1997), it experimentally took 57 impeller revolutions to
reach the 99% concentration. The simulation of case 3A pre-
dicts that about 47, 55 and 73 impeller revolutions that are
needed to obtain the 90%, 95% and 99% concentrations, re-
spectively. The spread of the mixing times with respect to the
injection points for the cases 3 (that have T/D � 3) is rela-
tively large compared to the T/D � 2 and T/D � 4 cases. The
99% mixing time for the other three injection positions lie close
to the 99% mixing time reported by Distelhoff et al. (1997).

The mixing time in a stirred-tank geometry reported by Yeoh
et al. (2005) resembles the 95% mixing time, and equals
roughly 33 impeller revolutions. Our results show significantly
higher mixing times. While case 3A is most similar to the case
studied by Yeoh et al. (2005) (injection position at r/T � 0.17
instead of 0.25), the deviation in the mixing time is the largest
of all cases (55 vs. 33 revolutions). This deviation can be
understood by the fact that in the simulation of Yeoh et al.
(2005) the tracer is injected at an injection speed of 15.9 m/s
(that is, 1.4vtip), whereas in our work the tracer is injected
isokinetically. An injection speed introduces jet mixing effects,
the passive tracer reaches the impeller region at an earlier time
and the mixing time is reduced. As mentioned earlier, the
experimental injection conditions are not documented.

Ruszkowski (1994) mixing time correlation

Based on spatial concentration variance measurements Rusz-
kowski (1994) proposed the following mixing time correlation
for Rushton turbine stirred tanks

N�m � 5.3Po�1/3� T

D�
2

� 3.21� T

D�
2

(11)

Equation 11 has been criticized for underestimating mixing
times by Ruszkowski (1994). Equation 11 is based on a mixing
index defined as

IM � 1 � �1

8 �
i�4n

4n�7 �ci,rms � c�

c�
� 2

(12)

where n is a time index, c� is the final concentration and ci,rms

is defined by

ci,rms � �� 1

N �
j�1

M

ci, j
2 � (13)

where M is the number of monitoring points and ci, j is the
concentration at a monitoring point j at time t � i�t, with �t
the sample time in the experiment. The mixing index expresses
the root mean square concentration fluctuation as a fraction of
the mean concentration in the tank after addition of the tracer.
IM can vary from �� for an “infinitely unmixed” system to 1.0
for a perfectly mixed system. The mixing index is calculated
for one section with eight points, the section is moved four data
points along the time history and recalculated, and so on. The
mixing time was defined as the time for IM to reach 0.95.

Figure 7a shows the simulated time trace of 1 � IM for the
cases 3A, 3B, 3C and 3D. The value of IM � 0.95 is repre-
sented by a dashed line. All four cases show that the mixing
time equals approximately 29.5 impeller revolutions. Increas-
ing the width of the time window to a blade passage period
(Figure 7b) results in less fluctuations of IM, but it has only a
marginal influence on the path of the curves, and, conse-
quently, the mixing time. Despite the mixing vessel geometry
of Ruszkowski (1994) was a bit different compared to our
system (for example, dished bottom instead of a flat bottom,

Table 2. The Mixing Times for the 90%, 95% and 99%
Concentrations, Respectively

Case N�m,90% N�m,95% N�m,99%

2A 13.6 16.0 21.3
2B 13.0 15.1 20.2
2C 12.1 14.2 19.3
2D 16.4 18.5 23.5
3A 46.8 54.7 73.0
3B 38.1 44.2 58.5
3C 33.0 39.8 55.7
3D 44.5 51.1 66.5
4A 85.0 100.2 135.4
4B 84.5 98.7 131.9
4C 81.8 96.5 130.8
4D 81.4 96.6 131.9

Figure 6. The coefficient of mixing as a function of the
dimensionless time.
The horizontal lines labeled 90%, 95% and 99% represent the
corresponding concentration percentage.
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baffle diameter T/12 instead of T/10), the mixing time pre-
dicted by our simulations compares very well with the value of
31 impeller revolutions reported by Ruszkowski (1994).

