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Abstract

Wastewater treatment plays an important role in the sustainable development of our

society. A wastewater treatment plant (WWTP) is typically a large-scale nonlin-

ear process composed of several interconnected operating units. To meet the strict

environmental regulations, to ensure the operation safety and to reduce the operat-

ing cost, it is highly desired to monitor and operate WWTPs effectively. However,

significant variations in the inlet flow rate and wastewater compositions have made

the monitoring and control of WWTPs a very challenging task. Centralized eco-

nomic model predictive control (EMPC) approach has been proposed to improve the

control performance based on the economic considerations. However, the high com-

putational complexity caused by solving the associated EMPC optimization problem

can render the online implementation of this method intractable. In recent years,

the distributed framework has been considered to be a promising framework to im-

prove the applicability of EMPC for large-scale processes. Model linearization and

model order reduction are also widely used to reduce the computational complexity

of complex control problems.

This thesis focuses on improving the computational efficiency of EMPC for WWTPs.

Two distributed EMPC designs are presented in this thesis. In the first design, the

centralized model is used in each subsystem EMPC controller design; and in the

second design, a subsystem model is used in each subsystem EMPC design. The

performance of these two distributed EMPC designs are compared with a centralized

model predictive control (MPC) scheme and a centralized EMPC scheme from dif-

ferent aspects including effluent quality, operating cost, and computational efficiency.

It is found through vast simulations that the distributed EMPC with subsystem con-

troller designed based on the entire system model is more favorable in terms of control

performance.
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Model reduction methods are also applied to the WWTP process in this thesis.

In particular, the trajectory piecewise linear model and the order reduced trajectory

piecewise linear model are used to approximate the original nonlinear system model.

Two EMPC designs are proposed based on the two models. The approximated model

accuracy are compared with the original nonlinear model. The performance of these

two EMPC designs are compared with the EMPC based on the nonlinear model from

control performance and computational efficiency points of view. We also investigate

how the number of linearization points affect the EMPC control performance and

computational efficiency through these applications. It is shown that there is a trade-

off between the control performance and computational efficiency. The EMPC design

based on the order reduced trajectory piecewise linear (TPWL-POD) model is more

favorable since it significantly reduces the computational cost although degrades the

control performance slightly.
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Chapter 1

Introduction

1.1 Motivation

Wastewater treatment plants (WWTPs) have been widely used to recycle wastewa-

ter in order to minimize its adverse environmental impacts. A typical WWTP is a

large-scale nonlinear process consisted of a series of interconnected biological reac-

tors and a secondary settler. While meeting the strict requirements in environmen-

tal regulations, ensuring the process safety and minimizing the cost of operation, a

wastewater treatment plant should be well monitored and regulated [1]. However,

significant variability of inlet flow rates and wastewater compositions leads to the

increased complexity in the design of advanced control and monitoring schemes for

WWTPs [2].

In the past decades, several control approaches have been proposed for WWTPs.

In [3], proportional-integral (PI) controllers were designed for a nutrient removal

WWTP operated under different control modes. In [4], PI controllers were designed

to meet the effluent concentration criterion for WWTP. In [5], two tuning methods

of PID controllers were proposed for the control of dissolved oxygen concentration in

the activated sludge process. Although the PI controllers can be easily implemented,

they cannot handle complex constraints or optimality considerations. To address

these limitations, model predictive control (MPC) has attracted much research at-

tention during the past decades. MPC predicts the future behaviour of the plant and
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optimizes the control performance based on an explicit model [6]. At each control in-

terval, the trajectories of future manipulated control inputs are generated by solving a

finite horizon optimal control problem [7]. In [8–10], simultaneous design and control

methods for wastewater treatment process were proposed based on MPC. In [11], a

multi-variable feedback MPC controller was proposed for the Benchmark Simulation

Model No.1 (BSM1), and the tuning of this MPC was discussed. MPC schemes were

used to control the oxygen concentration in [12] and [13]. In [14] and [15], set-point

tracking MPC was applied to a WWTP to increase the plant efficiency, and in [16]

it was applied to reduce the power usage as well. While set-point tracking MPC can

force concerned states towards the desired set-point, it does not explicitly consider

the associated operating cost. As a result, the set-point operation of these existing

methods may lead to increased operating cost. An alternative way to address the

regulation of WWTP is to use economic MPC (EMPC). By using a more general

cost function, EMPC is capable of handling the economic considerations explicitly.

In [17], a centralized EMPC approach was proposed to improve the effluent quality

and to minimize the overall operating cost. It is worth mentioning that the high

computational complexity caused by solving the associated optimization problem can

render the online implementation of this method intractable. Also, the relatively poor

fault tolerance of a centralized control system is yet another factor that hinders its

implementation.

To improve the applicability of the EMPC for large-scale processes, a natural

consideration is to employ a distributed framework. A typical distributed control

method divides a large problem into smaller sub-problems such that the evaluation

of each controller can be made much less computationally demanding. Each local

controller evaluates the optimal control input trajectories based both on local infor-

mation and information exchanged with other controllers. The use of a distributed

framework can also lead to improved fault tolerance, maintenance flexibility as well

as computational efficiency [18, 19, 21, 22]. Reviews and methods on distributed con-
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trol based on model predictive control can be found in [18–21, 23–26]. During the

past several years, distributed EMPC has become a heated research topic. In [27],

a distributed EMPC method was introduced for alkylation of benzene process net-

work. The EMPC controller was also applied in a distributed scheme for nonlinear

systems in [28]. In [29], a distributed EMPC strategy was applied to a catalytic re-

action process, and a Lyapunov-based distributed EMPC with safety considerations

was proposed for this process in [30]. In [31], a distributed economic MPC scheme

was implemented for cooperative control of self-interested systems.

Applying a linear approximated model to the original nonlinear system is another

way to improve the computational efficiency of EMPC for large-scale processes. A

lot of achievements have been made on the use of approximated models in MPC.

The work of [32] applied feedback linearization to the plant and then used MPC in

a cascade arrangement for the resulting linear system. The nonlinear programming

problem is reduced to a quadratic optimization problem which can improve the com-

putational efficiency. The implementation of MPC with a different linear model at

each time step derived from a local (Jacobian) linearization of the nonlinear plant

was first proposed in [33]. Extended Kalman filter was proposed to be added to

this approach to deal with the unstable nonlinear process and ensure a better distur-

bance rejection in [34] and [35]. This idea is further developed in [36], contraction

constraints were applied and the explicit stability conditions were derived. In [37],

one technique was proposed to approximate the nonlinear system with a linear time

varying (LTV) model, which is obtained from a linearization of the system along the

predicted system trajectory. In [38] and [39], a novel MPC algorithm was proposed

which can significantly reduce the online computational demand. The approach is to

only compute the first control move while approximating the rest of control moves by

using a linear controller.

Model order reduction techniques can significantly abate the complexity of the

nonlinear system while conserve the dominant dynamics of the process [40]. The
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proper orthogonal decomposition (POD) method is extensively used in data analysis

for approximating the high-dimensional process by low-dimensional descriptions [41].

The POD method has been widely applied in control in chemical engineering [42–46].

In [47], a state estimation scheme was established for WWTPs using POD-based

model approximation. In [48] and [49] a reduced order model based on the POD-

Galerkin projection method is constructed for economic MPC. With the reduced

order model, the computational time is significantly reduced. In [50], a nonlinear

system is represented by a piecewise-linear system and each of the pieces are reduced

with a Krylov projections.

Motivated by the success of distributed EMPC and model reduction in different

applications, in this thesis, we first apply distributed EMPC to WWTPs to address

the computational complexity of a centralized EMPC. At the same time, we inves-

tigate through this application a few issues that have not been well addressed in

the distributed EMPC literature: (a) how to decompose subsystems for distributed

EMPC, (b) how the model used in each individual controller may affect the perfor-

mance of the distributed EMPC. We also apply the trajectory piecewise linearization

and a combination of trajectory piecewise linearization and proper orthogonal decom-

position method to WWTPs to derive low-order linear model, which are subsequently

used for EMPC controller design. The model accuracy, computational time, and eco-

nomic control performance of the WWTP process under these EMPC controllers are

compared in this thesis.

1.2 Thesis outline and contributions

The outline of the thesis and the contributions of each chapter are described as follows:

Chapter 2 is a preliminary chapter which provides the description of the notations

and terms used in this thesis. The detailed wastewater treatment plant model used

in the thesis is also described in this chapter.

In Chapter 3, the description of the WWTP process and its performance indices

4



are provided. The decomposition of the WWTP for distributed control is presented.

Two different distributed EMPC are designed and the performance of these controllers

is compared under dry, rainy and stormy weather conditions.

In Chapter 4, a modified WWTP process model is introduced. The trajectory

piecewise linearization methodology and order reduced trajectory piecewise lineariza-

tion method are presented. Two EMPC controllers are designed based on these

models. The control performance and computation efficiency of these controllers are

compared in dry weather condition.

The last chapter, Chapter 5 provides the summary on the results of this thesis

and discusses the potential directions for future research work.
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Chapter 2

Preliminaries

2.1 Terms and Definitions

Some of the key terms used throughout this thesis are listed and explained in this

section.

• WWTP: wastewater treatment plant

• BSM1: benchmark simulation model No.1

• ASM1: activated sludge model No.1

• EQ: effluent quality

• OCI: operating cost index

• MPC: model predictive control

• EMPC: economic model predictive control

• DEMPC: distributed economic model predictive control

• DEMPCS: DEMPC based on subsystem model

• DEMPCE: DEMPC based on entire system model

• TPWL: trajectory piecewise linearization

6
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Figure 2.1: A schematic of the wastewater treatment plant

• POD: proper orthogonal decomposition

• SVD: singular value decomposition

• TPWL-POD: order reduced TPWL using POD method

In this thesis, the plant or entire system or nonlinear system means the whole

system, while the subsystem indicates the distributed operating units that have their

own controllers. Local is used to indicate the objects which belong to subsystems,

such as local controller, local subsystem model, etc. A local controller refers

to the local EMPC in a subsystem in the distributed control network. Centralized

EMPC refers to the entire system is controlled by one controller.

2.2 WWTP description and modeling

2.2.1 Model description

A schematic diagram of a WWTP based on the BSM1 is presented in Figure 2.1 [2].

The process comprises a multi-chamber biological activated sludge reactor and a

secondary settler. The biological reactor has two sections: the non-aerated section

containing the first two anoxic chambers and the aerated section consisting of the

remaining three chambers. In particular, pre-denitrification reactions where nitrate

is turned into nitrogen by using bacteria and oxygen attached to nitrate ions take place

7



Table 2.1: Definition and notation of the process variables of the WWTPs

Definition Notation Unit

inert soluble organic matter SI g COD ·m−3

inert particulate organic matter XI g COD ·m−3

readily biodegradable and soluble substrate Ss g COD ·m−3

slowly biodegradable and soluble substrate Xs g COD ·m−3

biomass of active autotrophs XBA
g COD ·m−3

biomass of active heterotrophs XBH
g COD ·m−3

particulate generated from decay of organisms XP g COD ·m−3

particulate biodegradable organic nitrogen XND g N ·m−3

nitrite nitrogen and nitrate SNO g N ·m−3

free and saline ammonia SNH g N ·m−3

biodegradable and soluble organic nitrogen SND g N ·m−3

dissolved oxygen SO g (-COD) ·m−3

alkalinity SALK mol ·m−3

total sludge concentration in settler X g COD ·m−3

in the non-aerated section, while nitrification processes during which ammonium is

oxidized into nitrate by using bacteria occur in the aerated section. Eight processes

of the biological behaviour taking place in the reactor [2]. The Activated Sludge

Model No.1 (ASM1) is used to describe the biological phenomena taking place in the

biological reactor [51].

In the process, wastewater enters the first chamber of the biological reactor at flow

rate Q0 and concentration Z0. A portion of the effluent of the last aerobic chamber is

recycled back (inner recycle) to the first chamber at flow rate Qa and concentration

Za, while the rest is fed into the settler at flow rate Qf and concentration Zf . The

settler comprises 10 nonreactive layers, the 6-th layer of which is the feed layer. The

outlets of the settler are made up of three parts: (a) the overflow of the settler which

contains purified water removed continuously through the first layer at flow rate Qe;

(b) a portion of the underflow of the settler fed back into the first chamber (outer
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recycle) at flow rate Qr; (c) the remaining portion of the underflow discharged from

the settler at flow rate Qw. In this model, eight basic biological reaction processes

are considered, and 13 major compounds involved in these reactions are taken into

account. The concentrations of the 13 compounds in the five chambers constitute the

state variables of the model of the biological reactor. We present the definitions of

the 13 state variables for each chamber in Table 2.1.

