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Gas�solid fluidized-bed reactors are commonly used in the
process industries due to their high operational efficiency re-
garding, for instance, solids mixing and heat and mass trans-

Ž .fer Geldart, 1986 . It is well known that hydrodynamics plays
a crucial role in the dynamic behavior of fluidized beds
Ž .Geldart, 1986; Fan and Zhu, 1998 . Currently, computa-
tional fluid dynamics methods are widely used to obtain a
better understanding of the complex behavior due to

Ž . Ž .gas�solid hydrodynamic and solid�solid collisional inter-
actions and, of course, how this emergent behavior affects

Žthe operation of fluidized-bed reactors see, for example,
.Goldschmidt et al., 2000 .

Numerical simulations of fluid dynamics in such systems
Žare generally based on the so-called two-fluid models Fan

.and Zhu, 1998 . In these models, both phases are considered
Žas interpenetrating continua. Mass, momentum, and in some

.cases energy balances are derived using volume and time or
ensemble averaging techniques. For example, the momentum
equations for the gas phase in the case of isothermal flow
follow the relation

�
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Here u and © are the velocity of the gas and solid phase,
respectively; � is the gas volume fraction; � is the density ofg
the gase; p is the pressure; � is the stress tensor; g is the
gravitational acceleration, and � is the interphase drag coef-
ficient, which is the primary subject of this study. This � term
is a closure relation for the drag force exerted on the solid
particles by the gas phase, as a function of the solid volume
fraction, �s1y� , and the particle Reynolds number, Res
Ž � � . Ž� uy© 2 a r� with a the radius of the spherical solid parti-

.cles and � the kinematic viscosity of the gas phase .
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Ž .In many cases, the well-known Wen and Yu 1966 and the
Ž .Ergun 1952 equations are used to describe interphase drag

coefficients. The Ergun correlation expressed in terms of the
nondimensional drag force acting on a single particle, F, is
given by

� 0.18 Re
Fs8.33 q 2Ž .3 321y� 1y�Ž . Ž .

Here F is made dimensionless by the gas-volume fraction, � ,
and the Stokes drag acting on a single sphere in an infinite

� �medium, F s6	� � a� uy© .s g
Ž .The Wen and Yu 1966 correlation follows the relation

y4.650.687Fs 1q0.15Re 1y� 3Ž .Ž . Ž .

Notice that F is related to � through the expression Fs�
Ž .2 Ž 2Ž . .� 2a r 18� 1y� � � .g
The Wen and Yu correlation, a refinement of the Richard-

Ž .son and Zaki equation 1954 , is based on particle fluidiza-
tion experiments performed in a wide range of solid-volume
fractions and Reynolds numbers, 0.4�� �1.0 and 0.01� Re
�5,000, respectively. The Ergun equation, on the other hand,
is derived from pressure-drop measurements in closed-packed
fixed beds. Furthermore, although the latter is based on sys-
tems with particles on fixed positions, it can be applied to
dynamic systems, as well, if the density ratio between the two

Ž .phases as generally is the case in gas�solid flow is large
Ž .Koch, 1990 .

In numerical simulations of gas�solid fluidized-beds, it is
still unclear which correlation should be used for describing
the interphase drag coefficients. The two widely used models
are the Wen and Yu equation and a hybrid model, suggested

Ž .by Gidaspow 1994 , with Wen and Yu for � �0.2 and Ergun
otherwise. In a recent study, it has been shown by van

Ž .Wachem et al. 2001 that the exact choice of the closure
relation can have a significant influence on, for example, the
simulated bubble shapes in fluidized beds.
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Ž .Recently, Hill et al. 2001 performed a rigorous study con-
cerning the dependence of the drag force on Re and � for a
wide range of solid-volume fractions. By using a
lattice�Boltzmann method, the drag force acting on fixed
Ž .dis ordered monodisperse bead packings in periodic do-

Ž .mains was computed. For dense systems �G0.5 , the simu-
lated drag curve is in good agreement with the Ergun equa-
tion, in contrast to that in the less dense regime. However, a
connection with the Wen and Yu equations was not reported,
leaving the following question unresolved: Which � should
one differentiate between the dilute and dense regimes?