The mixing time based on IM � 0.95 for the cases 3A, 3B,
3C and 3D equal 32, 30, 24 and 32 impeller revolutions,
respectively. With the help of Figure 6b, these mixing times
correspond with a coefficient of mixing ranging between 0.12
and 0.22. Translating this in a concentration % via Eq. 10
yields approximately 70%, indeed much lower than the more
commonly accepted 95 or 99%.

Performance immersed boundary technique, mass
conservation

In this section we check the performance of the ghost cell
technique which imposes a zero-normal-gradient at walls that
are off-grid (see the section “Ghost cell technique for scalar
boundary conditions”). The position of the zero-gradient con-
straint has been reconstructed with the ghost cell values and
two estimated scalar values in the concentration field (that is,
similar to the routine described in Section “Ghost cell tech-
nique for scalar boundary conditions”).

Figure 8a shows a snapshot of the concentration field at
z/T � 0.33 (that is, disk height) after 15 impeller revolutions.
The reconstructed zero-gradient positions are represented by
(overlapped) dots. Figure 8b shows an enlarged view of the
impeller region. The dots are clearly identified. The lines
represent the walls of the impeller geometry. The dots and the
lines overlap, which means that the zero-gradient boundary
constraint coincides with the geometry walls, as should be
expected. The same conclusion is drawn based on Figure 8c
that shows an enlarged view near the baffle.

The ghost cell technique does not automatically conserve
scalar mass. Therefore, the total mass in the system has been
continuously monitored to check the mass conservation con-
straint. The total mass, M, is calculated as follows

M � �
i�1

Vtot

ci�Vi (14)

where Vtot is the amount of control volumes in the flow
domain. The total mass normalized with M0.5 (the total mass
after half an impeller revolution, that is, after stopping the
injection) as a function of the dimensionless time for the cases
with the T/D � 3 impeller is shown in Figure 9a. The time
traces of the total mass show (after a startup period) a more-

or-less linear increase of the total mass. At the end of the
simulations, the total mass has increased by 5%–8%.

The mass increase is related to the ghost cell technique for
representing offgrid scalar boundary conditions. Simulations
with boundary conditions aligned with the grid (such as lid-
driven cavity flow, and turbulent planar channel flow) do not
suffer from it. Also it is not a result of the lattice-Boltzmann
scheme for solving the fluid flow.

The slope of the mass increase depends on the impeller size
as can be seen in Figure 9b. An increase of impeller size results
in a steeper slope of the mass as a function of time. This
observation implies that mass conservation at the impeller

Figure 7. The value of 1 � IM as a function of time for the
T/D � 3 cases.
The dashed line represents IM � 0.95.

Figure 8. Performance immersed boundary technique.
Snapshot of the concentration in a horizontal plane at z/T �
0.33 (that is, disk height) and Nt � 15. The dots represent the
reconstructed position of the zero-gradient boundary condi-
tion, the lines represent the walls of the geometry.

Figure 9. The dimensionless total mass as a function of
time.
M0.5 is the total mass after half an impeller revolution (that is,
after the addition of the full amount of tracer).
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blades is a problem; larger blades result in a larger mass
increase.

We strongly believe that the blade edges and/or motion of
the boundaries (revolving impeller) play an essential role in
mass conservation violation. The motion of boundaries implies
that ghost cells turn into active cells and vice versa. If the
former happens, the new active cell concentration is taken
equal to the ghost cell concentration. This may not be the best
choice since the ghost cell concentration has no physical basis
(other than maintaining the zero-gradient boundary condition).
If an active cell turns into a ghost cell, mass is abruptly taken
out of the system without being compensated for exactly at the
other side of the impeller.

Near the blade edges, the ghost cell concentrations are
involved in two separate zero-gradient boundary conditions,
whereas only one concentration per ghost cell is allowed. This
also could be a source of error that contributes to the gradual
mass increase.

That the blade (and baffle) edges are a problem in conserving
the total mass is observed in the time traces shown in Figure 9a.
The mass increase of case 3D starts in the early stage of the
mixing process, because of the vicinity of a baffle. In case 3C
the injection point is in the impeller stream, where the concen-
tration is strongly advected radially outward toward the baffles.
In case 3B the injection point is 0.1T above the impeller, and
the mass increase starts at roughly Nt � 2. In case 3A, the
mass injection point is at the top of the tank, and it takes some
time for the concentration being advected toward the impeller
region. As a result, the mass increase is expected at a later
moment in time (that is, Nt � 10) compared to the other cases
(see for example, the instantaneous concentration fields in
Figure 3).

