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Introduction

® |ncentives for chemical process control

Raw materials Products

E —

Environmental Production
regulations specifications

01 Need for continuous monitoring and external intervention (control)

2 of 26



Introduction
® |ncentives for chemical process control

Raw materials Products

E —

Environmental Production
regulations specifications

01 Need for continuous monitoring and external intervention (control)

m QObjectives of a process control system

O Ensuring stability of the process

0 Suppressing the influence of
external disturbances

0 Optimizing process performance
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Feedback Loop/Controller Design

m Feedback control loop
Disturbances

Process

Set point
—— Controller

Output
—
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0 Proportional-integral-derivative (PID) control
O Simplicity of implementation
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Feedback Loop/Controller Design

m Feedback control loop
Disturbances

Process

® Classical control (40s-60s): single-input/single-output (SISO)
systems

0 Proportional-integral-derivative (PID) control
O Simplicity of implementation
® Multi-input/multi-output systems
0 Many SISO PID loops/Decentralized approach
0 Does not account for interactions, constraints, nonlinear behavior

Set point
—— Controller

Output
—
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Model-Based Controller Design

m Controller design is based on a process dynamic model (60s-today)

O A mathematical process model is constructed from first-principles or
identified from input-output data to describe the process dynamics

O Controllers are synthesized based on the process model
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Model-Based Controller Design

m Controller design is based on a process dynamic model (60s-today)

O A mathematical process model is constructed from first-principles or
identified from input-output data to describe the process dynamics

O Controllers are synthesized based on the process model
® Advantages-disadvantages of model-based control
0 Possibility of improved closed-loop performance

B Model accounts for inherent process characteristics (e.g., nonlinear
behavior, spatial variations, multivariable interactions)

0 Characterization of limitations on achievable closed-loop stability,
performance and robustness

O It may be difficult to construct a model for a large-scale process
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Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

Past Future
= Model predictive control (MPC) =T [ = = Reference trajectory/setpoit
oo
min ft k+N [CE(T)TQCCE(T) + ’U,(T)TRCU(T)}dT x(tk) ././- Predicted trajectories
ueS(A) r
st 3(0) = f(3(0),u(t),0) P e
f:(tk) = x(tk) F—r _1 Computed future input trajectory
u(t) e U —/ [
ilt)e X —) T |
I by lian

5 of 26

Predicted horizon



Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

Past Future
® Model predictive control (MPC) = Reference rajectory/Set-point
P
min ft k+N [CE(T)TQCCE(T) + ’LL(T)TRCU(T)}dT x(tk) y././- Predicted trajectories
ueS(A)
st 3(0) = f(3(0),u(t),0) P e
Z(tk) = z(tx) F—r 1 Computed future input trajectory
u(t) e U —/ [
ilt)e X —) T |
Tt Lisn

Predicted horizon

® On-line optimization-based approach
O Incorporate optimization considerations

O Explicitly address state and control input constraints
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Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

Past Future

® Model predictive control (MPC) " _Reference trajectory/Set-point
)Nc/./"”
min ft k+N [CE(’T)TQCZ(T) + ’LL(T)TRCU(T)}dT ) ././- Predicted trajectories
weS(A) 3
st #(0) = F(E(2), u(t),0) T
j(tk) = x(tk) F—r _1 Computed future input trajectory
u(t) e U —/ [
Z(t)e X — I |
tk tk+| tk+N
. . . . Predicted hori
® On-line optimization-based approach redieted horizon

O Incorporate optimization considerations

O Explicitly address state and control input constraints
m Approaches to achieve closed-loop stability

O Infinite prediction horizon

0 Terminal constraint or terminal cost

0 Constraint based on a Lypuanov function
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Centralized vs. Distributed Control

Centralized
control control control control
system system 1 system 2 system m

m Centralized process control architecture

O Computational complexity, fault tolerance

= Move towards distributed process control architecture
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B |ssues need to be addressed when moving to distributed control
0 Coordination of controllers for stability and performance
0 Communication strategy between distributed controllers
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Centralized vs. Distributed Control

control control control
system 1 system 2 system m

Centralized [

m Centralized process control architecture

O Computational complexity, fault tolerance

Move towards distributed process control architecture

Issues need to be addressed when moving to distributed control
0 Coordination of controllers for stability and performance