In the work, two manipulated inputs are taken into account, i.e., the flow rate of

the recirculation stream (i.e., Qa) and the oxygen transfer rate in the fifth chamber

of the reactor (i.e., KLa5).

A more detailed description of the process model and the process parameters are

reported in following subsection [2].

2.2.2 Dynamic model of WWTP

The dynamics of the WWTP process based on BSM1 model can be described by a

total of 145 ordinary differential equations. In particular, each of the reactor com-

partments can be described by 13 differential equations according to the first 13 state

variables defined in Table 2.1, and the dynamics of each layer in the secondary settler

can be described by 8 ordinary differential equations. The state variables considered

in the secondary settler are: total sludge concentration X (i.e., a weighted summa-

tion of XI , XS, XP , XB,H and XB,A), SI , SS, SNO, SNH , SND, SO, and SO. The

parameter values of this process model used in this thesis are presented in Table 2.2.

Dynamics of the biological reactors

The dynamics of the biological reactors are described based on mass balance as fol-

lows:

For compartment k (k = 1) of the biological reactor:

dZ1

dt
=

1

V1

(QaZa +QrZr +Q0Z0 + r1V1 −Q1Z1) (2.1a)

Q1 = Qa +Qr +Q0 (2.1b)

9



Table 2.2: Parameter value of the model

V1 (volume of chamber 1) 1000 m3

V2 (volume of chamber 2) 1000 m3

V3 (volume of chamber 3) 1333 m3

V4 (volume of chamber 4) 1333 m3

V5 (volume of chamber 5) 1333 m3

Qw (Underflow discharge flow rate) 385 m3/d

Qr (Outer recycle flow rate) 18446 m3/d

Vs (Volume of settler) 6000 m3

A (Cross-sectional area of settler) 1500 m2

KLa3 (Oxygen transfer coefficient of chamber 3) 240 d−1

KLa4 (Oxygen transfer coefficient of chamber 4) 240 d−1

Hs (Height of settler) 4 m

Hj j = 1, . . . , 10 (Height of each layer) 0.4 m

Nlayer (Number of layers) 10

For compartment k (k = 2, . . . , 5) of the biological reactor:

dZk
dt

=
1

Vk
(Qk−1Zk−1 + rkVk −QkZk) (2.2a)

Qk = Qk−1 (2.2b)

Special case for concentration SO,k, k = 1, . . . , 5, (the concentration of dissolved

oxygen in compartment k of the biological reactor):

dSO,k
dt

=
1

Vk
(Qk−1SO,k−1 + rkVk +KLakVk(S

∗
O − SO,k)−QkSO,k) (2.3)

Some concentration and flowrate relationships inside the process:

Za = Z5 (2.4a)

Zf = Z5 (2.4b)

Zw = Zr (2.4c)

Qf = Q5 −Qa = Qe+Qr +Qw = Qe +Qu (2.4d)
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In Eq. (2.1), Eq. (2.2), Eq. (2.3), and Eq. (2.4), Zk is the concentration of the

compounds defined in Table 2.1 in kth compartment of the biological reactor, Vk rep-

resents the volume of kth compartment, S∗O is the saturation concentration for oxygen

and is equal to 8 g.m−3, and KLak represents the oxygen transfer coefficient in kth

compartment, since compartments 1 and 2 of the reactor are anoxic compartments,

KLa1 = KLa2 = 0 d−1 [2].

In Eq. (2.1), Eq. (2.2), and Eq. (2.3), rk denotes the observed conversion rates of

the compound in kth compartment, and it can be expressed as follows:

• SI (i = 1):

r1 = 0 (2.5)

• SS (i = 2):

r2 = − 1

YH
ρ1 −

1

YH
ρ2 + ρ7 (2.6)

• XI (i = 3):

r3 = 0 (2.7)

• XS (i = 4):

r4 = (1− fp)ρ4 + (1− fp)ρ5 − ρ7 (2.8)

• XB,H (i = 5):

r5 = ρ1 + ρ2 − ρ4 (2.9)

• XB,A (i = 6):

r6 = ρ3 − ρ5 (2.10)
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• XP (i = 7):

r7 = fPρ4 + fPρ5 (2.11)

• SO (i = 8):

r8 = −1− YH
YH

ρ1 −
4.57− YA

YA
ρ3 (2.12)

• SNO (i = 9):

r9 = −1− YH
2.86YH

ρ2 +
1

YA
ρ3 (2.13)

• SNH (i = 10):

r10 = −rXBρ1 − iXBρ2 − (iXB +
1

YA
)ρ3 + ρ6 (2.14)

• SND (i = 11):

r11 = ρ11 − ρ6 + ρ8 (2.15)

• XND (i = 12):

r12 = (iXB − fP iXP )ρ4 + (iXB − fP iXP )ρ5 − ρ8 (2.16)

• SALK (i = 13):

r13 = −iXB
14

ρ1 + (
1− YH

14× 2.86YH
− iXB

14
+

1

7YA
)ρ3 +

1

14
ρ6 (2.17)

where ρk, k = 1 to 8, stands for the eight biological processes of the system, and it

can be shown as follows:

• Aerobic growth of heterotrophic biomass XB,H :

ρ1 = µH(
SS

KS + SS
)(

SO
KO,H + SO

)XB,H (2.18)
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• Anoxic growth of heterotrophic biomass (denitrification):

ρ2 = µH(
SS

KS + SS
)(

KO,H

KO,H + SO
)(

SNO

KNO + SNO
)ηgXB,H (2.19)

• Aerobic growth of autotrophic biomass XB,A (nitrification):

ρ3 = µA(
SNH

KNH + SNH
)(

SO
KO,A + SO

)XB,A (2.20)

• Decay of heterotrophic biomass:

ρ4 = bHXB,H (2.21)

• Decay of autotrophic biomass:

ρ5 = bAXB,A (2.22)

• Ammonification of soluble organic nitrogen:

ρ6 = kaSNDXB,H (2.23)

• Hydrolysis of entrapped organics:

ρ7 = kh
XS/XB,H

KX + (XS/XB,H)

[
(

SO
KO,H + SO

) + ηh(
KO,H

KO,H + SO
)(

SNO
KNO + SNO

)

]
XB,H

(2.24)

• Hydrolysis of entrapped organic nitrogen:

ρ8 = kh
XS/XB,H

KX + (XS/XB,H)

[
(

SO
KO,H + SO

)(
SNO

KNO + SNO
)

]
XB,H(XND/XS)

(2.25)

Table 2.3 presents the stoichiometric parameter values and Table 2.4 shows the

kinetic parameter values used in the above biological process expressions. The bio-

logical parameter values shown bellow correspond approximately to a temperature of

15 ◦C.
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Table 2.3: Stoichiometric parameter values

Parameter Unit Value

YA g cell COD formed (g N oxidized)−1 0.24

YH g cell COD formed (g COD oxidized)−1 0.67

fP dimensionless 0.08

iXB g N (g COD)−1 in biomass 0.08

iXP g N (g COD)−1in particular products 0.06

Table 2.4: Kinetic parameter values

Parameter Unit Value

µH d−1 4.0

KS g COD m−3 10.0

KO,H g (-COD) m−3 0.2

KNO g NO3-N m−3 0.5

bH d−1 0.3

ηg dimensionless 0.8

ηh dimensionless 0.8

kh g slowly biodegradable COD (g COD d)−1 3.0

KX g slowly biodegradable COD (g COD)−1 0.1

µa d−1 0.5

KNH g NH3-Nm−3 1.0

bA d−1 0.05

KO,A g (-COD)m−3 0.4

ka m3(g COD d)−1 0.05

Dynamics of the secondary settler

The model for the secondary settler is established based on the assumption that the

dynamics of the particulate concentrations of the inlet to the settler can immediately

diffuse to the top and the bottom layers of the settler; that is, the sludge retention

time in the settler is neglected. The dynamics of the settler is modeled based on mass

balances of the sludge considering solid flux due to gravity [52].
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The dynamics of the sludge based on mass balance can be shown as follows:

For the bottom layer m = 1:

dX1

dt
=
νdn(X2 −X1) + min(Js,2, Js,1)

z1

(2.26)

For layers m = 2 to m = 5:

dXm

dt
=
νdn(Xm+1 −Xm) + min(Js,m, Js,m+1)−min(Js,m, Js,m−1)

zm
(2.27)

For the feed layer m = 6 :

dX6

dt
=

(QfXf )/A+ Jclar,7 − (νup − νdn)Xm −min(Js,m, Js,m−1)

zm
(2.28)

For layers m = 7 to m = 9:

dXm

dt
=
νup(Xm−1 −Xm) + Jclar,m+1 − Jclar,m

zm
(2.29)

For the top layer m = 10:

dX10

dt
=
νup(X9 −X10)− Jclar,10

z10

(2.30)

In the above equations, the term Jclar,j (j = 1 to 7) is assumed to be:

Jclar,j = νs,jXj (2.31)

The solid flux due to gravity (Js) can be calculated as:

Js = νs(X)X (2.32)

where X is the total sludge concentration.

The settling velocity νs(X) is computed based on a double-exponential settling

velocity function as follows [52]:

νs(X) = ν0(e−rh(X−Xmin) − e−rp(X−Xmin) (2.33)

Xmin = fnsXf (2.34)
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In the settling velocity function Eq. (2.33), the value for parameters ν0, rh, rp,

and fns are equal to 474, 0.000576, 0.00286, and 0.00228, respectively. The term Xf

is calculated as follows:

Xf = 0.75(XS,5 +XP,5 +XI,5 +XB,H,5 +XB,A,5) (2.35)

The dynamics for the soluble components (including dissolved oxygen) can be

shown as follows:

For layers m = 1 to m = 5:

dZm
dt

=
νdn(Zm+1 − Zm)

zm
(2.36)

For the feed layer m = 6:

dZ6

dt
=

(QfZf )/A− (νdn + νup)Z6

z6

(2.37)

For layers m = 7 to m = 10:

dZm
dt

=
νup(Zm+1 − Zm)

zm
(2.38)

In the above eqeuations Eq. (2.26) to Eq. (2.38), νdn and νup are defined as follows:

νdn =
Qu

A
=
Qr +Qw

A
(2.39)

νup =
Qe

A
(2.40)

2.3 Conclusions

In this chapter, the definitions of the notations and terms used in this thesis are given,

and a detailed wastewater treatment plant model used in this thesis is introduced.

The introduced BSM1 model is used as the process model in Chapter 3, and a modified

BSM1 model is used as the process model in Chapter 4.
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Chapter 3

Distributed economic model
predictive control of wastewater
treatment plants 1

3.1 Introduction

In this chapter, we apply distributed EMPC to a WWTP described by BSM1. After

the description of the WWTP process and its performance indices, we consider the

decomposition of the WWTP for distributed control which is the basis of a successful

distributed design [55, 58, 60, 61]. The entire plant is decomposed into two subsys-

tems for distributed EMPC design. The decomposition takes into account both the

topology of the process and the need in distributed control system design as well

as computational consideration. Based on the decomposed subsystems, we design

distributed EMPC. For each subsystem, a local EMPC is designed. We consider

two different distributed EMPC designs. In one design, the entire centralized plant

model is used in each local controller; in the other case, each subsystem EMPC is

designed based on the corresponding local subsystem model. The control objective

of each local controller is to minimize the economic control cost, and the economic

control cost function is determined as a weighted summation of the effluent quality

(EQ) and the operating cost index (OCI). The computational efficiency of the two

1This chapter is a revised version of “A. Zhang, X. Yin, S. Liu, J. Zeng, and J. Liu, Distributed
economic model predictive control of wastewater treatment plants. Chemical Engineering Research
and Design, 141:144-155, 2019”
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distributed EMPC designs is also investigated and compared with centralized EMPC.

