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Abstract 

We study aggregation in turbulent flow by means of particle-resolved, direct numerical simulations 

(DNS). Mono-sized spheres with an attractive square-well potential are released in homogeneous, 

isotropic turbulence generated through linear forcing. Typical cases have a solids volume fraction of 0.08 

and a ratio of the Kolmogorov scale over the primary sphere radius of O(0.1). The latter implies that the 

flow around the primary spheres is inhomogeneous. The simulations show the continuous formation and 

breakage of aggregates as a result of the turbulence and the attractive potential. The average size of the 

aggregates is a pronounced function of the strengths of turbulence and interaction potential. Fractal 

dimensions of the aggregates are in the range 1.4 to 1.8 for the cases studied.  
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1 Introduction 

If sticky particles are suspended in a turbulent flow, turbulence plays a dual role in the evolution towards 

a (dynamically) steady aggregate size distribution. On one side, the turbulence promotes collisions 

between particles due to its relative velocities, and a collision is a necessary first step in an aggregation 

event. On the other side the turbulence provides a means for aggregate breakage due to the stresses 

imposed by the flow on the aggregate. A second mechanism of aggregate breakage is collisions between 

aggregates and/or primary particles that potentially destabilize aggregates. Based on the above sketch, the 

aggregate size distribution is expected to be a function of turbulence properties (intensity of turbulence 

and the length scales of turbulence relative to particle sizes), solids properties (including solid over liquid 

density ratios and solids volume fraction) and the properties of the attractive interaction potential between 

the particles that is responsible for aggregation.  

This paper focuses on simulations of aggregation in turbulence with two specific, atypical 

characteristics. In the first place we consider the primary spherical particles (that all have the same radius 

a) to be larger than the Kolmogorov length scale K  of the turbulent flow (here K a  is in the range 0.1 

to 0.4). In the second place we only consider reversible aggregation: the formation and breakage of bonds 

between particles conserve energy and the bonds are non-rigid. A consequence of the first characteristic is 

that the flow around individual primary particles and around aggregates is inhomogeneous with more than 

one turbulent microstructure interacting with a particle simultaneously. This makes it desirable to resolve 

the flow on scales smaller than the size of primary particles so as to capture accurately the solid-

turbulence interactions and thus the particle dynamics. Non-rigid and reversible bonds imply that 

aggregates continuously restructure, break, and bond so that the aggregate size distribution (ASD) and 

aggregate morphology are dynamic entities. In the simulations we aim at reaching a dynamic steady state 

and subsequent characterization of the particle and fluid dynamics in this steady state.   

The intention of fully resolving the flow and particle dynamics, along with the specific 

characteristics of our aggregating systems (see above) distinguishes this research from the large body of 
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literature on simulations of aggregation processes involving solid particles suspended in liquids. 

Resolution at the length scale of the primary particles and computational feasibility also implies that we 

have to limit the size of the domain that is simulated. At the same time, the domains have to be 

sufficiently large to develop and sustain turbulence with its wide spectrum of length scales. We have been 

using fully periodic, three-dimensional domains and forced turbulence for this. The simulations then 

mimic a homogeneous, meso-scale portion of an aggregation reactor, away from walls and turbulence 

generating devices (such as impellers). 

A significant portion of the literature on aggregation deals with population balance equations 

(PBEs) where the processes of aggregate formation and breakage are parameterized with “kernels” that 

are functions of (local) flow characteristics, solid and liquid properties, and the details of the interparticle 

interactions (bond strengths, particle surface properties etc.) [1]. Developments in the field of PBEs relate 

to solution strategies, such as methods based on the moments of ASDs [2] and the method of 

characteristics [3], and on the identification of the mathematical structure of aggregation and breakage 

kernels that allow for ASDs to reach a dynamic equilibrium [4]. The predictive power of PBE solutions 

critically depends on the physics contained in the breakage and aggregation kernels.  

Detailed simulations of aggregates, aggregation, restructuring, and breakage reported in the 

literature are restricted to solid-liquid suspensions undergoing homogeneous deformations [5-12]. This is 

a valid approach to be applied for turbulent systems containing particles much smaller than the 

Kolmogorov scale and generally allows for a Stokes flow approximation at the scale of the particles. 