0 Communication strategy between distributed controllers

m MPC is a natural framework for distributed control system
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Control Architectures

Different control architectures

System System System
U1 subsystem 1 L wec1 YL lsibsystem 1] okl bl 1 al
MPC o
uz 2 X2

u X
» MPC2 z

u X
! 2 MPC2 | 2 2

Centralized control system

Decentralized control system Distributed control system

Classified by communication between controllers

B Decentralized control system

O No communication between controllers
m Distributed control system

o Controllers exchange information to coordinate their actions
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Classification of DMPC

Non-Cooperative DMPC

m Sequential DMPC

O One-directional communication
0 Controllers are evaluated in sequence

= Non-iterative parallel DMPC

0 Controllers are evaluated once at a
sampling time

® |terative parallel DMPC

0 A local cost function is used in each
controller

8 of 26

System

X1

us
MPC 1

=

X2

u
MPC2 |—

Sequential DMPC

Xq

El--4=
bl
I 2
N =
<
1%
&
o
E;ng

X2

Parallel DMPC




Classification of DMPC

System l System
- u X
5 [T wpe 1t st Subsystem 1 (-1 | MPC 1 |—‘—-|3ubs;stem 1I !
o ! 1
§ . u; X:
- u 2
I tMPc 2 [—1+{Subsystem 2 = | MPC 2 |;—0|91bw§em 2I 2
Coordinated DMPC Cooperative DMPC

Coordinated DMPC

®m There is a coordinator to coordinate the actions of distributed
controllers
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Classification of DMPC

System l System
P

C1 |u—'—-|&JbS/stem 1I X1
' i
\

- : u: X:
o t 22l Subsystem 2 el | MPC 2 l;—clajbwﬂem 2I 2

Coordinated DMPC Cooperative DMPC

Coordinated DMPC

®m There is a coordinator to coordinate the actions of distributed
controllers

Cooperative DMPC

=
£
]
El
3
£
g
3
o

® In each controller, the same global cost function is optimized

® Achieve the performance of centralized MPC when iterate to

convergence
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e
Non-Cooperative DMPC

m DMPC for a class of decoupled systems with the distributed
Contr0||ers are eVaanted in Sequence (Richards and How, International Journal of

Control, 2007)

® DMPC for a class of discrete-time linear systems (camponogara et al., IEEE

Control Systems Magazine, 2002)

® DMPC for systems with dynamically decoupled subsystems (keviczky et

al., Automatica, 2006)

® DMPC scheme for linear systems coupled through the state (ia and

Krogh, ACC, 2001)
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e
Non-Cooperative DMPC

m DMPC for a class of decoupled systems with the distributed
Contr0||ers are eVaanted in Sequence (Richards and How, International Journal of

Control, 2007)

® DMPC for a class of discrete-time linear systems (camponogara et al., IEEE

Control Systems Magazine, 2002)

® DMPC for systems with dynamically decoupled subsystems (keviczky et

al., Automatica, 2006)

® DMPC scheme for linear systems coupled through the state (ia and

Krogh, ACC, 2001)

Coordinated DMPC

u Coordinator-based DM PC (Cheng et al., Journal of Process Control, 2007; Marcos et al.,

ADCHEM 2000)
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Cooperative DMPC

® |dea of cooperative DMPC was first introduced in 2005 (venkat et al.
CDC, 2005)

u Cooperative DMPC Of |inea|’ Systems (Rawlings and Stewart, Journal of Process
Control, 2008; Stewart et al., Systems and Control Letters, 2010)
0 System-wide control objective functions
0 The closed-loop performance converges to the corresponding

centralized control system as the iteration number increases

B |Lyapunov-based iterative DMPC for nonlinear systems (Liu et al., AichE
Journal, 2009; 2010; Liu et al., Automatica, 2010; IEEE Transactions on Automatic Control, 2012)
O Well-characterized regions of closed-loop stability
O Accounting for asynchronous and delayed measurements

