Distributed Model Predictive Control

Jinfeng Liu

Department of Chemical & Materials Engineering University of Alberta

CSChE 2012

October 16, 2012

Introduction

Incentives for chemical process control

Need for continuous monitoring and external intervention (control)

Introduction

Incentives for chemical process control

Need for continuous monitoring and external intervention (control)

Objectives of a process control system

- Ensuring stability of the process
- Suppressing the influence of external disturbances
- Optimizing process performance

Feedback Loop/Controller Design

Feedback control loop

Feedback Loop/Controller Design

Feedback control loop

- Classical control (40s-60s): single-input/single-output (SISO) systems
 - □ Proportional-integral-derivative (PID) control
 - Simplicity of implementation

Feedback Loop/Controller Design

Feedback control loop

- Classical control (40s-60s): single-input/single-output (SISO) systems
 - □ Proportional-integral-derivative (PID) control
 - Simplicity of implementation
- Multi-input/multi-output systems
 - Many SISO PID loops/Decentralized approach
 - Does not account for interactions, constraints, nonlinear behavior

Model-Based Controller Design

- Controller design is based on a process dynamic model (60s-today)
 - □ A mathematical process model is constructed from first-principles or identified from input-output data to describe the process dynamics
 - $\hfill\square$ Controllers are synthesized based on the process model

Model-Based Controller Design

- Controller design is based on a process dynamic model (60s-today)
 - A mathematical process model is constructed from first-principles or identified from input-output data to describe the process dynamics
 - $\hfill\square$ Controllers are synthesized based on the process model
- Advantages-disadvantages of model-based control
 - Possibility of improved closed-loop performance
 - Model accounts for inherent process characteristics (e.g., nonlinear behavior, spatial variations, multivariable interactions)
 - Characterization of limitations on achievable closed-loop stability, performance and robustness
 - □ It may be difficult to construct a model for a large-scale process

Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

• Model predictive control (MPC) $\min_{u \in S(\Delta)} \int_{t_k}^{t_{k+N}} [\tilde{x}(\tau)^T Q_c \tilde{x}(\tau) + u(\tau)^T R_c u(\tau)] d\tau$ \tilde{x}_{t_k}

Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

Model predictive control (MPC)

On-line optimization-based approach

- Incorporate optimization considerations
- Explicitly address state and control input constraints

Model Predictive Control

(Carcia et al., Automatica, 1989; Mayne et al., Automatica, 2000)

Model predictive control (MPC)

$$\min_{u \in S(\Delta)} \int_{t_k}^{t_{k+N}} [\tilde{x}(\tau)^T Q_c \tilde{x}(\tau) + u(\tau)^T R_c u(\tau)] d\tau$$
s.t. $\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$
 $\tilde{x}(t_k) = x(t_k)$
 $u(t) \in U$
 $\tilde{x}(t) \in X$

- On-line optimization-based approach
 - Incorporate optimization considerations
 - Explicitly address state and control input constraints
- Approaches to achieve closed-loop stability
 - □ Infinite prediction horizon
 - Terminal constraint or terminal cost
 - □ Constraint based on a Lypuanov function

Centralized vs. Distributed Control

- Centralized process control architecture
 - Computational complexity, fault tolerance
- Move towards distributed process control architecture

Centralized vs. Distributed Control

- Centralized process control architecture
 - Computational complexity, fault tolerance
- Move towards distributed process control architecture
- Issues need to be addressed when moving to distributed control
 - $\hfill\square$ Coordination of controllers for stability and performance
 - Communication strategy between distributed controllers

Centralized vs. Distributed Control

- Centralized process control architecture
 - Computational complexity, fault tolerance
- Move towards distributed process control architecture
- Issues need to be addressed when moving to distributed control
 - $\hfill\square$ Coordination of controllers for stability and performance
 - Communication strategy between distributed controllers
- MPC is a natural framework for distributed control system 6 of 26

Control Architectures

Different control architectures

Centralized control system

Decentralized control system

Distributed control system

Classified by communication between controllers

- Decentralized control system
 - No communication between controllers
- Distributed control system
 - $\hfill \Box$ Controllers exchange information to coordinate their actions

Classification of DMPC

Non-Cooperative DMPC

- Sequential DMPC
 - □ One-directional communication
 - Controllers are evaluated in sequence
- Non-iterative parallel DMPC
 - Controllers are evaluated once at a sampling time
- Iterative parallel DMPC
 - A local cost function is used in each controller

Parallel DMPC

Classification of DMPC

Coordinated DMPC

Coordinated DMPC

Cooperative DMPC

System

Subsystem 1

Subsystem 2

X1

X2

There is a coordinator to coordinate the actions of distributed controllers

Classification of DMPC

Coordinated DMPC

There is a coordinator to coordinate the actions of distributed controllers

Cooperative DMPC

- In each controller, the same global cost function is optimized
- Achieve the performance of centralized MPC when iterate to convergence