It is found through extensive simulations that the distributed EMPC with subsystem

controller designed based on the entire system model is more favorable in terms of

control performance.

3.2 Preliminaries

3.2.1 Compact form of the system model

The BSM1 model for the wastewater treatment plants can be written in the following

compact form:

ẋ(t) = f (x(t), u(t), p(t)) (3.1)

where x ∈ R145 is the state vector of the process, u = [u1 u2]T = [Qa KLa5]T ∈ R2 is

the input vector containing the two manipulated inputs, and p ∈ R14 is the known

input vector containing the influent information of inlet flowrate Q0 and concentration

Z0. The system states and inputs satisfy the following constraints: x ∈ X, and u ∈ U,

where X and U are compact sets.

3.2.2 Performance evaluation criteria

The quality of the settler effluent and the overall operating cost are two essential

features for performance assessment of a WWTP. The two features can be quanti-

tatively assessed by two performance indices, i.e., the effluent quality (EQ) which

is obtained by calculating the average amount of the pollutants discharged, and the

overall cost index (OCI) which incorporates the factors that substantially contribute

to the operating costs. The two indices are also important for evaluating the perfor-

mance of different control schemes. In the following, the concepts of EQ and OCI are

introduced in detail.
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Table 3.1: Values of the weighting coefficients of EQ Index

Weighting

coefficient
βSS βCOD βNKj βNO βBOD fp iXB iXP

Value 2 1 30 10 2 0.08 0.08 0.06

Effluent quality

In BSM1, EQ (kg pollution unit · day−1) represents the daily average of a weighted

summation of the effluent concentrations of several compounds, which significantly

affect the quality of the processed water according to regional regulations. Specifically,

the EQ index is evaluated as follows:

EQ =
1

T · 1000

∫ tf

t0

βSS · SSe(t) + βCOD · CODe(t) + βNKj · SNKj,e(t)

+ βNO · SNO,e(t) + βBOD · BODe(t)

Qe(t)dt

(3.2)

where

SSe =0.75
(
XS,e +XBA,e +XBH ,e +XI,e +XP,e

)
CODe =SI,e + SS,e +XS,e +XI,e +XBH ,e +XBA,e +XP,e

BDOe =0.25
(
SS,e +XS,e + (1− fp) (XBA,e +XBH ,e)

)
SNKj,e =SND,e + SNH,e +XND,e + iXB

(
XBA,e +XBH ,e

)
+ iXP

(
XI,e +XP,e

)
In Eq. (3.2), t0 and tf denote the initial and final time instants of the evalua-

tion horizon; T := tf − t0 is the length of the horizon, and is usually selected to be

T = 7 days; SS represents the concentration of suspended solids, COD is chemical

oxygen demand, BOD denotes the biological oxygen demand, and SNKj denotes the

concentration of Kjeldahl nitrogen; βSS, βCOD βNKj, βNO and βBOD represent the

weighting coefficients used to calculate EQ; fp, iXB, and iXP are stoichiometirc pa-

rameters. The corresponding values are listed in Table 3.1 [53] and the subscript “e”

refers to the effluent of the secondary settler.
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Overall cost index

The total operating cost required for processing wastewater is another important

factor in performance evaluation. Factors that have major effects on the operating

cost include the sludge production that needs to be disposed, the energy required for

aerating and pumping, external carbon consumption as well as mixing energy.

The sludge production (SP) is defined as the average amount per day (kg · day−1)

of the solids produced in the process over the evaluation horizon T , including the

solids discharged through the wastage flow Qw from the settler and the sedimentary

solids in a WWTP plant.

SP =
0.75

T · 1000

∫ tf

t0

(
XS,w(t) +XI,w(t) +XBA,w(t) +XBH ,w(t) +XP,w(t)

)
Qw(t)dt

+
1

T · 1000
(SS(tf )− SS(t0))

(3.3)

In Eq. (3.3), the subscript “w” refers to the wastage outlet of the secondary settler.

The aeration energy (AE) (kWh·day−1) is associated with several plant character-

istics, including the diffuser type, the submersion depth, the bubble size, etc. AE is

calculated based on the oxygen transfer rates (i.e., KLai, i = 1, . . . , 5) by considering

an immersion depth of 4m as follows:

AE =
Ssato

T · 1800

∫ tf

t0

5∑
i=1

Vi ·KLai(t)dt (3.4)

where I := {i| i ∈ {1 2 3 4 5}} , Vi denotes the volume of the i-th chamber of the

sludge reactor, and KLai denotes the oxygen transfer rate in the i-th chamber. Ssato

denotes the saturation concentration of oxygen and its value is 8g/m3.

The pumping energy (PE) (kWh · day−1) represents the energy consumed by the

pumps used for inner recycle (i.e., Qa) and outer recycle (i.e., Qr). PE is calculated

as below:

PE =
1

T

∫ tf

t0

(
0.004Qa(t) + 0.05Qw(t) + 0, 008Qr(t)

)
dt (3.5)
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The mixing energy (ME) (kWh · day−1) denotes the energy consumed for mixing

the compounds in the anoxic chambers to avoid the occurrence of settling. ME is

calculated depending on the volume of each chamber and the oxygen transfer rates:

ME =
24

T

∫ tf

t0

(∑
i∈I

0.005 · Vi

)
dt (3.6)

where I := {i| i ∈ {1 2 3 4 5}}.

The overall cost index (OCI) approximates the total cost for WWTP operation

by taking a weighted summation of the listed major factors as follows:

OCI = 5 · SP + AE + PE + ME (3.7)

3.2.3 Economic control objective

The economic control objective for EMPC is defined as

l(x, u) = leco(x, u) + δu (3.8)

In Eq. (3.8), leco(x, u) is the economic index to be minimized in entire system and

is defined as:

leco (x(τ), u(τ)) =
(
αEQÊQ(τ) + αOCIÔCI(τ)

)
(3.9)

where ÊQ and ÔCI are the two economic index: EQ and OCI which are defined in

Eq. (3.2) and Eq. (3.7) respectively. αEQ and αOCI are two weighting coefficient for

effluent quality index and operating cost index.

In Eq. (3.8), δu is used to penalize the changing rate of input u and its description

will be presented in the formulation of local EMPC design.

3.3 Subsystem decomposition of the WWTP

In this section, we aim at decomposing the WWTP into subsystems for distributed

EMPC design.
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3.3.1 Guidelines for subsystem decomposition

When performing subsystem decomposition, we follow three guidelines as below: (a)

it is required to have at least one manipulated input variable in each configured

subsystem; (b) it is expected that the subsystem decomposition result does not violate

the process topology; (c) it is favorable to have similar numbers of state variables in

the configured subsystems.

The considerations behind the guidelines are explained as follows. First, one dis-

tributed EMPC controller will be designed for each subsystem. Therefore, we require

that each subsystem is assigned with at least one input such that each formulated

subsystem EMPC has at least one decision variable selected from the available ma-

nipulated inputs. Second, it is better not to decompose the state variables from the

same physical unit into different subsystems, or else the communication and mainte-

nance complexity of the subsystem controller will be increased significantly. Third,

the subsystem controllers are designed based on an EMPC algorithm, of which the

computational complexity is non-negligible in implementation. Having similar num-

bers of state variables in the subsystems can help achieve balanced computational

loads for the subsystem EMPC controllers.

3.3.2 Subsystem configuration results

Since there are only two manipulated inputs in the WWTP, the process is decom-

posed into two subsystems. One subsystem is assigned with input Qa while the other

subsystem is assigned with input KLa5. Taking into account the process topology

and the numbers of states in each physical unit, the two subsystems are configured

as follow.

• Subsystem 1: Chamber 1 to Chamber 4

• Subsystem 2: Chamber 5 and the secondary settler

Within this configuration, we assign Qa to the first subsystem as this input directly
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affects the dynamics of the first chamber from a topological point of view. Similarly,

KLa5 is assigned to the second subsystem since this input is associated with the

process through Chamber 5 which belongs to the second subsystem. The numbers of

the states of the first subsystem and the second system are 52 and 93, respectively.

Remark 3.3.1 It is possible to include one or more manipulated inputs, and use ex-

isting subsystem decomposition methods (e.g., [54, 55]) to decompose the process into

three subsystems with more balanced scales. It is also possible to apply the decompo-

sition methods [56–60] to obtain the optimal distributed control structure where the

numbers of subsystem states may be made more similar. In [2] where the BSM1 model

for the WWTP was originally reported, two variables (i.e., the flow rate of the recir-

culation stream denoted by Qa and the oxygen transfer rate in the fifth chamber of the

reactor denoted by KLa5) are suggested as common manipulated inputs. In this chap-

ter, we consider the two manipulated inputs and aim to design two local controllers

accordingly. We would like to note that the computational complexity of the two local

controllers is not vastly different, which will be shown through simulation results in

Section 3.6.2.

3.3.3 Subsystem model

The model of each decomposed subsystem of wastewater treatment plant can be

described in the following form:

ẋi(t) = fi(x1(t), x2(t), u1(t), u2(t), p(t)) i = 1, 2 (3.10)

where x1 ∈ R52 and x2 ∈ R93 are the states vectors of subsystem 1 and subsystem 2,

respectively. u1 = Qa is the manipulated input to subsystem 1 and u2 = KLa5 is the

manipulated input to subsystem 2.

23



System

EMPC 1 EMPC 2

!" !#$ $

!"

!#

Figure 3.1: A diagram of the proposed DEMPC based on the entire system model

3.4 Distributed EMPC design based on the entire

system model

Two different distributed EMPC (DEMPC) designs are considered. In the first de-

sign, the entire system model is used for local controller design; in the second design,

the subsystem model is used. In this section, the distributed EMPC with each EMPC

designed based on the entire system model for the WWTP is presented. The control

objective is to minimize the economic control cost. Figure 3.1 shows a diagram of the

DEMPC design based on the entire system model. During each sampling period, the

two EMPC controllers receive state measurements from the plant and communicate

with each other to exchange future manipulated inputs trajectories iteratively. The

evaluation and communication protocol is supposed to satisfy the following require-

ments: (1) the two controllers are evaluated simultaneously and synchronously every

sampling period; (2) at each sampling time tk≥0, subsystem controller i, i = 1, 2, has

access to the state measurement of the entire system x(tk) immediately; (3) The two

controllers can exchange the latest future input trajectories immediately.

3.4.1 Implementation Strategy

The implementation strategy of the proposed iterative distributed EMPC design

based on the entire system model for WWTPs is described by the following algo-

rithm:
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Algorithm 3.4.1 Implementation algorithm for distributed EMPC based on the en-

tire system model

1. At each sampling time tk≥0, set c = 1, let the i-th EMPC controller receive entire

system state measurements x(tk), let u
(0)
i (τ |tk) = u∗i (τ |tk−1), τ ∈ [tk, tk+N),

where u∗i (τ |tk−1) denotes the optimal input trajectory at instant tk−1, and do

the following steps:

1.1. The i-th EMPC controller sends the future input trajectories generated

from the previous iteration c−1 (i.e., u
(c−1)
i (τ |tk), τ ∈ [tk, tk+N), i = 1 , 2)

to the other controller.

1.2. The i-th subsystem EMPC controller evaluates the future control input tra-

jectory u
(c)
i (τ |tk), i = 1, 2 based on the input trajectories from the previous

iteration u
(c−1)
j , j 6= i.

1.3. If c = q or |u(c)
i (τ |tk)− u(c−1)

i (τ |tk)| < ε, then:

Let u∗i = u
(c)
i (τ |tk), and go to Step 2.

Else, do:

Set c = c+1, and go to Step 1.1.

2. The i-th EMPC controller sends the first control input of the manipulated input

(u∗i (tk|tk)) to the actuator.

In Algorithm 3.4.1, c ≥ 1 denotes the number of iteration steps, and is bounded

by q which is the maximum iteration steps. The value of q should be pre-determined.