The methodology used in this paper has been described in detail previously [13] and we limit 

ourselves to a short summary. Homogeneous, isotropic turbulence (HIT) is generated and sustained in a 

cubic, fully periodic, three-dimensional domain with side length of 32 to 64 times a through linear forcing 

[14]. With linear forcing we have control over the energy dissipation rate (and thus the Kolmogorov 

length scale) once stationary conditions are reached and dissipation balances power input. In the turbulent 

field, uniformly sized, spherical primary particles are released. The solids typically occupy 8% of the total 
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volume. The particles have a tendency to aggregate by means of a square-well potential defined by a 

distance of interaction  , and a binding energy swpE  [15]. As indicated above, this is a reversible 

interaction. If the centers of two approaching spheres come within a distance  2 a   they exchange 

potential energy for kinetic energy (by an amount swpE  per sphere). Two attached spheres can only 

separate if they are able to overcome the potential energy barrier imposed by the square-well potential 

with their kinetic energy. If they separate, kinetic energy is converted back into potential energy. 

The simulations are based on the lattice-Boltzmann method for simulating fluid flow [16,17]. The 

no-slip conditions at the moving sphere surfaces are imposed through an immersed boundary method 

[18,19]. By applying the immersed boundary method on each sphere surface we resolve the solid-liquid 

interfaces and the hydrodynamic force and torque acting on each sphere. These we use to update the 

spheres’ linear and rotational equations of motion. This directly couples the solids and fluid phase, and 

fully accounts for the finite size of the particles. 

The present paper builds on the previous paper [13] in that it extends the range of parameters 

studied (specifically the range of K a ), and that it explores the consequences of agglomeration for the 

dynamics of the primary solid spheres. The paper is organized in the following manner: we first define 

the flow systems in terms of dimensionless numbers. We then briefly discuss the numerical procedure. 

We show results for aggregation in homogeneous, isotropic turbulence with emphasis on aggregate size 

distributions, aggregate fractal dimension, and solids velocity distribution functions as a function of flow 

and particle properties. At the end of the paper we summarize and draw conclusions. 

   

2 Flow systems 

The simulation domains are fully periodic cubes, of volume 3L  that contain an incompressible Newtonian 

fluid (density   and kinematic viscosity  ), and uniformly sized solid spherical particles with radius a 

and density p . The solids volume fraction   has been fixed in this paper to 0.08; the aspect ratio L a  is 
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the range 2
3

42  to 64.  Previous work [13] showed that for the typical conditions considered a domain size 

of 32L a  is required to obtain results (e.g. in terms of the aggregate size distribution) that are not 

sensitive to the size of the domain. The density ratio p   is 4.0 in all cases.  

In the flow domain we create homogeneous, isotropic turbulence through linear forcing [14]. Linear 

forcing allows for sustaining turbulence with a pre-defined energy dissipation rate   in single, as well as 

in multiphase (solid-liquid) flow [13]. Controlling   implies that we also control the Kolmogorov length-

scale 

1 4
3

K






 
  
 

, and K a  is a dimensionless input parameter to the simulations. The solid spheres 

suspended in the turbulent flow interact via a square-well potential [13,15] that serves as the model 

mechanism for aggregation. The square well is defined by the two parameters   and u  that 

characterize its reach and strength respectively. Two approaching spheres that come within a center-to-

center distance  2 a   attach and exchange potential energy for kinetic energy. If two attached spheres 

separate they need a relative velocity along the line connecting the two sphere centers of at least 2 u  to 

detach. This implies [13] that the square well has a depth of  
21

2
swp pE m u   with 34

3
p pm a  the 

mass of the primary spheres. Attached spheres keep moving under the influence of hydrodynamic forces 

(non-rigid bonds) and possibly undergo hard-sphere collisions. For collisions we use the two parameter 

model due to Yamamoto et al [20] that has a restitution coefficient e and friction coefficient  . In many 

of the simulations in this paper the friction coefficient   was set to infinity which means that in such a 

simulation in a collision the two spheres attain the same surface velocity at their point of contact (note 

that since the particles are allowed to rotate, the surface velocity has a translational and a rotational 

contribution). 

We thus have four parameters governing direct (as opposed to hydrodynamic) particle-particle 

interactions. In dimensionless form these are the collision parameters e and  , and the square-well 

parameters a , and u   with  
1 4

   the Kolmogorov velocity scale. We keep the restitution 
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coefficient constant and equal to e=1.0 and fix a  to 0.05; for   we have taken the two extremes  =0 

(smooth sphere surfaces) and    (sticking collisions, see above). In this paper u   equals 0.30. 

The choice for a =0.05 implies a rather long-range interaction. With Kolmogorov scales in the 

micrometer range for strong turbulence, also a will be of that order. This makes that   is of the order of 

100 nm, typically larger than the reach of Van der Waals forces (order 10 nm).    