In summary, the ghost cell technique developed positions
accurately the zero-gradient constraint at the geometry walls
(Figure 8), but the mass conservation constraint is not satisfied
(Figure 9). The mass increase is significant (5%–8%), and in
future research the current technique needs to be improved.

Conclusions

In this article, we have coupled a lattice-Boltzmann based
large-eddy simulation of the flow in a mixing tank to a
passive scalar transport solver based on the finite volume
method. Specific care was taken to suppress numerical dif-
fusion of the scalar, and to accurately represent the zero-
gradient scalar boundary conditions at the (offgrid and
partly moving) walls.

We have related the mixing time to a coefficient of mixing,
that provides a spatial concentration variance over the entire
tank. Simulated time traces of the coefficient of mixing re-
vealed (after a startup phase) an exponential decay, similar to
experimental findings (Ruszkowski, 1994). At the end of the
calculations, the coefficient of mixing stabilized at about 0.02.
This is unphysical, and this effect is attributed to the numerics.
The exponential decay has been extrapolated toward zero
through a fitting procedure. The mixing times were defined by
the intersection of the fitted lines and the calibrated values of
the 90%, 95%, and 99% concentration criterions, respectively.

The mixing time is significantly influenced by the impeller
size. The simulated mixing times agree within 30% with ex-
perimentally obtained values. Our work has revealed that the

Ruszkowski (1994) mixing time correlation corresponds to a
70% concentration criterion.

The position of the tracer injection point does not signifi-
cantly affect the mixing time. While a spread of the simulated
mixing time was observed in the T/D � 3 cases, it was found
to be clearly less significant in the T/D � 2, and T/D � 4
cases. The predicted 99% mixing time in the case similar to the
experiment of Distelhoff et al. (1997) overestimates the exper-
imentally obtained mixing time with some 26%.

Our novel immersed boundary technique does not guarantee
mass conservation. The average mass increase per impeller
revolution depends on the impeller size being 0.25%, 0.125%,
and 0.05% for the impeller sizes T/D � 2, T/D � 3 and
T/D � 4, respectively. The unphysical mass increase is attrib-
uted to the motion of the boundaries (impeller), and to mass
leakage at the edges (of the impeller and baffles).

The violation of mass conservation clearly is a problem, and
needs to be repaired in future work. Our present efforts towards
mass conservation involve the possibility of dual or triple
concentrations per ghost cell (note that ghost cell concentra-
tions do not have physical meaning, they only serve the nu-
merics) for determining fluxes in different directions.

In our view, however, mass conservation violation does not
interfere with the main messages of the article which are: (1)
the mixing of a passive scalar in the very complex turbulent
flow in an agitated tank is very realistically modeled, and the
structures observed agree with those observed in for example,
planar laser-induced fluorescence experiments, and (2) the sim-
ulated time traces agree in terms of fluctuation levels and time
scales with the experimental time traces reported by Distelhoff
et al. (1997). As a result, we do not think that the spurious
concentration fluctuations that become apparent in a later stage
of the mixing process and the violation of mass conservation
are related. Furthermore, we preferred the uncertainties when
extrapolating to the 99% mixing time introduced by the slight
wiggles in the solution of the concentration over the excessive
numerical diffusion introduced by a simple first-order upwind
scheme.

Notation

A � surface area, m2

c � concentration, kg � m�3

ci,rms � the rms concentration at time, i�t
cmix � coefficient of mixing

c� � spatial average of the concentration, kg � m�3

c� � final concentration, kg � m�3

c% � concentration %
D � impeller diameter, m

FC � convective prefactor in Eq. 2, kg � s�1

FD � diffusive prefactor in Eq. 2, kg � s�1

H � height of the tank, m
IM � mixing index defined by Ruszkowski (1994)
K � number of monitoring points
n � time index
N � impeller speed, s�1

M � total mass, kg
M0.5 � injected mass after half an impeller revolution, kg

Po � power number
r � radial coordinate, m
r � upwind ratio of consecutive gradients

rp � radius of the feed pipe, m
Re � Reynolds number
S� � source term in convection-diffusion equation, kg � m�3 � s�1