® Robust DMPC for linear systems accounting for model
Uncertainties eXp|ICIt|y (Al-Gherwi et al., Journal of Process Control, 2011)
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Cooperative Nonlinear DMPC

System description
m

B(t) = fla() + Y gi(w(t)ui(t) + k(w(t))w(t)

i=1

® Fully coupled nonlinear processes with m sets of control inputs
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Cooperative Nonlinear DMPC

System description
m

B(t) = fla() + Y gi(w(t)ui(t) + k(w(t))w(t)

i=1

® Fully coupled nonlinear processes with m sets of control inputs

Nonlinear feedback control law, u = h( ) = [ (x) ... hy(2)]F
Vi(z) = (W )+ Z gi(x ) <0

® Renders the origin of the nominal system asymptotically stable
under the control: w; = hi(x) (i =1,...,m)

m Satisfies the input constraints on u; (i = 1,...,m)
m Stability region: 2 C D is a compact set containing the origin
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Sequential and Iterative DMPC

(Liu et al., AIChE J., 2009; AIChE J., 2010)

® m LMPCs will be designed to decide the m sets of control inputs

I
LMPC m — 1

. Uy« vy
LMPC 2

U,

LMPC

x

Process
Sensors

x

Sequential DMPC

LMPC m

LMPC 2

Process

LMPC 1

Sensors

x

Iterative DMPC

m Sequential DMPC: One-directional communication, each controller
is evaluated once at a sampling time

® [terative DMPC: Bi-directional communication, controllers iterate
to achieve convergence at a sampling time

13 of 26




[terative DMPC

LMPC m

Implementation strategy

1. At tg, controllers receive x(t) and
initialized with input guesses generated

by h(-)
2. At iteration ¢ (¢ > 1):

x

i H Process |
ug
Sensors
i
w

x

LMPC 2

LMPC 1

2.1. Each controller evaluates its own future input trajectory
2.2. Controllers exchange information. Based on the latest
information, each controller calculates and stores the value of
the cost function
3. If a termination condition is satisfied, each controller sends the

input trajectory corresponding to the smallest value of the cost
function to its actuators; Else, go to Step 2 (¢ =c+ 1)
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Convergence of the Iterative DMPC

® The optimal cost of the iterative DMPC is upper bounded by the
cost of the nonlinear controller h(x)

O h(z) is a feasible solution to the iterative DMPC (x(0) € Q)
O Implementation strategy of the iterative DMPC
® Guaranteed convergence for linear systems

O The optimization problem of LMPC j is convex
O Using a suitable input update rule, as ¢ — oo, the cost of the iterative
DMPC converges to the corresponding centralized MPC

® For general nonlinear systems, the convergence of the iterative
DMPC cost to the centralized MPC is not guaranteed
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Application to a Chemical Process

Alkylation of benzene with ethylene

Separator

® Three distributed LMPC controllers
o MPC 1: Ql, QQ, Qg MPC 2: Q4, Q5 MPC 3: F4, F6

® |nput constraints are considered
16 of 26




Application to a Chemical Process

Mean Evaluation Times

® Mean evaluation times for 100 evaluations

N=1(s) | N=3(s) | N=6 (s)

Centralized MPC 2.192 8.694 27.890
MPC 1 0.472 2.358 6.515

Sequential | MPC 2 0.497 1.700 4.493
MPC 3 0.365 1.453 3.991

MPC 1 0.484 2.371 6.280

Iterative MPC 2 0.426 1.716 4.413
(1 iteration) | MPC 3 0.185 0.854 2.355

® Sequential DMPC evaluation time is reduced by 36% - 46%

m |terative DMPC evaluation time (1 iteration) is reduced by more
than 70%; 3 - 4 iterations are possible in 1 evaluation of the
Centralized MPC
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Application to a Chemical Process
Optimality
m Performance index
M
J = Z z( Qcmt)—i-Zu]t) Rejuj(ts)
1=0 Jj=1

® Simulation time: ¢t3; = 1000 s, N =1

< 1.895
o
=
x
)
2 189t
@
o
(@]
1.885 . L L . L A
1 3 5 7 9 11 13 15
Iteration number
Blue: Centralized Red: Iterative