The termination condition for Algorithm 3.4.1 may also be improved such that the

iteration ends either when it achieves the pre-set maximum iteration number q or

when the difference in the calculated u in two consecutive iterations is small than

the pre-set threshold value ε. At time instant t0, each EMPC controller i, i = 1, 2,

is initialized with steady-state values of the inputs of its interacting subsystems as a

conservative approximation.
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In Step 1, the optimal future input trajectory of the i-th EMPC controller at

instant tk−1 is assumed as follow:

u∗i (τ |tk−1) = u∗i (tk+N−2|tk−1), τ ∈ [tk+N−1, tk+N) (3.11)

Eq. (3.11) assumes that the optimal control input which is one sampling interval

beyond the control horizon at tk−1 is the same as the last input within that control

horizon in the first iteration evaluation of each sampling time.

3.4.2 Local EMPC design

The optimization problem for EMPC i, i = 1, 2, developed based on the entire system

model at tk in iteration c is formulated as follows:

u
(c)
i (τ |tk) = arg min

ui(τ)∈Si(∆)

∫ tk+N

tk

l (x̃(τ), u(τ)) dτ (3.12a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), p(τ)) (3.12b)

x̃(tk) = x(tk) (3.12c)

uj(τ) = u
(c−1)
j (τ), j 6= i (3.12d)

ui(τ) ∈ Ui (3.12e)

x(τ) ∈ X (3.12f)

In the optimization problem Eq. (3.12), u
(c)
i (τ |tk) denotes the optimal solution to this

problem. Eq. (3.12a) is the objective function for the i-th EMPC controller where N

is the control horizon, l is the global economic index being defined in Eq. (3.8), Si(∆)

denotes a class of piecewise-constant functions, and u(τ) is equal to [u1(τ) u2(τ)]T for

τ ∈ [tk, tk+N). Eq. (3.12b) is the entire system model. In Eq. (3.12c), the predicted

state trajectory is initialized with the state measurement at the current sampling

time (i.e., x(tk)) at each iteration. The future input trajectory in Eq. (3.12a) and

Eq. (3.12b) is a concatenated vector of ui(τ) and uj(τ), and Eq. (3.12d) updates

uj(τ |tk) with u
(c−1)
j (τ |tk), j ∈ {1, 2}\{i}, where u

(c−1)
j (τ |tk) denotes the future input

trajectory received from the other EMPC controller generated in previous iteration
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step c− 1, and “\” denotes the set substraction. Eq. (3.12e) and Eq. (3.12f) impose

constraints on the manipulated inputs and states to subsystem i, i = 1, 2.

In Eq. (3.8), the second term penalizes the rate of change of inputs, and is defined

as follows:

δu(t) = |u(t)− u(tj−1)|2R , t ∈ (tj−1, tj] , j ∈ (k, k +N ] (3.13)

where R is the weighting coefficient for the changing rate of inputs.

Once the optimization problem in Eq. (3.12) is solved, a trajectory of ui is ob-

tained. The first step value is applied to the process; that is, the manipulated input

applied to the system is with the following form:

ui(t) = u∗i (t|tk), t ∈ [tk, tk+1) , i = 1, 2 (3.14)

Note that when c = 1, the future input sequence received from previous iteration step,

u
(c−1)
i (τ |tk), τ ∈ [tk, tk+N), is set to be the optimal trajectory received at time instant

tk−1, u∗i (τ |tk−1), τ ∈ [tk, tk+N) with the input value u∗i (t|tk−1) for t ∈ [tk+N−1, tk+N)

is defined in Eq. (3.11).

Remark 3.4.1 Since the WWTP is a large-scale complex process with high nonlin-

earity, and its operation is subject to significant variations of the influent flow rates

and compositions, it is highly possible that the optimal solution to each EMPC prob-

lem is not unique. The penalty on the rate of change of the inputs (which is defined

in the Eq. (3.13)) can help avoid too significant fluctuation in the input sequence and

achieve a unique solution when solving the optimization problem. The magnitude of

the penalty and discussions on how the economic performance is affected by different

values of the weight R are presented in Section 3.6.2.

Remark 3.4.2 Including a slack variable and imposing soft constraints on the rate

of change of the input could be another promising way to design local controllers. In

this chapter, we have not considered this type of designs. We choose to penalize the
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Figure 3.2: A diagram of the proposed DEMPC based on the subsystem model

rate of change of the control input in the objective function. If we introduce another

slack variable and impose additional soft constraints on the rate of change of the

inputs, the design of each local controller could be more conservative and the extent

of the conservativeness depends on the constraints on the introduced slack variables.

In future research, we may investigate this case, and compare the control performance

between the two different designs.

3.5 DEMPC design based on the subsystem model

In this section, we discuss the proposed distributed EMPC with each local controller

designed based on the subsystem model for the WWTP. A diagram of the proposed

DEMPC scheme based on the subsystem model is given in Figure 3.2. An EMPC

controller is developed for each subsystem. The two EMPC controllers exchange infor-

mation in terms of manipulated inputs, subsystem state measurements and predicted

future states with each other iteratively, and communicate with WWTP to receive

the state measurements at the beginning of each time instant. The evaluation and

communication protocol satisfies similar requirements as described in Section 3.4.
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3.5.1 Implementation strategy

An implementation algorithm for the proposed distributed EMPC design based on

the subsystem models for the WWTP is described as follows:

Algorithm 3.5.1 Implementation algorithm for distributed EMPC based on the sub-

system models

1. At each sampling time tk≥0, set c = 1, let the i-th EMPC controller receive

subsystem state measurements xi(tk). Let u
(0)
i (τ |tk) = u∗i (τ |tk−1), and x̃

(0)
i (τ |tk)

= x̃∗i (τ |tk−1), where u∗i and x̃∗i denotes the optimal input trajectory and optimal

predicted state trajectory generated at time instant tk−1 respectively. Do the

following steps:

1.1. The i-th EMPC controller sends the predicted states evaluated at previous

iteration c−1 (i.e., x̃
(c−1)
i (τ |tk), τ ∈ [tk, tk+N)) and future input trajectories

generated from previous iteration c− 1 (i.e., u
(c−1)
i (τ |tk), τ ∈ [tk, tk+N)) to

the other controller.

1.2. The i-th subsystem EMPC controller evaluates the future control input

trajectory u
(c)
i (τ |tk), i = 1, 2 and predicted state trajectories x̃

(c)
i (τ |tk) based

on the input and state trajectories from previous iteration (i.e., x̃
(c−1)
j (τ |tk),

and u
(c−1)
j (τ |tk), j 6= i) .

1.3. If c = q or |u(c)
i (τ |tk)− u(c−1)

i (τ |tk)| < ε, then:

Let u∗i = u
(c)
i (τ |tk), and go to Step 2.

Else, do:

Set c = c+1, and go to Step 1.1.

2. The i-th EMPC controller sends the first control input of the manipulated input

u∗(tk|tk) to the actuator.

At time instant t0, each EMPC controller i, i = 1, 2, is initialized with steady-

state values of the states and the inputs of its interacting subsystems as a conservative
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approximation. In step 1 of Algorithm 3.5.1, the optimal future input value u∗i (τ |tk−1)

for τ ∈ [tk, tk+N) is defined with the same assumption shown in Eq. (3.11) and the

corresponding predicted state x̃∗i (τ |tk−1) can be then evaluated from the subsystem

model for τ ∈ [tk+N−1, tk+N).

3.5.2 Subsystem EMPC formulation

The proposed distributed EMPC based on the subsystem model is designed to opti-

mize the economic control objective. The optimization problem for EMPC i, i = 1, 2

developed based on the subsystem model at time instant tk in iteration c is formulated

as follows:

u
(c)
i (τ |tk) = arg min

ui(τ)∈Si(∆)

∫ tk+N

tk

l (x̃(τ |tk), u(τ |tk)) dτ (3.15a)

s.t. ˙̃xi(τ) = fi(x̃i(τ), x̃j(τ), ui(τ), uj(τ), p(τ)) (3.15b)

x̃i(tk) = xi(tk) (3.15c)

uj(τ) = u
(c−1)
j (τ), j 6= i (3.15d)

x̃j(τ) = x̃
(c−1)
j (τ), j 6= i (3.15e)

ui(τ) ∈ Ui (3.15f)

xi(τ) ∈ Xi (3.15g)

In optimization problem Eq. (3.15), let u
(c)
i (τ |tk) denotes the optimal solution to this

problem. Eq. (3.15a) is the objective function of i-th EMPC controller. Eq. (3.15b)

accounts for the i-th subsystem model. Eq. (3.15c) shows the predicted state value at

time instant tk is initialized with the state measurement (i.e., xi(tk)) in each iteration.

Eq. (3.15d) and Eq. (3.15e) show the future input trajectory uj and predicted state

trajectory x̃j in the optimization problem of i-th controller are the value receive from

last iteration c − 1 of j-th controller for j ∈ {1, 2} \ {i}, respectively. Eq. (3.15f)

and Eq. (3.15g) are the constraints on the subsystem inputs and states. The process

input is assumed to be piece-wise constant, and the optimal future input trajectory

at sampling time tk−1 is extended by assuming u∗i (t|tk−1) for t ∈ [tk+N−1, tk+N) to be
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equal to u∗i (tk+N−2|tk−1) and the predicted state x∗i (τ |tk) can be calculated from the

process model Eq. (3.15b).

A trajectory of ui is achieved after the optimization problem of Eq. (3.15) is

solved. The first step value of the the input sequence is applied to the process and

the manipulated input of the system is defined as follows:

ui(t|tk) = u∗i , t ∈ [tk, tk+1) , i = 1, 2 (3.16)

At c = 1, we have u
(c−1)
i (τ |tk) = u∗i (τ |tk−1), and x̃

(c−1)
i (τ |tk) = x∗i (τ |tk−1), for τ ∈

[tk, tk+N). As introduced in Eq. (3.11) from Algorithm 3.4.1, the optimal future

input trajectory is assumed to remain constant as its last evaluated value when the

prediction time goes one sampling interval beyond the optimization window, and the

predicted state value trajectory for that time period is then generated based on the

subsystem model Eq. (3.15b) with the input value.

Remark 3.5.1 If the maximum iteration number q is equal to one, the distributed

EMPC design can be called as “non-iterative distributed EMPC”. The implementation

algorithm for non-iterative distributed EMPC may follow the same procedure with

“c = 1” condition in Algorithm 3.4.1 for the design based on the entire system model

and “c = 1” condition in Algorithm 3.5.1 for the design based on the subsystem model.

Remark 3.5.2 The WWTP is an open-loop stable process. In our distributed EMPC

designs mentioned in Section 3.4 and Section 3.5, we have imposed constraints on the

manipulated inputs. we have carried out extensive simulations to generate the state

trajectories of the process using various manipulated input trajectories that satisfy the

imposed input constraints. We found that the states of the system remain bounded in

all the simulations. Therefore, the stability of the proposed DEMPC methods can be

ensured due to the inherent property of the WWTP. The stability of distributed EMPC

methods is a of vital importance problem and needs to be appropriately addressed. We

may carry out theoretical stability analysis for distributed EMPC designs in future

work.
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Remark 3.5.3 Recursive feasibility can be ensured for the two developed distributed

EMPC schemes in simulations. In this chapter, the hard constraints imposed on the

system states are mild. Specifically, we require that all the system states should take

non-negative values during the operation. If the initial condition is properly selected,

the feasibility of our proposed distributed EMPC designs can be achieved. Moreover,

we have found by carrying out extensive simulations with different settings that the

recursive feasibility of the distributed EMPC design based on the centralized model

is easier to achieve compared to that of the DEMPC design based on the subsystem

model.

3.6 Simulation results

In this section, the proposed control strategies introduced in Section 3.4 and Sec-

tion 3.5 are applied to the BSM1 model under different weather conditions.

3.6.1 Simulation settings

The data files for the wastewater treatment process are provided by the International

Water Association Website [66]. The data files contain the influent information of

inlet flowrate Q0, and the concentration Z0 under dry, rainy and stormy weather

conditions. Figure 3.3 shows the inlet flowrate under different weather conditions.

The dynamic influent concentration data under dry, rain and storm conditions are

shown in Figure 3.4, Figure 3.5 and Figure 3.6, respectively.