     

3 Modeling approach 

As in our previous works on direct simulations of liquid-solid suspensions with full resolution of the 

interfaces, we used the lattice-Boltzmann (LB) method [16,17] to solve for the flow of the interstitial 

liquid combined with an immersed boundary method to deal with the no-slip condition at the surfaces of 

the (translating and rotating) spherical particles [17,18]. The specific LB scheme employed here is due to 

Somers [21]. The immersed boundary method provides the hydrodynamic force and torque acting on each 

sphere. These are subsequently used to update the linear and rotational equations of motion of each 

particle. The simulations presented in this paper all have a resolution such that 6a    with   the 

spacing of the uniform, cubic lattice used in the LB method. The choice for this resolution is based on 

earlier papers [22,23] where we compared numerical results with experimental data and performed grid 

refinement studies. Once the spatial resolution is fixed, the temporal resolution of the LB simulations 

goes via the choice of the kinematic viscosity. In all simulations discussed here the viscous time scale 

2a   corresponds to 7200 time steps.  

If the distance between sphere surfaces gets smaller than  , the LB flow solver does not resolve the 

flow dynamics between the spheres anymore. To deal with these short range hydrodynamic interactions 

we determine the radial lubrication force between the spheres (based on Stokes flow in the gap between 

the spheres [24]) that depends on the separation distance, the relative velocity, a and  . A smooth way to 

switch on lubrication, and to saturate lubrication at very small separation has been described in detail in 

[22].    
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The spheres’ equations of linear and rotational motion including resolved and unresolved (i.e. 

lubrication) forces are integrated according to an Euler forward method. These time-step driven updates 

are linked with an event-driven algorithm that detects events related to hard-sphere collisions, and 

attachment and detachment of spheres. Once an event is detected, all particles are frozen and the event is 

carried out which generally implies an update of the linear and angular velocities of the two spheres 

involved in the event. Subsequently all spheres continue moving until the end of the time step, or until the 

next event, whichever comes first. 

 

4 Results 

As compared to our previous paper on aggregation [13], two specific topics are further explored in the 

present paper. In the first place we observe the aggregation process from the perspective of individual 

primary particles. Issues that are considered from this perspective are the size of the aggregates the 

primary spheres are part of and on what time scales this fluctuates; and how the primary particle 

velocities (and velocity fluctuations) relate to the aggregation process. In the second place the effect of 

the strength of the turbulence (as a metric for this we use the volume-averaged power input and via this 

the ratio K a ) on the ASD (including the average aggregate size), and on the fractal dimensions of the 

aggregates has been investigated. Compared to reference [13] the K a -range has been significantly 

extended. The base-case we refer to below is characterized by the dimensionless numbers given in Table 

1.  

Impressions of the simulations, and the aggregates formed are given in Figure 1. In the base-case the 

number of primary particles is 4995 and it is not very instructive to look at all particles in the volume (as 

we do in Figure 1A). The fact that we do simulations, however, allows us to visualize the multiphase 

system in (virtually) any conceivable manner. In Figure 1B the four largest aggregates (an aggregate is 

defined as group of attached spheres) are displayed; it shows open aggregate structures and it emphasises 

the periodic conditions given that the red aggregate is connected through the side boundaries. In Figure 
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1C the particles forming the largest aggregate identified in 1B ( 150aggn  ) are followed in time. Defining 

t=0 as the moment the snapshots 1A and 1B were taken we go back in time 4 K , and ahead in time by the 

same amount. This shows that (re) structuring, “breakage” and aggregation are processes that take place 

on time scales comparable to K . This observation is consistent with the time series in Figure 2. For this 

figure we randomly selected three primary particles and followed them in time. In the middle panel the 

size of the aggregate they are part of is displayed. This is a highly intermittent quantity that also shows 

that the lifetime of large aggregates is mostly very short but in some cases can extend over order 10 

Kolmogorov times. In the top panel of Figure 2 the speed of the same primary spheres is tracked. The 

time scales of speed fluctuations are comparable to those of aggregate size. 

