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Abstract

When a photon experiences a change in momentum of any form, be it being

absorbed or reflected from a surface, the photon will exert a force upon that

material. This force is called the radiation pressure force [1]. One way that we

can harness this radiation pressure force is to couple optical and mechanical

systems together to form optomechanical systems [2]. One such optomechan-

ical system is the optomechanical crystal (OMC) [3], which consists of an

optical waveguide patterned periodically with holes. By placing a defect, in

other words by modifying the shape of the holes, in the center of the pattern

we can form an optical cavity between the two end regions of the waveguide.

This optical mode within the OMC can then excite a mechanical breathing

mode in the center of the waveguide through the radiation pressure force.

Optical fiber networks typically use light with wavelengths in the range of

1260 to 1625 nm (184 to 238 THz) since these wavelengths minimizes optical

loss within the fiber [4]. In order for the OMC to be resonant with light of

this wavelength the OMC must be of similar size, limiting our geometry to

the micrometer scale. Fortunately there exist many different techniques, such

as electron beam lithography [5] and reactive ion etching [6], which allow for

fabrication of devices this small.

In this work, we describe our methods for designing, fabricating, and mea-

suring an OMC made from silicon nitride. Designing the OMC was done

through simulation of the optical and mechanical modes using COMSOL Mul-

tiphysics. The OMCs were then fabricated at the NanoFAB Fabrication and

Characterization Center at the University of Alberta. Light was coupled into

the OMC using a dimpled-tapered fiber setup, then measurements of the opti-

cal and mechanical properties were done using either a direct detection scheme

or a balanced homodyne phase detection scheme. The final device supported

an optical mode at λo ≈ 1482.55 nm and a mechanical mode at ωm/2π ≈ 2.62

GHz with an optomechanical coupling rate of g0/2π ≈ 98.66 kHz.
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Theory is when you know everything but nothing works.

Practice is when everything works but no one knows why.

In our lab, theory and practice are combined:

nothing works and no one knows why.

- unknown
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Chapter 1

Introduction and Theory

1.1 Introduction

Today it is well known that light has wave-particle duality, meaning that

it displays properties of both waves and particles, but before this became

common knowledge one of the greatest battles in physics was the debate to

determine whether light was a particle or a wave. This battle dates back to re-

search performed by Isaac Newton where he developed his corpuscular theory

of light. This theory stated that every source of light emits tiny light particles

called corpuscles into the medium surrounding the source and that these cor-

puscles are perfectly elastic, rigid, and weightless [7]. The main problem with

this theory was that it did not account for properties of light such as refraction

and diffraction. Other theories that proposed the wave nature of light, such as

those proposed by contemporary physicists René Descartes [8], Robert Hook

[9], and Christiaan Huygens [10], were able to explain these properties of light,

but they were greatly overshadowed by the popularity of Newton’s Corpuscu-

lar theory. It wasn’t until the interference and diffraction properties of light

were clearly demonstrated in the famous double slit experiments by Thomas

Young in the early 19th century that wave models became widely accepted

[11].

No theories were able to account for all properties of light, and so research

continued. It wasn’t until 1900, through his study of black-body radiation [12],

that Max Planck discovered that electromagnetic energy was not absorbed or

emitted from a system continuously, but is absorbed or emitted in discrete
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chunks. In other words, electromagnetic energy is quantized and can only be

added or removed from a system in integer multiples of the energy quantum

E = ℏω where ω is the angular frequency of light and ℏ = h/2π is the reduced

Planck’s constant. Following this, Albert Einstein showed that if light energy

is quantized then its momentum must also be quantized [1], leading to the

idea of the photon with momentum quantum p = ℏω
c

where c is the speed of

light.