In this article, we revisit the drag-force closures problem
and focus on the question: Is the hybrid model indeed valid,
or should we instead discriminate between a dilute, dense,
and an intermediate regime? For this we perform

Ž .lattice�Boltzmann Chen and Doolen, 1998 simulations of
fluid flow in fixed monodisperse disordered periodic sphere
packings in the range 1� Re�50 and 0.1�� �0.5, and

Ž .compare our results with that obtained by Hill et al. 2001
and with the Wen and Yu and the Ergun correlations.

Simulation Method
In simulations, we consider fluid flow through disordered

arrays of spheres in a periodic box. For the computation of
the flow fields and the drag force, we use the lattice�Boltz-

Ž .mann method LBM . In the past decade, LBMs have proven
to be versatile tools in simulating a wide variety of applica-

Žtions, ranging from creeping flow in porous media Kandhai
.et al., 2002a,b to turbulent flows in stirred-tank reactors

Ž .Derksen, 1999 . These methods originated from the lattice
Ž .gas automata LGA , which are discrete models for the simu-

lation of transport phenomena. In LGA, fictitious particles
move synchronously along the bonds of a regular lattice and
interact locally according to a given set of rules subject to
conservation of mass and momentum. Due to this inherent
spatial and temporal locality, these methods are well suited
for parallel computing. In contrast to LGA, in LBM a density
of particles is being tracked rather than a single one, and
there is relatively more freedom in the formulation of the

Ž .collision operator Chen and Doolen, 1998 . The simplest
Ž .collision model is the Bhatnagar�Gross�Krook BGK

scheme with a single time relaxation to the local equilibrium
Ždistribution. The corresponding lattice�BGK method Chen

.and Doolen, 1998 is given by

1
Ž0.f rq c ,tq1 s f r ,t q f r ,t y f r ,t 4Ž . Ž . Ž . Ž .Ž .i i i i i


Ž .where c is the ith link; f r,t is the density of particles mov-i i
ing in the c -direction; 
 is the BGK relaxation parameter;i

0Ž .and f r,t is the equilibrium distribution function towardi
which the particle populations are relaxed. A common choice

0Ž .for f r,t is,i

1 1 120 2f s t � 1q c � u q c � u y u 5Ž . Ž . Ž .i i i i2 4 2c 2c 2cs s s

where t is a weight-factor, which depends on the length ofi
the vector c ; c is the speed of sound; and � is the density.i s

The density and the velocity are obtained from moments of
Ž .the discrete velocity distribution f r,ti

N

f r ,t cŽ .Ý i iN
is 0

� r ,t s f r ,t and u r ,t s 6Ž . Ž . Ž . Ž .Ý i � r ,tŽ .is 0

with N denoting the number of links per lattice point. The
Ž . Žkinematic viscosity � in lattice units l.u. is given by � s 
 y

.1r2 r3. For our current purpose, we use the so-called D Q3 19
Ž .lattice�BGK model Chen and Doolen, 1998 .

In the simulations, the flow is driven by a body force, that
is, at each time step a fixed amount of momentum is added
to all lattice points. The solid�fluid interface is modeled by
using the well-known bounce-back method, that is, particles
entering a solid node are reflected to the fluid with reversed
velocity. Steady state in the simulation is achieved when the
total body force acting on the fluid is equal to the drag force
exerted on the solid matrix. The Reynolds number is now
varied by adjusting the body force.

Results and Discussion
Generally, the computational grid in LB simulations is uni-

form and Cartesian. Extension of the method to irregular
grids is available, although its application is still restricted to
single-particle systems due to limited computational re-

Ž .sources Rohde et al., 2002 . As a consequence, the discrete
representation of a sphere in disordered arrays is staircased.
The staircasing of the surface, the way solid�fluid boundaries
are imposed and the actual accuracy of the method, are re-

Ž .flected in the discretization error Kandhai et al., 1999 . From
preliminary finite-size studies, we conclude that, for the low
solid fractions, a sphere discretization with a diameter of 10
lattice points yields satisfactory results, that is, discretization
errors are then around 10%. For the denser systems, known
to be much more sensitive to numerical errors due to the
limited number of channels through which the fluid can per-
colate, we have to discretize the spheres with a diameter of

Žsome 20 lattice points to obtain similar accuracies see Figure
.1 .
In LBM schemes, yet another artifact exists, namely, a de-

pendence on the fluid viscosity of the radius of particle that
Žis actually being simulated the so-called hydrodynamic ra-

.dius . One way to correct for this effect is by applying the
Ž .following procedure Ladd, 1994 :

� First, the hydrodynamic radius corresponding to a cer-
tain geometrical radius and kinematic viscosity is computed
by using the analytical solution of creeping flow through a

Ž . Žperiodic array of spheres in the dilute limit Hasimoto,
.1959 .