Under each weather condition, the initial condition is picked as optimal steady

state value under the corresponding weather condition, respectively. Table 3.2 and

Table 3.3 show the initial condition under dry weather profile in the biological reactor

and the secondary settler, respectively. According to [2], the simulation time is set

to be 14 days and the simulation results of last 7 days will be used to evaluate the

performance index. For the three weather profiles, the main difference lies in the last

7-day period while the first 7-day information is the same. Therefore, we consider only
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Figure 3.3: Inlet flowrate under different weather conditions
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Figure 3.4: Concentration Z0 under dry weather condition
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Figure 3.5: Concentration Z0 under rain weather condition
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Figure 3.6: Concentration Z0 under storm weather condition

34



Table 3.2: Initial conditions in biological reactor of the WWTPs in dry weather condition

Notation Unit Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5

SI gCOD/m3 30 30 30 30 30

Ss gCOD/m3 3.02 1.53 1.17 0.98 0.85

XI gCOD/m3 1149.15 1149.15 1149.15 1149.15 1149.15

Xs gCOD/m3 89.42 82.27 66.48 54.73 46.83

XBH
gCOD/m3 2551.87 2553.51 2558.79 2561.25 2561.08

XBA
gCOD/m3 150.19 150.08 150.94 151.72 152.08

XP gCOD/m3 448.05 448.94 450.13 451.31 452.50

SO g(-COD)/m3 0 0 1.70 2.47 0.71

SNO gN/m3 4.31 2.13 6.06 9.73 11.38

SNH gN/m3 9.57 10.12 6.27 2.83 1.18

SND gN/m3 1.29 0.86 0.83 0.76 0.67

XND gN/m3 5.68 5.38 4.50 3.84 3.39

SALK mol/m3 5.12 5.32 4.76 4.55 4.02
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Table 3.3: Initial conditions in secondary settler of the WWTPs in dry weather condition

Notation X SI Ss SO SNO SNH SND SALK

Unit
gCOD

/ m3

gCOD

/ m3

gCOD

/ m3

g(-COD)

/ m3
gN/m3 gN/m3 gN/m3 mol/m3

Layer 1 6396.71 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 2 356.18 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 3 356.18 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 4 356.18 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 5 356.18 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 6 356.18 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 7 68.99 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 8 29.54 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 9 18.12 30 0.85 0.71 11.38 1.18 0.67 4.02

Layer 10 12.50 30 0.85 0.71 11.38 1.18 0.67 4.02

the last 7-day operation when we evaluate the control performance. The sampling

time of the simulation is set to be ∆ = 15 min. Control performance of the proposed

DEMPC is investigated under different simulation settings in terms of control horizon

and maximum iteration steps.

The performance of the proposed control schemes is assessed using three measures:

the effluent quality level, the average economic cost and the average computation

time over the full operating period. The effluent quality level assessment contains

two main parts: effluent quality (EQ) and the government legislation level. For

government legislation, five effluent concentrations are considered: the total nitrogen

(Ntot) which is the sum of SNO,e and SNKj,e, total suspended solid (TSSe), ammonia

(SNH,e), chemical oxygen demand (CODe), and biological oxygen demand (BODe).

As introduced in [2], the flow-weighted average effluent concentrations should be

within the limits shown in Table 3.4. The percentage of time the effluent concentration
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Table 3.4: Effluent limits

Ntot CODe SNH,e TSSe BODe

18 gNm−3 100 g COD m−3 4 gNm−3 30 gSSm−3 10 gBODm−3

limits are not met must be reported.

The weighting parameters αEQ and αOCI in the economic index Eq. (3.9) are

set to be 1 and 0.3. The weighting coefficient R in Eq. (3.13) is determined to be

0.1. The threshold value ε used in the termination condition in Algorithm 3.4.1 and

Algorithm 3.5.1 is set to be 10−4. For all control designs, the manipulated input u

should be within the constraint that u1 (i.e., internal recycle flow rate Qa) is bounded

by 0 to 5 times Q0,stab (18446 m3day−1), and the other input u2 (i.e., oxygen transfer

coefficient KLa5) is constrained by 0 to 240 day−1.

3.6.2 Results of dry weather condition

The performance of four control schemes is evaluated under dry weather condition.

The four control schemes are centralized MPC, centralized EMPC, DEMPC based

on the entire system model (DEMPCE), and DEMPC based on the subsystem model

(DEMPCS).

The trajectories of the instantaneous effluent quality level under centralized MPC,

centralized EMPC, non-iterative DEMPCE, and non-iterative DEMPCS with control

horizon N = 40 are shown in Figure 3.7. Based on the average EQ value shown in

Figure 3.7, DEMPCE shows comparable EQ value with centralized EMPC, lower EQ

value than MPC, and much lower EQ value than DEMPCS. The EQ, OCI and the

average economic cost are then evaluated for the four discussed control schemes with

N = 40, and these values are shown in Table 3.5. The percentage change in terms

of the average economic cost of centralized EMPC, non-iterative DEMPCS and non-

iterative DEMPCE compared with centralized MPC is also shown in Table 3.5. Since

the objective is to minimize the average economic cost, the smaller average economic
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Figure 3.7: Trajectories of the instantaneous effluent quality level in dry weather condition
with N = 40 under centralized MPC, centralized EMPC, non-iterative DEMPCE, and non-
iterative DEMPCS

cost stands for better performance.

Figure 3.8 and Figure 3.9 show the trajectories of the manipulated input Qa and

KLa5 given by centralized MPC, centralized EMPC, non-iterative DEMPCE and non-

iterative DEMPCS with control horizon N = 40, respectively. All of the manipulated

inputs are within their constraints. The average computation time consumed over

the full operating period is calculated based on 10 repetitive simulation runs. The

average computation time over the full operating period of centralized MPC, cen-

tralized EMPC, non-iterative DEMPCS and non-iterative DEMPCE when N = 40
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Figure 3.8: Trajectories of the manipulated input Qa in dry weather condition with N = 40
under centralized MPC (blue solid line), centralized EMPC (black solid line), non-iterative
DEMPCE (red dashed line), and non-iterative DEMPCS (dash dotted line)

is 6.86 × 104, 3.23 × 105, 7.94 × 104, 2.56 × 105 seconds, respectively. The average

computation time consumed by the non-iterative DEMPCS is 75.42% less than cen-

tralized EMPC and 68.98% less than non-iterative DEMPCE. The main reason is that

the decomposed subsystem model reduces the size of the optimization problem. We

would like to note that the computational complexity of the two local controllers using

the distributed EMPC design based on the subsystem model is not vastly different.

Specifically, when N = 40, the average computation time for one-time evaluation

of the controller for subsystem 1 is approximately 39.58 seconds and the average

computation time for the controller of subsystem 2 is around 59.03 seconds.

Considering the government legislation, the mean value of flow-weighted average

effluent concentration (i.e., Ntot, TSSe, SNH,e, CODe, and BODe ) under the four

mentioned control schemes over the simulation time are shown in Table 3.6. The

values in this table are all within the effluent limits shown in Table 3.4. Figure 3.10

shows the instantaneous effluent concentration of COD, TSSe, and BODe under
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Figure 3.9: Trajectories of the manipulated input KLa5 in dry weather condition with
N = 40 under centralized MPC (blue solid line), centralized EMPC (black solid line),
non-iterative DEMPCE (red dashed line), and non-iterative DEMPCS (dash dotted line)

Table 3.5: Control performance comparison between centralized MPC, centralized EMPC,
distributed EMPC based on the subsystem model (DEMPCS) and distributed EMPC based
on the entire system model (DEMPCE) (N = 40) in dry weather condition

Centralized

MPC

Centralized

EMPC
DEMPCS DEMPCE

EQ (kg pollution /day) 6111.22 5833.83 6331.52 5827.77

OCI 16186.34 16244.14 16196.82 16697.62

Average economic cost 0.1097 0.1071 0.1119 0.1084

Percentage change

compared to centralized MPC
- -2.43% 2.00% -1.20%

different control schemes and the concentrations are always under the limits. However,

as shown in Figure 3.11, Ntot and SNHe exceed the concentration limit over several

time periods under the four control schemes. The effluent concentration limit is

described by the solid green line in each subplot of Figure 3.10 and Figure 3.11.
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The percentage of the time when the Ntot restriction is not satisfied is calculated

to be: 5.5%, 12.0%, 7.5% and 17.4% for centralized MPC, EMPC, DEMPCE and

DEMPCS, respectively. The percentage of the time when SNHe exceeds limit is

32.24%, 14.86%, 18.87%, and 36.84% for centralized MPC, EMPC, DEMPCS and

DEMPCE, respectively. We note that due to significantly fluctuating inlet flow rates,

it is very challenging to fulfill the environmental regulations continuously. Feasibility

issues might arise if the limits are considered in the centralized MPC, centralized

EMPC and distributed EMPC designs [17].

Table 3.6: Average effluent concentration under centralized MPC, centralized EMPC,
non-iterative distributed EMPC based on subsystem model and non-iterative distributed
EMPC based on entire model (N = 40)

Centralized MPC Centralized EMPC DEMPCS DEMPCE

Ntot (g/m3) 15.18 15.94 16.35 15.24

CODe (g/m3) 48.30 48.28 48.33 48.29

SNH,e (g/m3) 2.76 2.76 2.77 2.77

TSSe (g/m3) 13.03 13.04 13.04 13.03

BODe (g/m3) 2.76 2.75 2.77 2.76

We also consider different sizes of the control horizon for the two DEMPC designs.

Table 3.7 shows the control performance given by the two proposed schemes. The

economic performance is improved for both DEMPCE and DEMPCS as N increases.

The performance improvement is significant as N increases from 20 to 40. However,

the performance slightly improves as N increases from 40 to 60.

Further simulations are also performed for DEMPCE and DEMPCS under N = 60

to investigate the influence of the terminated iteration number q. Table 3.8 shows

the simulation results of DEMPCE and DEMPCS under q = 1 (non-iterative), q = 3,

and q = 5, respectively. In terms of EQ, OCI and average economic cost, the con-

trol performance does not change too much when the terminated iteration number

increases from 1 to 5 for both DEMPCE and DEMPCS. However, the average com-
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Figure 3.10: Trajectories of COD, TSSe, and BODe in dry weather condition with
N = 40 under MPC (dotted line), centralized EMPC (solid line), DEMPCE (dashed line),
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Figure 3.11: Trajectories of Ntot and SNHe in dry weather condition with N = 40 under
centralized MPC (red dotted line), centralized EMPC (blue solid line), DEMPCE (purple
dashed line), and DEMPCS (yellow dashdot line)
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Table 3.7: Control performance in dry weather condition under non-iterative DEMPCE
and non-iterative DEMPCS with different control horizons

EQ

(kg pollution

unit/day)

OCI
Average

economic cost

Average

computation

time (s)

N = 20
DEMPCE 9710.17 15562.54 0.1438 1.12× 105

DEMPCS 6838.24 16023.11 0.1165 2.02× 104

N = 30
DEMPCE 6397.11 16049.64 0.1121 1.88× 105

DEMPCS 6420.46 16114.70 0.1126 4.57× 104

N = 40
DEMPCE 5827.77 16697.62 0.1084 2.56× 105

DEMPCS 6331.53 16196.83 0.1119 7.94× 104

N = 60
DEMPCE 5806.45 16295.36 0.1069 5.68× 105

DEMPCS 6308.39 16226.32 0.1117 2.26× 105

putation time increases significantly as the maximum iteration number q increases.

Based on the consideration of computational efficiency, the non-iterative distributed

EMPC designs are preferred for the wastewater treatment process.