Cavity optomechanics is one field continuing to study the properties of

light [2]. Pictured in Fig. 1.1 is a simple schematic of an optomechanical

system consisting of two mirrors separated by a distance L where one mirror is

attached to a mechanical element such as a spring. The light within the optical

cavity is called resonant if it forms a standing wave between the two mirrors,

in other words, if ωc = mπ c
L
where m ∈ Z. We include m in this definition

since there is not just a single resonance, but many resonances separated by

∆ωc = π c
L
. When each photon, carrying momentum p = ℏω

c
, reflects off the

Figure 1.1: A simple schematic of an optomechanical system. Two mirrors separated
by a distance L together form an optical cavity, and the light within the cavity has
frequency ωc. The mirror on the right is connected to a spring, such that the
radiation pressure force from the light within the cavity will cause this mirror to
move. The interaction between this force and the restoring force of the spring will
cause the mirror to oscillate mechanically at frequency ωm.
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surface of the mirror it experiences a momentum change ∆p = 2ℏω
c

such that

it is now traveling in the opposite direction with the same momentum. Due

to conservation of momentum, the mirror must have experienced a force due

to this momentum change: the radiation pressure force [1]. For the mirror

attached to a spring this force causes the spring to be compressed, increasing

the distance between the two mirrors. The light within the cavity is no longer

resonant, which reduces the force on the mirror allowing the restoring force of

the spring to push the mirror back to its equilibrium position. This will happen

repeatedly, causing the mirror to oscillate back and forth with a frequency

ωm. This radiation pressure force is the mechanism through which an optical

cavity is coupled to a mechanical resonator, and this is the basis for the field

of optomechanics.

Optomechanical systems can take many forms, one example of which is the

Fabry-Perot cavity with a movable end mirror [13] shown in Fig. 1.1. Other

examples of optomechanical systems include trapped atoms [14], whispering

gallery mode resonators [15], and optomechanical crystals [16]. One applica-

tion of such systems is for transducing between different frequencies of light.

For example, superconducting qubits typically use GHz photons and operate

at millikelvin temperatures [17]. The number of thermal photons within the

system is described using the Bose-Einstein distribution [17]:

n̄th =
1

eℏω/kBT − 1
, (1.1)

so these low temperatures are required in order to keep the system deep within

the thermal groundstate (n̄th ≪ 1) and limit the amount of noise added to the

system by thermal photons. If one was to try and connect two such systems

at room temperature, they would be required to transduce the photons to a

higher frequency in order to remain deep within the thermal groundstate.

One proposed method for transducing between optical and GHz photons

is through a triply-resonant system [18]. This method would perform the

transduction in two steps: first the GHz photons would be transduced to

GHz phonons, then these same GHz phonons would be transduced to opti-

cal photons. One such system has been built previously in our lab using a
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gallium arsenide optomechanical crystal coupled to a 3D microwave cavity

[16, 18]. Optical photons were transduced to GHz phonons via the photoe-

lastic effect, and then those phonons were transduced to GHz photons via

the piezoelectric effect. The result of this experiment was a single-photon to

single-photon transduction efficiency of η ≈ 10−15, which must be increased

to tens-of-percent before it will be competitive with classical microwave-to-

optical converters [18]. A proposed improvement of this experiment was to

repeat this measurement using an optomechanical crystal made from lithium

niobate, since this material has stronger piezoelectric properties [18]. This

previous work was performed using optomechanical crystals fabricated by one

of the groups at NIST, so our group would like to learn how to fabricate op-

tomechanical crystals here at the University of Alberta. Since lithium niobate

is expensive, and since our group has little experience fabricating optomechan-

ical crystals, the goal of my research was to design, simulate, and fabricate an

optomechanical crystal made from silicon nitride with the goal of eventually

transitioning to lithium niobate.

In Chapter 2 we begin by discussing the theory of optical and mechanical

resonators both as isolated systems and as a coupled optomechanical system.