A closer look at Figure 2 and relating its top two panels (as we do in the bottom panel) reveals a 

correlation between aggregate size and velocity: When a primary sphere is part of a larger aggregate is 

tends to move slower which would make sense given the increased solids inertia in the direct environment 

of the primary sphere. To investigate this further and with enhanced statistical significance, velocity 

probability distribution functions (pdf’s) of primary spheres have been determined (based on all particles 

and longer time series as compared to the data in Figure 2), see Figure 3. Instead of aggregate size, we 

distinguish between primary spheres by means of the number of primary spheres they are in contact with 

(symbol cn ). Spheres are attached to up to 7 neighbouring spheres simultaneously. There is a clear 

correlation between cn  and aggregate size, see Figure 4. We indeed see a shift of the pdf’s towards lower 

velocities if a sphere has many spheres attached to it. The pdf’s for the higher cn  (4 and 6) as displayed in 

the left panel of Figure 3 are noisy because they are based on a limited number of occurrences. The shift 

of the pdf’s towards lower speeds is further visualized by plotting the widths of the distributions as a 

function of cn  in the right panel of Figure 3.  

We now turn to ASDs and their dependence on flow conditions and solids properties. To start with 

the latter, Figure 5 shows that seemingly minor detail such as the friction between primary spheres upon 
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colliding has a significant impact on the ASD with on average much smaller aggregates for smooth 

( 0  ) collisions. Note that the collisions in the two cases in Figure 5 have restitution coefficient e=1. If 

0  , however, much linear momentum is converted into angular momentum and since escape from the 

square-well potential is based on kinetic energy contained in translation (not rotation), frictional collisions 

lead (on average) to larger aggregates. 

Potentially more relevant is the effect of changing the energy input – and thus the dissipation – on 

the formation of aggregates. In non-dimensional terms we look at the effect of the Kolmogorov size 

relative to the primary sphere radius ( K a ) on the ASD. The results are summarized in Figure 6. Two 

domain sizes have been used to study this effect: L=256 and L=384. To generate representative turbulence 

including a sufficiently developed cascade that transfers energy from large to small (dissipative) scales a 

sufficiently large ratio KL   is required; typically 100KL   . Since the sphere radius is fixed to 6  (to 

resolve the flow at the particle scale), increasing the ratio K a  requires increasing the domain size L. 

The largest K a  we investigated was 0.36 which implies 2K    and for this simulation we deemed 

L=384 appropriate. A disadvantage of these large domains is that – given finite computational resources – 

we cannot run the simulations over very long times which somewhat limits the quality of the statistics of 

the results. The trends in Figure 6 are, however, clear. Larger aggregates form if K a  gets larger. That 

an increase in K a , and thus a decrease in the dissipation rate indeed implies weaker turbulence is 

shown in Figure 7 where the root-mean-square velocity in the liquid phase is plotted against K a . 

Average aggregate sizes are given in Figure 8. Simulations on the two domain sizes are consistent 

showing good agreement in the region with overlap in terms of K a . 

Finally we analyse the impact of K a  on the morphology of the aggregates. The latter we quantify 

with their fractal dimension (symbol fd ). In our previous paper [13] we followed the common procedure 

for determining fd  based on plotting the radius of gyration ( gR ) of a large collection of aggregates 
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versus the number of primary particles in the aggregate and fitting a power law 
d f

agg gn R  through the 

cloud of points. The width of the cloud and choices to be made in the fitting procedure make this quite an 

ambiguous exercise (see Figure 9). We settled [13] on a fitting procedure such that we only consider 

aggregates with size 4aggn  , and force the fit through the a-priori known average radius of gyration of a 

sphere doublet (for 2aggn  : 1
3

gR

a a


  ) so that only degree of freedom in the fit is fd . This fit is 

given as the straight, solid line in Figure 9. 

Figure 10 shows that the fractal dimension increases with increasing K a . For the K a  ratios 

considered, the turbulent flow is unable to make dense aggregates; fd  does not exceed 1.8 (this value is 

reached for the highest K a =0.361). These are fractal dimensions that are common for diffusion-limited 

aggregation [25]. Turbulent suspension flows with particles much smaller than the Kolmogorov length 

scale ( 1K a ) usually create more dense (higher fd ) aggregates [26]. We speculate that open 

aggregates with  0.1K a O   – as we have here – the motion of primary particles is more erratic, i.e. 

diffusive.    

         

5 Summary and conclusions 

We have presented particle-resolved simulations of aggregating spheres in a fully resolved turbulent flow. 

The primary particle radius is larger than the Komogorov scale ( 1K a  ) which makes the direct 

hydrodynamic environment of the particles inhomogeneous. The focus is on how turbulence interacts 

with the aggregation process. Turbulence plays a dual role: in the first place it promotes collisions that 

potentially lead to aggregation events, in the second place its fluid deformation induces disruptive forces 

on aggregates that can lead to breakage. At the same time, the presence of solids also couples back to the 

turbulence: the solid particles enhance small-scale turbulence, particularly in the moderately dense (solids 

volume fraction of the order of 0.1) suspensions studied here. 
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The turbulence is generated through linear forcing and is resolved down to the Kolmogorov scale. 