Non-Cooperative DMPC

- DMPC for a class of decoupled systems with the distributed controllers are evaluated in sequence (Richards and How, International Journal of Control, 2007)
- DMPC for a class of discrete-time linear systems (Camponogara et al., IEEE Control Systems Magazine, 2002)
- DMPC for systems with dynamically decoupled subsystems (Keviczky et al., Automatica, 2006)
- DMPC scheme for linear systems coupled through the state (Jia and Krogh, ACC, 2001)

Non-Cooperative DMPC

- DMPC for a class of decoupled systems with the distributed controllers are evaluated in sequence (Richards and How, International Journal of Control, 2007)
- DMPC for a class of discrete-time linear systems (Camponogara et al., IEEE Control Systems Magazine, 2002)
- DMPC for systems with dynamically decoupled subsystems (Keviczky et al., Automatica, 2006)
- DMPC scheme for linear systems coupled through the state (Jia and Krogh, ACC, 2001)

Coordinated DMPC

Coordinator-based DMPC (Cheng et al., Journal of Process Control, 2007; Marcos et al., ADCHEM 2009)

Cooperative DMPC

- Idea of cooperative DMPC was first introduced in 2005 (Venkat et al., CDC, 2005)
- Cooperative DMPC of linear systems (Rawlings and Stewart, Journal of Process Control, 2008; Stewart et al., Systems and Control Letters, 2010)
 - System-wide control objective functions
 - The closed-loop performance converges to the corresponding centralized control system as the iteration number increases
- Lyapunov-based iterative DMPC for nonlinear systems (Liu et al., AIChE Journal, 2009; 2010; Liu et al., Automatica, 2010; IEEE Transactions on Automatic Control, 2012)
 - Well-characterized regions of closed-loop stability
 - $\hfill\square$ Accounting for asynchronous and delayed measurements
- Robust DMPC for linear systems accounting for model uncertainties explicitly (Al-Gherwi et al., Journal of Process Control, 2011)

Cooperative Nonlinear DMPC

System description

$$\dot{x}(t) = f(x(t)) + \sum_{i=1}^{m} g_i(x(t))u_i(t) + k(x(t))w(t)$$

• Fully coupled nonlinear processes with m sets of control inputs

Cooperative Nonlinear DMPC

System description

$$\dot{x}(t) = f(x(t)) + \sum_{i=1}^{m} g_i(x(t))u_i(t) + k(x(t))w(t)$$

Fully coupled nonlinear processes with m sets of control inputs

Nonlinear feedback control law, $u = h(x) = [h_1(x) \dots h_m(x)]^T$ $\dot{V}(x) = \frac{\partial V(x)}{\partial x} (f(x) + \sum_{i=1}^m g_i(x)h_i(x)) < 0$

- Renders the origin of the nominal system asymptotically stable under the control: u_i = h_i(x) (i = 1,...,m)
- Satisfies the input constraints on u_i (i = 1, ..., m)
- Stability region: $\Omega \subset D$ is a compact set containing the origin

Sequential and Iterative DMPC

(Liu et al., AIChE J., 2009; AIChE J., 2010)

 $\hfill m$ LMPCs will be designed to decide the m sets of control inputs

Sequential DMPC

Iterative DMPC

- Sequential DMPC: One-directional communication, each controller is evaluated once at a sampling time
- Iterative DMPC: Bi-directional communication, controllers iterate to achieve convergence at a sampling time

Iterative DMPC

Implementation strategy

- 1. At t_k , controllers receive $x(t_k)$ and initialized with input guesses generated by $h(\cdot)$
- 2. At iteration $c \ (c \ge 1)$:

- 2.1. Each controller evaluates its own future input trajectory
- 2.2. Controllers exchange information. Based on the latest information, each controller calculates and stores the value of the cost function
- 3. If a termination condition is satisfied, each controller sends the input trajectory corresponding to the smallest value of the cost function to its actuators; Else, go to Step 2 (c = c + 1)

Convergence of the Iterative DMPC

- The optimal cost of the iterative DMPC is upper bounded by the cost of the nonlinear controller h(x)
 - \square h(x) is a feasible solution to the iterative DMPC ($x(0) \in \Omega$)
 - Implementation strategy of the iterative DMPC
- Guaranteed convergence for linear systems
 - \Box The optimization problem of LMPC j is convex
 - $\hfill\square$ Using a suitable input update rule, as $c\to\infty,$ the cost of the iterative DMPC converges to the corresponding centralized MPC
- For general nonlinear systems, the convergence of the iterative DMPC cost to the centralized MPC is not guaranteed