� Next, the many-particle computations are calibrated by
taking the hydrodynamic radius as the true radius of the par-
ticles.

The corresponding hydrodynamic radii of spheres in a fluid
Ž .flow with kinematic viscosity of 0.067 in l.u. and discretized

using 10 and 20 lattice points, are 10.4 and 20.4, respectively
Ž .in l.u. . In Figure 2, we show the results obtained for the
drag force as a function of the Reynolds number for �f0.3
Ž .after calibration . It is clear, that after having applied the
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( )Figure 1. Finite-size simulations: relative error in %
based on the 2a=30 case, in the drag force
computed on different grid resolutions.
In all simulations, the positions of the particles are the same.

ŽThe volume fraction of the system is 0.62 worst-case sce-
.nario . The relaxation parameter 
 s1.0.

calibration procedure, the results obtained by using radii of
Ž . Ž .10 �s0.29 and 20 lattice points �s0.274 , respectively,

match satisfactorily well. Some differences may be expected
due to a mismatch in the exact value of �.

Apart from the issues related to resolution sensitivity, the
computed drag forces suffer from statistical fluctuations due
to heterogeneities associated with the arrangements of the
spheres. These effects can be reduced by averaging the re-
sults obtained by a series of simulations with different geo-
metrical configurations. The mean drag-force is defined as
the ensemble average of the drag forces obtained by n inde-c
pendent simulations

n1
² :F s FÝ inc is1

Figure 2. Finite-size simulations: calibration of the sim-
ulation results by the hydrodynamic radius.

Ž .The volume fraction of the packed bed is 0.29 for as10
Ž .and 0.274 for as 20 . The relaxation parameter 
 s 0.7.

Ž .Analogous to the work of Hill et al. 2001 , the uncertainty in
the estimated mean is computed from

var FŽ .
� Fs( n y1c

Ž . Ž .2with var F s� Fy� F � � denoting the variance of F
Ž .see Hill et al., 2001, and references therein .

The geometrical configuration of the spheres is generated
Ž Ž .by the method described in Kandhai et al. 2002a . Note that

in the extreme case of ‘‘closed’’ packed systems, the structure
of the medium used in the computations might be different
as compared to that of the packed beds used in the experi-
mental measurements.

It should be noted that in the simulations considered here,
the particle positions are held fixed. As discussed in the first
section, in two-fluid models, the macroscopic equations are
derived based on some averaging principle. The presence of
a certain amount of solid phase is then modeled by the solid
volume fraction parameter, � . Furthermore, there is no di-s
rect characterization of the geometrical stucture of the solid
particles. Therefore, drag relations obtained from ensemble
averaging of the systems considered here are useful as clo-
sure relations in the two-fluid models. Apart from that, in
gas�solid flows, the response time of the particle dynamics

Ž ŽŽ .Ž 2 ..due to disturbances in the flow 
 s � r� d r18� , isp p f p
very large�on the order of 1,000�compared to the time-

Žscale related to hydrodynamic disturbances in fluid 
 sc
.d rU . It is, therefore, expected that the ensemble-averagedp s

behavior of systems with fixed particles may be similar to that
of homogeneous fluidized systems in the equilibrium state. In
Figure 3, we show the average slip velocity as a function of

Figure 3. Transient behavior of the drag force for a sys-
tem of freely moving particles compared to the
average drag force obtained for a fixed array
of particles; the dimension of the simulation
domain is 8a�8a�8a, � =0.27, a=10, Ref
10, and � ///// � =1,000.p f
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Figure 4. Drag force as a function of Re for a disordered periodic array of spheres with varying solid volume frac-
tions � =0.1 to 0.5.