Black: Sequential

O The cost of the iterative DMPC converges to the centralized MPC
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DMPC for Two-Time-Scale Processes

(Chen et al., Journal of Process Control, 2011; AIChE Journal, 2012)

Slow dynamics is regulated by slow MPC
® Fast dynamics is regulated by fast MPC (or explicit controller)

No communication between the two MPCs is necessary
Near optimality of fast-slow MPC system
O J—=Ji+Jfase—0

O ¢ is a parameter that indicates the level of separation between the fast
and slow dynamics
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Reactor-Separator with Large Recycle

An example of two-time-scale process

[ Slow MPC
x

® Two reactions:

A r1,exothermic B
B+ C r1,exothermic D
® Fast dynamics: CSTR-2
|
F |
" Residence time: — = 0.11 sec .

v, B

" FastMPC

m Control inputs associated with slow dynamics: @)1, Q3

m Control inputs associated with fast dynamics: ()2
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Reactor-Separator with Large Recycle

Simulation results: Performance trajectories

50

T
— +— - Centralized LMPC
45F| — = — Slow LMPC

* Composite LMPC

40 -

35

30

251

20} e E

Performance cost J

15

10 [ 1
Sf 1

[¢]

o 5‘0 160 1%0 260
Time (s)
= Control methods
O centralized MPC, fast-slow MPC, slow MPC with explicit controller
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DMPC with Asynchronous/Delayed Feedback

(Liu et al., Automatica, 2010; IEEE Transactions on Automatic Control, 2012)

U
- _LMPCm - LMPCm
: : Y
r #—-|LMPC m—
i i
1 ! 1
! Process T ! : w1 | Process T
| |
! i uy
= L-» LMPC 2 -
| e 5
;i
! i ! u i
r ! F-» LMPC 1 !
o z_ 1 o z_1
Sequential DMPC Iterative DMPC
q

Proposed approaches

= Modify the implementation strategies to take into account that the
control loop may be open

® Redesign the formulations of the LMPCs to take into account
asynchronous and delayed feedback explicitly

® In the case of delayed measurements, iterative DMPC has to be

used
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DMPC for Switched Nonlinear Processes

(Heidarinejad et al., ACC, 2012)

System description

m
&= fou(x) + Zgiom (@)uiy
=1

® Switching signal 0 : [0,00) = Z = {1,2,...,p}
m Frequently arise in process operation (demand changes, phase
changes, etc.)

Proposed approach

B Focused on nonlinear processes with scheduled mode transitions

® |nitial feasibility is assumed

® A stability constraint based on multiple Lyapunov function is
checked at each iteration
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Distributed Energy Generation Systems

(Qi et al., IEEE Transactions on Control Systems and Technology, in press)

m System description
Future power demand
and weather forecast

0 Wind subsystem ¢
0 Solar subsystem ¢ Y '
Supervisory MPC 1 Supervisory MPC 2 ‘
O Loads of the system ‘
Y| i (1) CopTe| i)
O b s by
DC bus Y Y v ]
‘ Wind Subsystem Controller ‘ ‘ Solar Subsystem Controller ‘
| |
Control system Wl & w4
. ¥ Y Y i
= One MPC fOI’ Wlnd SUbSyStem ‘ Wind Subsystem I::l gncd I::l Solar Subsystem ‘
o One MPC for solar subsystem | * | A K | 4
v £ AT

0 Controllers communicate to
meet total power demand

Time-varying weather conditions and power demand
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Conclusions

® Trends in process control

0 Control of large-scale complex processes

O

Distributed model predictive control is
an appealing approach

® Qur work on DMPC for nonlinear
processes

O

]

O
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Sequential and iterative DMPC
DMPC for two-time-scale processes

DMPC for with asynchronous/delayed
measurements

DMPC for switched nonlinear processes
Distributed energy generation systems
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Future Research Directions

Distributed state estimation and integration with DMPC

DMPC accounting for process topology

DMPC with asynchronous evaluation

Performance assessment of DMPC

Loop partitioning and decomposition for DMPC

= Monitoring and reconfiguration of DMPC

Applications
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