Following this, in Chapter 3 we go over the methods for designing, simulating,

and then fabricating optomechanical crystals from silicon nitride. Chapter 4

will then provide details about the various measurement techniques used to

characterize the optical and mechanical properties of an optomechanical sys-

tem. Finally, chapter 5 will provide a summary of the results of these mea-

surements, as well as a discussion on possible next steps for this research.
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Chapter 2

Optomechanical System Theory

This chapter will discuss briefly the theoretical knowledge needed to un-

derstand the simulations and experiments performed in later chapters. We

begin in section 2.1 by discussing the theory of optical cavities by analogy to

the Fabry-Perot cavity. Steady state solutions will be derived from the system

Hamiltonian, while state dynamics will be described using input-output the-

ory. This theory will then be repeated for the mechanical motion of the system

in Section 2.2. The final section of this chapter will discuss the mechanism

by which the optical cavity and mechanical resonator are coupled, as well as

deriving the interaction Hamiltonian and the coupled input-output equations

of motion. Note that the derivations performed in this chapter are adapted

from similar derivations in references [2], [18], [19], and [20].

2.1 Optical Cavity Theory

From Fig. 1.1, consider only the optical cavity formed by the two mirrors

separated by a distance L. Inside the cavity, assume light is polarized in the x

direction and propagates in the z direction such that it reflects back and forth

between the two mirrors. The electric field of this wave can be described using

the equation [20]:

Ex(z, t) = E0 sin(kz) sin(ωct), (2.1)

where Ex0 is the amplitude, k = 2π/λ is the wave vector, and ωc is the cavity

frequency. There also exists a magnetic field orthogonal to this electric field

that propagates in the same direction. The magnetic field can be described
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using the equation [20]:

By(z, t) = B0 cos(kz) cos(ωct), (2.2)

where B0 = E0/c is the amplitude.

2.1.1 Optical Cavity Hamiltonian

The following derivation for the Hamiltonian for light confined in an optical

cavity follows the derivation performed in chapter 7 of reference [20]. The

energy density for the light trapped in the cavity is given by [20]:

U =
1

2

(
ϵoE2 +

1

µo

B2

)
, (2.3)

from which we can find the energy stored within the fields by integrating over

the length of the cavity. For light that is resonant in the cavity, that is λ = 2L
m

where m = 1, 2, 3, ..., the result of this integration is [20]:

E(t) =
L

4

(
ϵoE2

0 sin
2(ωct) +

B2
0

µo

cos2(ωct)

)
, (2.4)

where ωc is the resonant frequency of the cavity. This can be simplified by

introducing a new set of coordinates analogous to the position and momentum

[20]:

q(t) =

√
ϵoL

2ω2
c

E0 sin(ωct), (2.5)

p(t) =

√
L

2µo

B0 cos(ωct), (2.6)

which leads us to rewrite the energy stored in the field as [20]:

E(t) =
1

2

(
p2(t) + ω2

cq
2(t)
)
. (2.7)

This can be further simplified by making use of second quantization and

rewriting the energy in terms of annihilation and creation operators. Recall

that the annihilation and creation operators are given by [20]:

â(t) =

√
ωc

2ℏ

(
q̂(t) +

i

ωc

p̂(t)

)
, (2.8)

â†(t) =

√
ωc

2ℏ

(
q̂(t)− i

ωc

p̂(t)

)
, (2.9)
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which conversely means that we can write:

q̂(t) =

√
ℏ
2ωc

(â†(t) + â(t)), (2.10)

p̂(t) = i

√
ℏωc

2
(â†(t)− â(t)). (2.11)

Rewriting the energy in terms of the annihilation and creation operators, we

arrive at our Hamiltonian [20]:

Ĥ(t) = ℏωc(â
†(t)â(t) + 1/2), (2.12)

which describes the steady state solution for light trapped in an optical cavity.

2.1.2 Input-Output Theory for Optical Cavities

Instead of adding terms to the Hamiltonian to describe the dynamics of

the system, it is much easier to use either master equations or input-output

theory [2]. Master equations are used when only the internal dynamics of the

system are of interest, meanwhile if you need to access the light field emitted

or reflected by the system you can use input-output theory. In our system

we will need to couple light in and out of the system, therefore input-output

theory is the best candidate for formulating the physics of our system.