Ž . Ž .The exact values of the volume fractions are: from a to f � s 0.10, 0.19, 0.27, 0.36, 0.43, and 0.48. The Ergun and Wen and Yu equations
are included in all graphs. Furthermore the results obtained by Hill are also shown for the volume-fractions with a close match. The

Ž .dimensions of the simulation domain are 8 a�8 a�8 a, with a the radius of the spheres in lattice units l.u. , as10 for � � 0.3 and as 20
for � � 0.3. The number of spheres is varied from 16 to 64.
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Žthe time of systems of freely moving particles with �s0.27,
.as10, Ref10, and � r� s1,000 and compare that withp f

the averaged ensemble slip velocity of systems with particle
positions fixed. It is evident that the average slip velocity of
the dynamic system is close to that of the ‘‘fixed’’system, when
we take into account variations due to the uncertainty in the
estimated mean. Similar results have been obtained for other

Ž .volume fractions �f0.1 and �f0.2, respectively . Notice
that the structure of fixed and sedimenting systems might be
different, especially in the case of liquid�solid suspensions.

The eventual simulations were carried out for periodic
boxes with dimension of 8a�8a�8a, the corresponding grid

Ž .dimensions being 80�80�80 for � �0.3 and 160�160�
Ž .160 for � �0.3 , respectively. The memory requirements for

these simulations were at most 600 Mb, and the number of
time steps to reach steady state was varied from 10,000 to
2,000 time steps for increasing solid-volume fraction.

We now return to our main question, whether the Wen
and Yu and the Ergun correlations do capture the complete
range of solid-volume fractions. Figure 4 shows, the results
for the dimensionless drag force as a function of the Reynolds
number for increasing solid-volume fraction. The correspond-
ing curves of the Wen and Yu and the Ergun correlations are
included in all plots. Moreover, in Figure 4a and 4b, we also

Ž .have included the results obtained by Hill et al. 2001 . These
are the only two cases in which there is a close match in the
solid-volume fractions considered in both studies. We clearly
see that there is a good agreement between both simulations.
This point is further confirmed in Figures 5 and 6. Figures 5
and 6 show the slope of F vs. Re as a function of �, and the
functional dependence of F on � as a function of the void
fraction, respectively.

As discussed earlier, an eventual transition region is ex-
pected to occur in the range of solid-volume fractions be-

Figure 5. Slope of F vs. Re as a function of �; the solid
line is the fit expression obtained by Hill et al.
( )2001 .

Figure 6. Functional dependence of F on � as a func-
tion of the void fraction.

Ž .The solid line is the Wen and Yu 1966 correlation.

tween 0.2 and 0.4. Therefore, we spend most of our computa-
tional effort in this specific range: the mean drag force and
the uncertainty in the estimated mean were computed using
the method described earlier with n s10. For the other vol-c
ume fractions, we restricted the computations to a single geo-
metrical configuration, in order to reduce the total computa-
tion time. Before discussing the final results, we still would
like to address a subtle point. As mentioned in the previous
section, the flow in the simulations was driven by a body force.
Consequently, the average velocity could not be predicted in
advance, but was dependent on the geometrical configura-
tion. For each geometrical configuration, however, we found
that a linear relation fits all the simulated points very well
Ž .with errors in the fitting parameters F0.5% . Therefore, we
used the fitted expressions to estimate the drag force for spe-
cific values of Re and then computed the mean based on
these values.

The first observation in Figure 4 is that our results are
indeed in good agreement with the Wen and Yu correlation
for the low solid-volume fractions and the Ergun correlation
for the high solid-volume fractions. The interesting feature is
that the Wen and Yu correlation shows a better match with
the simulation results, even for �f0.3. The Ergun equation
is found to be valid for �f0.5. It is evident that for 0.3F�
F0.43 both the Wen and Yu and the Ergun correlation show
a discrepancy with the computed values, which suggests that
there is indeed an intermediate regime. If uncertainties on
the order of 10% are acceptable, the fit-correlation obtained
by Hill et al., and found to be consistent with our results, can
be used as a closure relation for 0� Re�100. However, to
provide an even more accurate correlation for the intermedi-
ate regime, more detailed simulations based on finer grid res-
olutions or by using more sophisticated methods for imposing
no-slip boundary conditions in lattice�Boltzmann simulations
Ž .Rohde et al., 2002 , are still necessary.
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