We also investigate how the average economic cost is affected by different values of

the weighting coefficient R based on DEMPCE with N = 40. The average economic

cost equals to 0.1059, 0.1073, 0.1079, 0.1083, 0.1113 and 0.1115 when the R value

equals to 0.001, 0.01, 0.05, 0.1, 0.5 and 1. Therefore, using a comparatively small

weight R when penalizing the changing rate of the input for the WWTP can lead to

better economic performance. In the meantime, we also find that the average compu-

tation time increases noticeably when R value decreases. We would like to improve

the economic performance and reduce the computational complexity. Hence, we make

a trade-off between the computational complexity and the economic performance by

setting R=0.1 in our distributed EMPC designs.
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Table 3.8: Control performance in dry weather condition under DEMPCE and DEMPCS
with different iteration numbers (N = 60)

EQ

(kg pollution

unit/day)

OCI

Average

economic

cost

Average

computation

time (s)

Non-iterative

(q = 1)

DEMPCE 5806.45 16295.36 0.1069 5.68× 105

DEMPCS 6308.39 16226.32 0.1117 2.26× 105

q = 3
DEMPCE 5804.32 16294.76 0.1068 1.80× 106

DEMPCS 6307.30 16226.07 0.1117 7.22× 105

q = 5
DEMPCE 5804.41 16293.97 0.1068 2.89× 106

DEMPCS 6308.14 16223.99 0.1117 1.13× 106

Table 3.9: Control performance comparison between centralized MPC, centralized EMPC,
distributed EMPC based on the subsystem model (DEMPCS) and distributed EMPC based
on the entire system model (DEMPCE) (N = 40) in rain weather condition

Centralized

MPC

Centralized

EMPC
DEMPCS DEMPCE

EQ (kg pollution /day) 8121.86 8010.41 8565.83 7995.05

OCI 15974.65 15969.22 15867.61 15968.70

Ntot (g/m3) 13.99 14.35 15.02 14.30

CODe (g/m3) 52.65 52.66 52.72 52.65

SNH,e (g/m3) 3.11 2.70 3.50 2.69

TSSe (g/m3) 16.24 16.24 16.24 16.24

BODe (g/m3) 3.47 3.47 3.49 3.47

Average economic cost 0.1291 0.1280 0.1333 0.1280

Percentage change compared

to centralized MPC
- -0.86% 3.15% -0.86%

Average computation time (s) 8.79× 104 3.77× 105 8.47× 104 3.50× 105

3.6.3 Results of rainy and stormy weather profile

In this subsection, we also evaluate the control performance of centralized MPC,

centralized EMPC, DEMPCE and DEMPCS under rainy weather and stormy weather
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Table 3.10: Control performance comparison between centralized MPC, centralized
EMPC, distributed EMPC based on the subsystem model (DEMPCS) and distributed
EMPC based on the entire system model (DEMPCE) (N = 40) in storm weather con-
dition

Centralized

MPC

Centralized

EMPC
DEMPCS DEMPCE

EQ (kg pollution /day) 7146.7 7014.54 7574.48 6979.09

OCI 17120.66 17133.14 17055.59 17169.07

Ntot (g/m3) 14.66 15.22 15.80 15.40

CODe (g/m3) 51.46 51.46 51.52 51.45

SNH,e (g/m3) 3.29 2.69 3.73 2.52

TSSe (g/m3) 15.35 15.35 15.36 15.35

BODe (g/m3) 3.22 3.22 3.24 3.22

Average economic cost 0.1228 0.1215 0.1269 0.1212

Percentage change compared

to centralized MPC
- -1.07% 3.23% -1.24%

Average computation time (s) 9.15× 104 5.00× 105 9.68× 104 3.89× 105

conditions. The flow rate and the concentration of the influent flow of wastewater

vary differently in rainy and stormy days compared with dry days.

Table 3.9 and Table 3.10 show the control performance of the four control schemes

under rainy and stormy weather conditions. In the assessment of control performance,

we consider EQ, OCI, average economic cost, the flow-weighted average effluent con-

centration (Ntot, CODe, SNH,e, TSSe, and BODe), and the average computation time

consumed over the full operating period. The percentage change in terms of average

economic cost of each control schemes compared to centralized MPC is also shown

in each table. All of the average effluent concentrations are within the limitations

and the instantaneous effluent concentration of Ntot and SNHe sometimes may ex-

ceed the restriction value which is the same as the case under dry weather condition.

From the result values in Table 3.9 and Table 3.10, DEMPCE provides comparable

average economic cost with centralized EMPC, and much lower average economic
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cost than centralized MPC. DEMPCS saves more computation time but with some

control performance loss compared to other three control schemes.

3.7 Conclusions

In this chapter, distributed economic MPC (EMPC) is proposed for WWTPs de-

scribed by BSM1. The WWTP is decomposed into two subsystems from the perspec-

tives of physical topology and computational complexity. Two distributed EMPC

schemes are developed. In the first design, each local EMPC controller uses a central-

ized model; and in the second design, each local EMPC controller uses a subsystem

model. We have compared the performance of the two proposed DEMPC schemes

with centralized MPC, centralized EMPC under different weather conditions. The

simulation results show that the distributed EMPC based on the entire system model

can achieve very similar control performance as centralized EMPC with average com-

putation time reduced by 21%. The distributed EMPC based on the subsystem model,

can improve the computation efficiency by 75% compared with the centralized EMPC.

However, the control performance of the second design is degraded by approximately

5% compared with the first design where local controllers are developed based on the

entire system model. The DEMPC based on the subsystem model can significantly

reduce the computation load with a little degradation of control performance.
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Chapter 4

Economic MPC of wastewater
treatment plants based on model
reduction

4.1 Introduction

In this chapter, we apply two model approximation methods to a WWTP process de-

scribed by a modified nonlinear BSM1 model to overcome the intensive computation.

Two computationally efficient models are obtained based on trajectory piecewise lin-

earization (TPWL) model and reduced order TPWL model. To obtain the reduced

order TPWL model, a proper orthogonal decomposition (POD) based method is uti-

lized. Further, the reduced order model is linearized to obtain a TPWL-POD model.

The objective is to design controllers which minimize the overall economic cost. Ac-

cordingly, we design EMPC controllers based on each of the models. The economic

control cost can be described as a weighted summation of effluent quality (EQ) and

overall operating cost (OCI). We compare the accuracy of the two proposed approx-

imation models with different linearization point numbers. We evaluate the average

computation time for the two proposed EMPC controllers and make comparisons with

the EMPC based on the nonlinear model. We also investigate how the number of

linearization points involved in TPWL model and TPWL-POD model affects the con-

trol performance in terms of average performance cost and the average computation
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Separator

Figure 4.1: A schematic of the wastewater treatment plant

time.

4.2 Preliminaries

4.2.1 WWTP process description and modeling

The WWTP process model is based on a modified BSM1 benchmark model consisting

of a five-compartment activated sludge reactor and an ideal separator. It is similar

to the model described in Section 2.2, yet the secondary settler is replaced by a

membrane filtration unit while the five sludge reactors remain unchanged [62]. The

schematic diagram of this process is shown in Figure 4.1 [2, 62].

The dynamics of WWTP based on the modified BSM1 model can be described by

78 ordinary differential equations. The dynamics of each compartment of the reactor

and the ideal separator can be described by 13 differential equations according to

13 state variables defined in Table 2.1. The parameter values of this process model

are reported in [2] and Table 2.2 shows the model parameters used in this chapter.

The ideal separator is assumed to be a membrane filtration unit and no biological

activity exists in it [62]. All soluble compounds (i.e.,SI , SS, SO, SNO, SNH , SND,

and SALK) are assumed to be well-mixed in the separator, and all solid compounds

(i.e.,XI , XS, XB,H , XB,A, XP , and XND) are assumed to precipitate in the bottom

of the separator [63]. Based on mass balance, the dynamics of the separator unit
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(k = 6) can be described as follows:

For soluble compounds in the separator unit (k = 6):

dZk
dt

=
1

Vk
(QfZf +QeZe +QrZr +QwZw) (4.1)

Ze = Zr = Zw = Zk (4.2)

Zf = Zk−1 = Zk (4.3)

For solid compounds in the separator unit (k = 6):

dZk
dt

=
1

Vk
(QfZf +QrZr +QwZw) (4.4)

Zr = Zw = Zk (4.5)

Zf = Zk−1 = Zk (4.6)

The flow rates of each stream in Figure 4.1 can be described as follows:

Q1 = Q2 = Q3 = Q4 = Q5 (4.7)

Q1 = Qa +Qr +Q0 (4.8)

Qf = Q5 −Qa = Qe +Qr +Qw = Qe +Qu (4.9)

Q0 = Qe +Qw (4.10)

4.2.2 Compact form of the system model

The modified BSM1 model for the wastewater treatment plant can be described in

the following compact form:

ẋ(t) = f(x(t), u(t)) (4.11)

where x ∈ R78 is the vector of process states, u ∈ R3 represents the input vector

consisting manipulated inputs and the uncontrolled inputs. The manipulated inputs

are the flow rate of the recirculation stream (i.e., Qa) and the oxygen transfer rate in

the fifth compartment of the biological reactor (i.e., KLa5), respectively. The uncon-

trolled inputs contain the influent information under different weather conditions.

49



4.2.3 Economic control objective

The economic control objective is defined as follows:

leco(x(τ), u(τ)) = αEQÊQ(τ) + αOCIÔCI(τ) (4.12)

where ÊQ is the economic index effluent quality (EQ) which is calculated as the aver-

age amount of the pollutants discharged, and is defined in Eq. (3.2). ÔCI represents

the average amount of the economic index overall cost index (OCI) which contains

the factors that affect the operating costs significantly, and it is defined in Eq. (3.7).

αEQ and αOCI are two weighting coefficients for EQ and OCI, respectively.

4.3 Trajectory piecewise linear (TPWL) model

In this section, the trajectory piecewise linear model approach is introduced and the

trajectory piecewise linear model is presented. The steps to generate the piecewise

linear model are also shown in this section.

4.3.1 Piecewise Linear Representation

A linearized model for the nonlinear system can be obtained at a steady-state point

(xs, us) as follows:

dx

dt
= f(xs, us) + A(x− xs) +B(u− us) (4.13a)

A =
∂f

∂x
|xs,us (4.13b)

B =
∂f

∂u
|xs,us (4.13c)

where A is the Jacobian matrix of system f(x, u) evaluated at the steady-state.

The simple linearized model can be used to approximate weakly nonlinear systems

with less computational cost [50]. The approximated result of the linearized model

usually depends on the range of inputs. If the system is a highly nonlinear system, the

simple linearized model which is only linearized at one point would be less accurate.
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The main idea of the piecewise linear model approach is to generate a weighted

combination of linear models which are linearized at appropriately selected states of

the original nonlinear system. Compared with the system which is linearized at one

single point, the system consisting a combination of multiple linearizations would

generate a better approximation result for a more complex nonlinear system.

Assuming that s linearized models have been generated for the nonlinear system

Eq. (4.11) at points (xi, ui), i = 0, 1, . . . , (s− 1):

dx

dt
= f(xi, ui) + Ai(x− xi) +Bi(u− ui) (4.14a)

Ai =
∂f

∂x
|xi,ui (4.14b)

Bi =
∂f

∂u
|xi,ui (4.14c)

A weighted combination of the linearized models in the form of Eq. (4.14) of the

nonlinear system leads to the following representation:

dx

dt
=

s−1∑
i=0

wi(x)(f(xi, ui) + Ai(x− xi) +Bi(u− ui)) (4.15)

where the weight wi(x) is a state dependent variable and it can be computed from

the distance between current state x and the linearized point xi [50].

4.3.2 Generation of piecewise linear model

The trajectory piecewise linear model is developed based on a fixed trajectory of the

entire nonlinear system. The fixed trajectory is generated by simulating the nonlinear

system based on a fixed training input u. Let us consider that we have generated a

fixed trajectory of the nonlinear system, and the initial state x0 is given. The selection

of linearization points can be shown as follows:

Algorithm 4.3.1 Algorithm for finding the linearization points of piecewise linear

model:

1. Define S = {0, 1, . . . , N} and Sp = {}.

51



2. Set i = 0 and Sl = {xi}.

3. If S 6= Sp, then:

3.1. Set xi as one of the linearization points.

3.2. For each j ∈ S \ Sp,

3.2.1 Calculate the distance between point xj and the linearization point xi,

dj = ‖xj − xi‖2.

3.2.2 If dj ≤ δ (δ > 0), then:

Sp = Sp ∪ {j}.

Else, do:

Sp = Sp.

3.3. Select kmin such that kmin = arg min
k
{dk|k ∈ S \ Sp}.

3.4. Set i = kmin, set Sl = Sl ∪ {xi}. Go to Step 3.1.

Else, end.

In the above algorithm, the “\” denotes set subtraction such that A \ B := {x|x ∈

A, x 6∈ B}. N is the number of sampled points on this fixed trajectory. Sl is the set

of the linearization points. The δ value is a pre-determined distance threshold, and

it can be determined in the following algorithm:

Algorithm 4.3.2 Determination of the pre-determined distance threshold δ value

algorithm:

1. Find the maximum distance between any of the two points on the trajectory,

dj = ‖xj − xh‖2, j, h ∈ {0, 1, . . . , N}.