The square-well potential as aggregation mechanism was chosen for its simplicity. It only has two 

parameters and can be computationally efficiently combined with an event driven hard-sphere collision 

algorithm. We need the tight coupling between solid and fluid and the high level of detail including 

resolution of the flow around the particles since the Kolmogorov scale is of the same order of magnitude 

as the size of the primary particles and small-scale turbulence and the aggregation process have 

comparable and therefore interacting length scales. We clearly observed how stronger turbulence shifts 

aggregate size distributions towards smaller aggregates.  

The aggregate structures were quantified by their fractal dimension fd . Of large ensembles of 

aggregates, size aggn  and radius of gyration gR  were determined and the relationship 

d f

g

agg

R
n

a

 
 
 

 was 

fitted. This analysis showed wide scatter and related uncertainty in the fitting parameter fd . Despite this 

uncertainty, it is clear that the aggregates have an open structure characterized by low fractal dimension: 

fd  did not exceed 1.8. We explain this by the erratic / diffusive nature of the particle motion in a 

turbulent field where particles are generally larger than the Kolmogorov scale.  

The significance of the results presented in this paper mainly relates to the phenomenology of 

aggregation in turbulence. The abundant detail that is available from the simulations can be used to 

visualize and interpret the data from virtually any perspective. This helps in identifying trends and 

assessing the relative importance of competing physical mechanisms. Examples in this paper are the 

trends regarding K a  with an increase of (average) aggregate sizes and fractal dimension with 

increasing K a .  

At the same time, the conditions in the simulations are highly idealized (spherical particles, a 

simple interaction potential, homogeneous isotropic turbulence) making the road towards simulating real, 

physical, and practically relevant systems far from trivial. Further research could focus on (step-by-step) 

adding complication to the simulations, the first candidate being a more physically realistic interaction 
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potential / attractive force between particles. Validation through designing idealized physical experiments 

is a desirable future research direction as well.    
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Figure 1. Impressions of the base-case simulation. A: Single realization showing all spheres in the 

domain colored by the size of the aggregate they are part of (red: 4aggn  ; yellow: 4 7aggn  ; green: 

7 10aggn  ; blue: 10aggn  ). B: The four biggest aggregates (red: 60aggn  , yellow: 150aggn  , green 

65aggn  , blue: 105aggn  ; the red aggregate connects through the periodic boundaries). C: Evolution of 

the largest (yellow) aggregate in panel B shortly before and after its formation; different colors are 

different aggregates.  
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Figure 2. Top and middle: time series from a primary sphere perspective. Middle: size of an aggregate 

the primary sphere is part of. Top: absolute velocity of the primary sphere. The three colors are three 

different (randomly selected) spheres. Bottom: correlation of aggn  and 
pv  based on the time series. 

Base-case simulation. 
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Figure 3. Left: primary particle velocity probability density functions (pdf’s) for all particles and for 

particles with a specified number of contacts ( cn ). Right: width of the pdf’s as a function of cn . Base-

case conditions. Time averaging over a time window of 215a   after steady state was reached. 
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Figure 4. The average size of the aggregate a primary sphere having cn  contacting spheres is part of. 

Base-case conditions. Time averaging over a time window of 215a   after steady state was reached.  
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Figure 5. Aggregate size distributions by mass for the base-case (that has ) and a case with the 

same conditions excepts that 0 .  
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Figure 6. ASDs by mass for L=256 (left) and 384 (right) domains, effect of K

a


. Time averaging over 

a time window of 215a   (for L=256) and 24.7a   (L=384) after steady state was reached. 
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Figure 7. Average particle-based Reynolds number ,Re rms
rms a

u a


  as a function of K

a


 for two 

different domain sizes (as indicated). Base case conditions. 
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Figure 8. Average agglomerate size as a function of K a . Results for two different domain sizes as 

indicated. Base-case conditions except for K a . 
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Figure 9. Radius of gyration 
gR

a
 versus aggregate size aggn . Base-case. Dots: individual aggregates. Red 

line: fit according to 
d f

agg gn R  with fd  the fractal dimension and only degree of freedom in the fit (see 

text for details). The fit only considers aggregates with 4aggn  . 
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Figure 10. Fractal dimension as a function of K a . Results for two different domain sizes as 

indicated. Base-case conditions except for K a . 
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Table 1. Base-case input settings. 

p


 

  
K

a


 

a


 

u




 

e   

4.0 0.08 0.129 0.05 0.30 1.0   

     