Sct � turbulent Schmidt number
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t � time, s
T � tank diameter, m
u � velocity, m � s�1

ui � velocity component i, m � s�1

xi � coordinate i, m
z � axial coordinate, m

Greek letters

� � diffusion coefficient, m2 � s�1

�e � eddy diffusion coefficient, m2 � s�1

�mol � molecular diffusion coefficient, m2 � s�1

�t � time step, s
�V � finite volume, m3

� � angle, °
�m � mixing time, s

� � kinematic viscosity, m2 � s�1

�e � Smagorinsky eddy viscosity, m2 � s�1

� � density, kg � m�3

� � general scalar variable
� � flux limiter
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Schäfer, M., M. Yianneskis, P. Wächter, and F. Durst, “Trailing Vortices
Around a 45° Pitched-Blade Impeller,” AIChE J, 44, 1233 (1998).

Shiue, S. W., and C. W. Wong, “Studies on Homogenization Efficiency of
Various Agitators in Liquid Blending,” CJ of Chem Engg, 62, 602
(1984).

Smagorinsky, J., “General Circulation Experiments with the Primitive
Equations: 1. The Basic Experiment,” Monthly Weather Review, 91, 99
(1963).

Somers, J. A., “Direct Simulations of Fluid Flow with Cellular Automata
and the Lattice-Boltzmann Equation,” Applied Scientific Research, 51,
127 (1993).

Tucker, P. G., and Z. Pan, “A Cartesian Cut Cell Method for Incompress-
ible Viscous Flow,” Applied Math Modelling, 24, 591 (1999).

Wang, Y., and K. Hutter, “Comparisons of Numerical Methods with
Respect to Convectively Dominated Flows,” Intl Journal for Numerical
Methods in Fluids, 37, 721 (2001).

Yeoh, S. L., G. Papadakis, K. C. Lee, and M. Yianneskis, “Large Eddy
Simulation of Turbulent Flow in a Rushton Impeller Stirred Reactor with
Sliding-Deforming Mesh Methodology,” Chem Eng and Technol, 27,
257 (2004).

Yeoh, S. L., G. Papadakis, and M. Yianneskis, “Determination of Mixing
Time and Degree of Homogenity in Stirred Vessels with Large Eddy
Simulation,” Chem Eng Sci, 60, 2293 (2005).

Yianneskis, M., Z. Popiolek, and J. H. Whitelaw, “An Experimental Study
of the Steady and Un-Steady Flow Characteristics of Stirred Reactors,”
J of Fluid Mechanics, 175, 537 (1987).

Appendix

Consider a set of K statistically independent, dimensionless
concentrations ranging between 0.99 and 1.01. The dimension-
less concentrations are obtained at the monitoring points. With
these numbers, a coefficient of mixing can be calculated. If we
repeat this experiment L times (that is, inclusion of time as a
variable), we obtain a distribution function of the coefficient of
mixing for the 99% concentration. The experiment is repeated
for other concentration percentages.

Figure A1a shows a calibration graph of the coefficient of
mixing vs. the concentration %. The total number of monitor-
ing points (K) equals 32, and the number of repetition (L) was
set at 105, which resembles a time interval comparable to the
length of the simulated time series. The graph shows that with
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increasing concentration %, the average coefficient of mixing
decreases, and the distribution becomes narrower as expected.

Figure 10b shows the histogram of the coefficient of mixing
for the 99% concentration. The distribution function is nearly
Gaussian, as shown by the two Gaussian fits. Gaussian fit 1 is
fitted in the range 0.0045–0.006 and fit 2 in the range 0.005–
0.0065. The average coefficient of mixing that can be linked to
the 99% concentration equals 0.00566. For the 95% and 90%
concentrations, the average coefficient of mixing equals 0.0283
and 0.0566, respectively. A linear fit with a negative slope
through the data shown in Figure 10a results in the relationship
given by Eq. 10.

Manuscript received May 22, 2006, and final revision received Aug. 9, 2006.

Figure A1. Calibration graph (a) of coefficient of mixing
vs. concentration %.
The histogram of the coefficient of mixing at 99% concen-
tration is shown in (b), together with two Gaussian fits.
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