2. Set δ = dmax/s.

In the above algorithm 4.3.2, s is the number of models supposed to be generated.

The state dependent weight wi(x) shown in Eq. (4.15) can be computed as follows

[50]:
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Algorithm 4.3.3 Computation algorithm for the state dependent weight parameter

wi(x):

1. At each linearization point (xi, ui), compute the distance di = ‖x− xi‖2.

2. Find the minimum value among di, m = mini=0,...,(s−1)di.

3. For i = 0, . . . , (s− 1) compute ŵi = e−βdi/m.

4. Compute the summation of ŵi, S(x) =
∑s−1

j=0 ŵi(x).

5. Compute the normalized parameter wi(x) = ŵi(x)
S(x)

.

In the above approach, β is a positive constant value. The weighting parame-

ter wi(x) changes according to the position of current state x in state space. The

exponential term in step 3 to determine the weighting parameter ensures that the

distribution of the weight wi will change immediately close to one if current state x

is sufficiently close to the linearization point xi.

4.4 TPWL model based on POD method

In this section, the TPWL method is combined with the POD method to further

reduce computational cost. The POD method is introduced in this section. The

steps of establishing the TPWL-POD model are presented and the representation of

the model is also shown in this section.

4.4.1 POD method introduction

The POD method can be used to obtain a low-order model but capture the most

important dynamics of the original complicated systems [41]. POD method is a SVD-

based approximation method to derive the low dimensional system to approximate

the large scale system. It can be applied to both high-complexity linear and nonlinear

systems [64].
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Giving a fixed input u, the trajectory of state x ∈ Rn at certain time instances tk

can be measured as:

X = [x(t1) x(t2) x(t3) . . . x(tN)] (4.16)

X ∈ Rn×N in (4.16) can be called as the snapshot matrix of the process data.

It should be mentioned that the measured time instant points N should be much

greater than the dimension of the system n, i.e., N � n. By computing the singular

value decomposition of the snapshot matrix, X can be decomposed into a product of

three matrices [64]:

X = UΣV T ∈ Rn×N (4.17)

where U ∈ Rn×n and V ∈ RN×N are orthonormal and called the left and right singular

vector, respectively. Σ = diag(σ1, . . . , σn) ∈ Rn×N is a diagonal matrix, and each

diagonal entry of the matrix is called the singular values. The singular values of X are

nonnegative numbers and ordered in a decreasing way, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn. The

greater σ value represents the basis vector captures the more important information

present in the data [65]. If the singular values of the matrix drop off rapidly, we can

obtain a low-dimensional approximated system [64]:

X = UΣV T ≈ UkΣkV
T
k , k � n (4.18)

Let x(t) ≈ Ukz(t), z(t) ∈ Rk, the reduced-order system model can be shown as

follows:

ż(t) = UT
k f(Ukz(t), u(t)) (4.19)

where z(t) is the approximation of states x(t) in a low-dimensional space which is

spanned by the first k columns of the left singular vector of X [64], i.e., Uk.

4.4.2 TPWL-POD model representation

Assuming we have generated the reduced order basis Uk via POD method for the

process system, and the reduced order model of the system is with k states. The
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relationship between state x with order N in the original space and projection z with

order k (k � N) in reduced-order space can be represented in the following form:

x = Ukz (4.20)

where Uk ∈ RN×k is an orthogonal matrix and represents the projection of x in

original space onto z in the reduced-order space.

Combining with Eq. (4.20), the TPWL model Eq. (4.15) generated in Section 4.3.1

can be represented as follows:

d(Ukz)

dt
=

s−1∑
i=0

wi(z)(f(Ukzi, ui) + Ai(Ukz − Ukzi) +Bi(u− ui)) (4.21)

Where zi is the projection of the linearized points xi in the reduced-order space, and

[z0, z1, . . . , zs−1] =
[
UT
k x0, U

T
k x1, . . . , U

T
k xs−1

]
Multiplying Eq. 4.21 by UT

k , the model can be shown as:

dz

dt
=

s−1∑
i=0

wi(z)(Airz +Biru+ γir) (4.22)

where
Air = UT

k AiUk

Bir = UT
k Bi

γir = UT
k (f(xi, ui)− Aixi −Biui)

s−1∑
i=0

wi(z) = 1

The weight wi(z) is calculated based on the distance between current projected

state z and the linearization point zi, and it follows the Algorithm 4.3.3 shown in

Section 4.3.1.

4.4.3 Generation method of TPWL-POD model

The generation of the reduced order TPWL-POD model consists of two parts: gen-

eration of the POD reduced basis and the generation of trajectory piecewise linear

model. Figure 4.2 shows the methodology used in this work.
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Figure 4.2: TPWL-POD framework

The strategy to generate the POD basis for WWTP process is described by the

following algorithm:

Algorithm 4.4.1 Generation of POD basis algorithm:

1. Simulate the nonlinear system for t ∈ (0, N ] to generate the snapshot matrix of
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the process, i.e., X.

2. Take singular value decomposition on snapshot matrix X, X = UΣV T .

3. Determine the proper reduced order k to choose the k most relevant basis vectors

of the system.

4. Generate the POD basis vectors matrix Uk.

The strategy to generate the piecewise linear model is the same as the one shown

in Section 4.3.2. After generating the linearization points xi, these linearization points

are projected to the reduced-order space, i.e., zi = UT
k xi. The weighting parameter

wi(z) is computed based on the states in reduced-order space, and the strategy to

calculate it is the same as the steps in Algorithm 4.3.3.

4.5 Centralized EMPC design based on TPWL model

and TPWL-POD model

In this section, we present the proposed centralized EMPC design based on two

different models. The two considered models are as follows: TPWL model introduced

in Section 4.3 and TPWL-POD model introduced in Section 4.4. The control objective

is to minimize the economic cost introduced in Section 4.2.3.

4.5.1 Centralized EMPC design based on TPWL model

First, the nonlinear model of the WWTP system is linearized using the trajectory

piecewise linearization method proposed in Section 4.3. The EMPC developed based

on the TPWL model can be formulated as the following optimization problem:

u∗(τ |tk) = arg min
u(τ)∈S(∆)

∫ tk+N

tk

l (x̃(τ), u(τ)) dτ (4.23a)

s.t. ˙̃x(τ) =
s−1∑
i=0

wi(x̃(τ))(f(xi, ui) + Ai(x̃(τ)− xi) +Bi(u(τ)− ui))

(4.23b)
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x̃(tk) = x(tk) (4.23c)

u(τ) ∈ U (4.23d)

In the above optimization problem Eq. (4.23), u∗(τ |tk) is the optimal solution to

the problem. Eq. (4.23a) denotes the objective function for the centralized EMPC

controller that minimizes the economic cost l defined in Eq. (4.12), N denotes the con-

trol horizon, and Si(δ) represents a family of piecewise-constant functions. Eq. (4.23b)

is the approximated piecewise linear model of the nonlinear system as introduced in

Section 4.3. The state measurement value at current sampling time tk (i.e., x(tk))

is used to initialize the predicted state trajectory in Eq. (4.23c). Eq. (4.23d) is the

constraint on input u.

The optimal input trajectory is achieved after the optimization problem Eq. (4.23)

is solved (i.e., u∗(τ |tk)). The first step value of the input trajectory is defined to be

the manipulated input applied to the operating process at time instant tk, which can

be shown as follows:

u(t) = u∗(t|tk), t ∈ [tk, tk+1) (4.24)

4.5.2 Centralized EMPC design based on TPWL-POD model

In this section, the centralized EMPC is designed based on the TPWL-POD model.

The model is linearized using TPWL method shown in Section 4.3 and the order of

the nonlinear system is reduced using POD method proposed in Section 4.4. The

proposed EMPC design can be shown as follows:

u∗(τ |tk) = arg min
u(τ)∈S(∆)

∫ tk+N

tk

l (Ukz(τ), u(τ)) dτ (4.25a)

s.t. ˙̃z(τ) =
s−1∑
i=0

wi(z)(Airz +Biru+ γir) (4.25b)

z̃(tk) = UT
k x(tk) (4.25c)

Air = UT
k AiUk (4.25d)

Bir = UT
k Bi (4.25e)
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γir = UT
k (f(xi, ui)− Aixi −Biui) (4.25f)

s−1∑
i=0

wi(z) = 1 (4.25g)

u(τ) ∈ U (4.25h)

In the optimization problem Eq. (4.25), let u∗(τ |tk) accounts for the optimal so-

lution to this problem. The objective function is Eq. (4.25a). Eq. (4.25b) denotes

the order reduced linear model using TPWL-POD method introduced in Section 4.4

for the nonlinear system. Air, Bir, γir, and wi(z) in model Eq. (4.25b) are shown in

Eq. (4.25d), Eq. (4.25e), Eq. (4.25f) and Eq. (4.25g), respectively. In Eq. (4.25c), the

predicted state in the reduced-order space is initialized with the state measurement

x(tk) and it is projected to the reduced-order space by multiplying the projection

matrix Uk. Eq. (4.25h) is the input constraint. The manipulated input applied

to the control process is the first step value of the optimal input trajectory, i.e.,

u∗(t|tk), t ∈ [tk, tk+1).

4.6 Simulation Results

In this section, we apply the TPWL method introduced in Section 4.3 and the TPWL-

POD method introduced in Section 4.4 to the WWTP. The reduced order basis and

the linearization points for both TPWL model and TPWL-POD model are obtained

based on a given training input signal. The approximated model accuracy for the

nonlinear system with TPWL model and TPWL-POD model are discussed. We

apply the proposed control strategies introduced in Section 4.5.1 and Section 4.5.2 to

the modified BSM1 model. The performance of these control strategies is compared

in terms of effluent quality, operating cost and computational efficiency under dry

weather condition.
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4.6.1 Simulation settings

The dry weather condition data file are provided in the International Water Associ-

ation Web site [66]. The inlet flowrate Q0, and the concentration Z0 of the influent

flow can be found in the data file. The wastewater treatment plant is simulated with

the average value of Q0 and Z0 under dry weather condition to achieve the optimal

steady state. We consider the optimal steady state as the initial condition for this

wastewater treatment process.

To compare the performance index between different control strategies, the sim-

ulation time is set to be 14 days and the simulation results of the last 7 days will

be used to evaluate the control performance index. The sampling time is picked as

∆ = 15 min.

The weighting parameter β in Algorithm 4.3.3 is set to be 25. The weighting

coefficients αEQ and αOCI in the economic control objective function Eq. (4.12) are

considered to be 1 and 0.3. The control horizon is determined to be 25 in all EMPC

controller designs. The constraints on manipulated inputs (i.e., U) for all control

designs are considered as follows:

0 ≤ Qa ≤ 5Q0,stab (4.26)

0 ≤ KLa5 ≤ 240 day−1 (4.27)

whereQ0,stab is the average dry weather influent flow rate and is equal to 18446 m3/day.

4.6.2 Model validation and comparison

Model validation

To verify the generated TPWL model and TPWL-POD model not only work for the

inputs which are very close to the given training input but also for other inputs,

the accuracy of the model is investigated under different input signals. For model

validation, the number of linearization points s in both TPWL model and TPWL-

POD model is set to be 9, and the reduced basis order k is set to be 35 for TPWL-POD
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model.

The approximated state trajectories based on TPWL model, TPWL-POD model

and the actual state trajectories based on the nonlinear system model for certain

process states in the first week of the operation under the training input signal and

fixed input signal are presented in Figure 4.3 and Figure 4.4, respectively. For the

fixed input signal, the two manipulated inputs are fixed as KLa5 = 83.9405 d−1 and

Qa = 37723.4072 m3/day. As can be seen from Figure 4.3 and Figure 4.4, the state

trajectories almost overlap each other in all the cases. The results show that TPWL

model and TPWL-POD model provide accurate models for the original nonlinear

WWTP system.

Model comparison

The model approximation accuracy and computation time for TPWL method and

TPWL-POD method are investigated under different number of the linearization

points (s).

Figure 4.5 presents the state trajectories for certain process states using TPWL

model with different number of linearization points under a given input signal in

dry weather condition. Figure 4.6 shows the state trajectories for those states using

TPWL-POD model with different number of linearization points under the same

input signal in dry weather condition.