Application to a Chemical Process

Alkylation of benzene with ethylene

Three distributed LMPC controllers

 MPC 1: Q₁, Q₂, Q₃
 MPC 2: Q₄, Q₅
 MPC 3: F₄, F₆

 Input constraints are considered

Application to a Chemical Process

Mean Evaluation Times

Mean evaluation times for 100 evaluations

		$N = 1 \ (s)$	$N = 3 \ (s)$	$N = 6 \ (s)$
Centralized MPC		2.192	8.694	27.890
	MPC 1	0.472	2.358	6.515
Sequential	MPC 2	0.497	1.700	4.493
	MPC 3	0.365	1.453	3.991
	MPC 1	0.484	2.371	6.280
Iterative	MPC 2	0.426	1.716	4.413
(1 iteration)	MPC 3	0.185	0.854	2.355

- Sequential DMPC evaluation time is reduced by 36% 46%
- Iterative DMPC evaluation time (1 iteration) is reduced by more than 70%; 3 - 4 iterations are possible in 1 evaluation of the Centralized MPC

Application to a Chemical Process

Optimality

Performance index

$$J = \sum_{i=0}^{M} \left[x(t_i)^T Q_c x(t_i) + \sum_{j=1}^{3} u_j(t_i)^T R_{cj} u_j(t_i) \right]$$

• Simulation time: $t_M = 1000 \ s$, N = 1

 $\hfill\square$ The cost of the iterative DMPC converges to the centralized MPC

DMPC for Two-Time-Scale Processes

(Chen et al., Journal of Process Control, 2011; AIChE Journal, 2012)

- Slow dynamics is regulated by slow MPC
- Fast dynamics is regulated by fast MPC (or explicit controller)
- No communication between the two MPCs is necessary
- Near optimality of fast-slow MPC system
 - $\ \ \Box \ \ J \to J^*_s + J^*_f \text{ as } \epsilon \to 0$
 - $\Box~\epsilon$ is a parameter that indicates the level of separation between the fast and slow dynamics

Reactor-Separator with Large Recycle

An example of two-time-scale process

Control inputs associated with slow dynamics: Q_1 , Q_3

Control inputs associated with fast dynamics: Q₂

Reactor-Separator with Large Recycle

Simulation results: Performance trajectories

Control methods

□ centralized MPC, fast-slow MPC, slow MPC with explicit controller

DMPC with Asynchronous/Delayed Feedback

(Liu et al., Automatica, 2010; IEEE Transactions on Automatic Control, 2012)

Proposed approaches

- Modify the implementation strategies to take into account that the control loop may be open
- Redesign the formulations of the LMPCs to take into account asynchronous and delayed feedback explicitly
- In the case of delayed measurements, iterative DMPC has to be used 22 of 26

DMPC for Switched Nonlinear Processes

(Heidarinejad et al., ACC, 2012)

System description

$$\dot{x} = f_{\sigma(t)}(x) + \sum_{i=1}^{m} g_{i_{\sigma(t)}}(x) u_{i_{\sigma(t)}}$$

- Switching signal $\sigma: [0,\infty) \to \mathcal{I} = \{1,2,\ldots,p\}$
- Frequently arise in process operation (demand changes, phase changes, etc.)

Proposed approach

- Focused on nonlinear processes with scheduled mode transitions
- Initial feasibility is assumed
- A stability constraint based on multiple Lyapunov function is checked at each iteration

Distributed Energy Generation Systems

(Qi et al., IEEE Transactions on Control Systems and Technology, in press)

- System description
 - Wind subsystem
 - Solar subsystem
 - Loads of the system
 - DC bus
- Control system
 - One MPC for wind subsystem
 - One MPC for solar subsystem
 - Controllers communicate to meet total power demand

Conclusions

Trends in process control

- Control of large-scale complex processes
- Distributed model predictive control is an appealing approach
- Our work on DMPC for nonlinear processes
 - Sequential and iterative DMPC
 - DMPC for two-time-scale processes
 - DMPC for with asynchronous/delayed measurements
 - DMPC for switched nonlinear processes
 - Distributed energy generation systems

Panagiotis D. Christofides **Jinfeng** Liu David Muñoz de la Peña Networked and Distributed

Advances in Industrial Control

Predictive Control

Methods and Nonlinear Process Network Applications

Springer

AIC

Future Research Directions

- Distributed state estimation and integration with DMPC
- DMPC accounting for process topology
- DMPC with asynchronous evaluation
- Performance assessment of DMPC
- Loop partitioning and decomposition for DMPC
- Monitoring and reconfiguration of DMPC
- Applications