Table 4.1 presents the root mean square error of TPWL model and TPWL-POD

model with different number of the linearization points. The result elucidates that the

approximated model accuracy would increase as the number of linearization points

increase for both TPWL and TPWL-POD models. As can be seen from the table,

under the same linearization point number, TPWL model provides a better approxi-

mation than TPWL-POD model.

Table 4.2 shows the average computation time required for the one-sampling-

time simulation of the two models with different number of the linearization points.
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Figure 4.3: Trajectories of the states based on nonlinear model (blue solid lines), TPWL
model (red dash-dot lines), TPWL-POD model (yellow dashed lines) under training input
signal in dry weather.
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Figure 4.4: Trajectories of the states based on nonlinear model (blue solid lines), TPWL
model (red dash-dot lines), TPWL-POD model (yellow dashed lines) under fixed input
signal in dry weather.
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Figure 4.5: Trajectories of the states based on nonlinear model (blue solid lines), TPWL
model with 4 linearization points (red dash-dot lines), TPWL model with 6 linearization
points (yellow dashed lines), TPWL model with 9 linearization points (purple solid lines),
and TPWL model with 10 linearization points (green dashed lines) under a given input
signal in dry weather.

The result shows that the computation complexity would increase as the number of

linearization points increases. Under the same linearization points number, TPWL

model takes longer computation time than TPWL-POD model indicates that the
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Figure 4.6: Trajectories of the states based on nonlinear model (blue solid lines), TPWL-
POD model with 4 linearization points (red dash-dot lines), TPWL-POD model with 6
linearization points (yellow dashed lines), TPWL-POD model with 9 linearization points
(purple solid lines), and TPWL-POD model with 10 linearization points (green dashed
lines) under a given input signal in dry weather.

TPWL-POD model is more computational efficient than TPWL model.
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Table 4.1: Root mean square error of TPWL model and TPWL-POD model with different
number of the linearization points

Threshold δ Linearization point number
RMSE

TPWL model

RMSE

TPWL-POD model

1000 4 18.3979 48.6197

950 6 10.5667 12.4511

600 9 6.0770 8.6849

570 10 5.5003 6.5913

Table 4.2: Computation time of TPWL model and TPWL-POD model with different
number of the linearization points

Threshold δ
Linearization

point number

Computation time (s)

TPWL model

Computation time (s)

TPWL-POD model

1000 4 15.000 10.31

950 6 17.408 12.01

600 9 22.404 20.13

570 10 24.095 21.18

4.6.3 Simulation results of EMPC in dry weather

We evaluate the performance of EMPC based on the nonlinear model, EMPC based

on TPWL model and EMPC based on TPWL-POD model in dry weather condition,

respectively.

To study the impacts of the number of linearization points (s) on EMPC design

based on TPWL model, we apply the proposed EMPC scheme with s = 4, s = 6,

s = 9, and s = 10 respectively. The trajectories of the instantaneous effluent quality

level in dry weather condition under EMPC based on the nonlinear model, EMPC

based on TPWL model with linearization point number s = 4, s = 6, s = 9, s = 10
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are presented in Figure 4.7. Table 4.3 presents the calculated control performance

index EQ, OCI, average economic cost, and average computation time consumed over

the full operating period for EMPC based on nonlinear model and EMPC based on

TPWL model with s = 4, s = 6, s = 9, s = 10. Based on the average EQ value shown

in Table 4.3 and the instantaneous effluent quality level shown in Figure 4.7, we can

conclude that the effluent quality level is improved as the linearization point number

s in TPWL model increases. Our objective is to minimize the average economic

cost. Consequently, the smaller average performance cost indicates that the model

can give us a better control performance. As can be seen from Table 4.3, the EMPC

with nonlinear model provides us with the best control performance, and the control

performance of EMPC based on TPWL model enhances as the linearization point

number raises. The EMPC based on TPWL model with s = 4 performs 18.24%

worse than nonlinear model while the EMPC based on TPWL model with s = 10 is

only 5.93% lower than nonlinear model. As the linearization point number s increases

from 4 to 10, the control performance improves 10.42%.

To compare the computation costs for EMPC based on the nonlinear model and

EMPC based on TPWL model with s = 4, s = 6, s = 9, s = 10, the average

computation time consumed over the full operation period is evaluated and shown in

Table 4.3. The average computation time over the full operation period is evaluated

based on 10 repetitive simulation runs. The computation time consumed by EMPC

based on TPWL model with s = 4, s = 6, and s = 9 is 30.02%, 27.97%, and 22.05%

less than EMPC based on nonlinear model, respectively. However, as the linearization

point number s increases, the computation load increases accordingly. The EMPC

based on TPWL model with s = 10 is 16.29% lower than EMPC with the nonlinear

model.

We also evaluate how linearization point number s influences the control perfor-

mance of EMPC based on TPWL-POD model. Figure 4.8 presents the trajectories of

the instantaneous effluent quality level in dry weather condition under EMPC based
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Figure 4.7: Trajectories of the instantaneous effluent quality level in dry weather condition
under EMPC based on nonlinear model, TPWL model with 4 linearization points, TPWL
model with 6 linearization points, TPWL model with 9 linearization points and TPWL
model with 10 linearization points
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Table 4.3: Control performance in dry weather condition under EMPC based on nonlinear
model, TPWL model with different linearization point numbers (s = 4, s = 6, s = 9, s = 10)

Model

Linearization

point

number

Average

computation

time (s)

EQ

(kg pollution

unit/day)

OCI

Average

performance

cost

Nonlinear N/A 7.34× 104 3896.8080 19592.3016 9774.4985

TPWL

4 5.13× 104 5570.4105 19958.9991 11558.1102

6 5.28× 104 5710.0077 19404.2978 11531.2970

9 5.72× 104 4739.8563 19654.6556 10636.2530

10 8.53× 104 4349.7785 20014.8107 10354.2217

on the nonlinear model, EMPC based on TPWL-POD model with linearization point

number s = 4, s = 6, s = 9, s = 10. Table 4.4 shows the EQ, OCI, average economic

cost and average computation time of EMPC based on nonlinear model, EMPC based

on TPWL-POD model with s = 4, s = 6, s = 9 and s = 10. We can draw the same

conclusion as we have for EMPC based on TPWL model. The more linearization

points we consider, the better control performance of EMPC based on TPWL-POD

model would be. The average computation time consumed by TPWL-POD model

will raise when the linearization point number s increases. Compared with the com-

putation time consumed by EMPC based on the nonlinear model, EMPC based on

TPWL-POD model with s = 4, s = 6, s = 9 and s = 10 is 70.13%, 67.40%, 54.51%

and 15.62% less, respectively.

By examining Table 4.3 and Table 4.4, we can see that with the same linearization

point number s, the computation resources used by EMPC based on TPWL-POD

model is up to 58.54% less than EMPC based TPWL model used. However, the

control performance of EMPC based on TPWL-POD model is around 1.39% worse

than it based on TPWL model.
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Figure 4.8: Trajectories of the instantaneous effluent quality level in dry weather condition
under EMPC based on nonlinear model, TPWL-POD model with 4 linearization points,
TPWL-POD model with 6 linearization points, TPWL-POD model with 9 linearization
points and TPWL-POD model with 10 linearization points
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Table 4.4: Control performance in dry weather condition under EMPC based on nonlinear
model, TPWL-POD model with different linearization point numbers (s = 4, s = 6, s = 9,
s = 10)

Model

Linearization

point

number

Average

computation

time (s)

EQ

(kg pollution

unit/day)

OCI

Average

performance

cost

Nonlinear N/A 7.34× 104 3896.8080 19592.3016 9774.4985

TPWL-POD

4 2.19× 104 5747.8930 19902.6197 11718.6789

6 2.39× 104 5913.2938 19378.8133 11726.9378

9 3.34× 104 5589.5613 19328.1781 11388.0147

10 6.19× 104 5436.7213 19280.6409 11220.9136

4.7 Conclusions

In this chapter, two model approximation methods are applied to the modified nonlin-

ear WWTP process. In particular, the two model approximation methods are TPWL

method and TPWL-POD method. Two centralized EMPC controllers are designed

based on the two models correspondingly. We have compared the model accuracy

of the TPWL model and the TPWL-POD model with nonlinear model. The sim-

ulation results show that both TPWL model and TPWL-POD model can provide

fairly good model accuracy. As the linearization point number s increases, the root

mean square error of each model decreases. With the same linearization point num-

ber s, TPWL model provides us with a little more accurate model than TPWL-POD

model while it takes much more simulation time. We have studied the relationship

between linearization point number s and control performance for the two EMPC

controllers. We also evaluated the computation time consumed by the two proposed

EMPC controllers. The simulation results show that the control performance of the

two proposed EMPC designs is improved when the linearization point number s in-
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creases, while the computation efficiency degrades. With the same linearization point

number s, the average computation time used by EMPC based on TPWL-POD model

is up to 58.54% less than EMPC based on TPWL model. The average computation

time consumed by EMPC based on TPWL-POD model is up to 70.13% lower than

EMPC based on the nonlinear model. However, the control performance for EMPC

based on TPWL-POD model is degraded by 1.39% compared with TPWL model and

19.89% compared with the nonlinear model.
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Chapter 5

Conclusions

5.1 Summary

The objective of this thesis is to address the computational complexity problems in

centralized EMPC design for wastewater treatment plants (WWTPs). The bench-

mark simulation model No.1 (BSM1 model) provided by the International Water

Association was used to describe the dynamics of the WWTP.

In chapter 2, the descriptions of the terms and notations used in this thesis are

introduced. The wastewater treatment plant model used in this thesis is described in

detail in this chapter.

In chapter 3, distributed economic MPC (EMPC) is proposed for WWTPs. The

WWTP is decomposed into two subsystems from the perspectives of physical topol-

ogy and computational complexity. Two distributed EMPC schemes are developed.

In the first design, each local EMPC controller uses a centralized model; and in the

second design, each local EMPC controller uses a subsystem model. We have com-

pared the performance of the two proposed DEMPC schemes with centralized MPC,

centralized EMPC under different weather conditions. The simulation results show

that the distributed EMPC based on the entire system model can achieve very similar

control performance as centralized EMPC with average computation time reduced by

21%. The distributed EMPC based on the subsystem model, can improve the compu-

tation efficiency by 75% compared with the centralized EMPC. However, the control
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performance of the second design is degraded by approximately 5% compared with the

first design where local controllers are developed based on the entire system model.

The DEMPC based on the subsystem model can significantly reduce the computation

load with a little degradation of control performance.

In chapter 4, two model approximation methods are applied to our modified non-

linear WWTP process. In particular, the two model approximation methods are tra-

jectory piecewise linearization (TPWL) method and reduced order trajectory piece-

wise linearization (TPWL-POD) method. Two centralized EMPC controllers are de-

signed based on the two models correspondingly. The model accuracy, computational

time, and closed-loop economic control performance under different EMPC systems

are compared. The simulation results show that both TPWL model and TPWL-

POD model provides a comparable model accuracy. Under the same linearization

point number s, TPWL model provides us with a little more accurate model than

TPWL-POD model while it takes much more simulation time. We have studied the

relationship between linearization point number s and control performance for the

two EMPC controllers. The control performance of the two proposed EMPC designs

improves when the linearization point number s increases, while the computation

efficiency degrades. We also evaluated the computation time consumed by the two

proposed EMPC controllers. The simulation results show With the same linearization

point number s, the average computation time used by EMPC based on TPWL-POD

model is up to 58.54% less than EMPC based on TPWL model and 70.13% lower

than EMPC based on the nonlinear model. However, the control performance for

EMPC based on TPWL-POD model is degraded by 1.39% compared with TPWL

model and 19.89% compared with the nonlinear model.

5.2 Directions for future work

In addition to the results presented in the thesis, the following research topics worth

being investigated:
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• The development of a distributed EMPC scheme based on the TPWL-POD

model introduced in Chapter 4 to further reduce the computation cost;

• The development of output-feedback distributed EMPC for WWTP using dis-

tributed moving horizon estimation (DMHE);

• The realization of parallel computation for DEMPC and DMHE to further

reduce the computation complexity.
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