The following derivation is derived following similar derivations in refer-

ences [2] and [19]. To begin, we need to determine the time evolution of our

field, â(t). This can be done by using Heisenberg’s equation of motion [2, 19]:

˙̂
O = − i

ℏ
[Ĥ(t), Ô]. (2.13)

By replacing Ô with â(t) we obtain:

˙̂a(t) = −iωcâ(t), (2.14)

which describes a lossless optical cavity with resonant frequency ωc. Inputs and

outputs can then be added on to the end of this equation. Most notably, there

will be a decay rate associated with the cavity corresponding to the reflection

coefficient of the mirrors [2]. This can be described as −κ
2
â(t) where κ is the

cavity decay rate. κ can be further split into intrinsic, κo, and extrinsic, κe,
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losses, κ = κo+κe. Intrinsic losses correspond to the natural decay rate of the

cavity, while extrinsic losses correspond to light that is intentionally coupled

out of the cavity [2]. Similarly, light that is intentionally coupled into our

cavity can be written as
√
κeâin(t) while any stray light that couples into the

cavity can be written as
√
κof̂in(t). f̂in(t) is typically assumed to be zero, so

adding all these inputs and outputs to Eq. (2.14) we obtain [2]:

˙̂a(t) = −iωcâ(t)−
κ

2
â(t) +

√
κeâin(t), (2.15)

which is the input-output theory equation of motion for an optical cavity.

The amplitude and frequency of the input field will be controlled using an

external laser. Typically the amplitude is held constant while the frequency is

swept across the optical cavity resonance. This allows us to separate out the

time dependence of our fields such that [2]:

âin(t) → âine
−iωlt, (2.16)

â(t) → â(t)e−iωlt. (2.17)

Substituting the two fields back into our equation of motion yields [2]:

˙̂a(t) = i∆â(t)− κ

2
â(t) +

√
κeâin, (2.18)

where ∆ = ωl − ωc. Notice that for the cavity field, â(t), we have explicitly

kept the time dependence of the field and only separated out the portion that

has frequency ωl. After substitution, all the e−iωlt terms cancel out, meaning

that we are in a frame that is rotating at the laser frequency. This is called the

rotating wave approximation [20], and is useful when we are only concerned

with the difference between the cavity and laser frequencies and not with the

frequencies themselves.

When the inputs and outputs are balanced, in other words when the field is

in its steady state ( ˙̂a(t) = 0), we can determine the average number of photons

in the cavity by taking the expectation value of â†â [2]. In the steady state,

8



the field and its complex conjugate are given by [2]:

â = −
√
κeâin

κ/2 + i∆
, (2.19)

â† = −
√
κeâ

†
in

κ/2− i∆
, (2.20)

from which we obtain the average number of intracavity photons [2]:

n̄c = ⟨â†â⟩ = κe|âin|2

κ2/4 + ∆2
, (2.21)

which will become useful later when we characterize the system.

2.2 Mechanical Resonator Theory

Now, consider attaching a spring to one of the mirrors of our optical cavity.

The radiation pressure of the light in the cavity will push on the mirror, causing

it to oscillate back and forth. This motion can be described as a driven-damped

harmonic oscillator [2]:

Fext(t) = meff
d2x(t)

dt2
+meffΓm

dx(t)

dt
+meffω

2
mx(t), (2.22)

where meff is the effective mass of the oscillator, Γm is the mechanical damping

rate, and ωm is the mechanical mode frequency. Solutions for the center of

mass displacement will have the form [2]:

x(t) = x0e
−Γmt

2 cos

(√
ω2
m − Γ2

m

4
t

)
, (2.23)

and can exist in three regimes: underdamped (Γ2
m < 4ω2

m), critically damped

(Γ2
m = 4ω2

m), and overdamped (Γ2
m > 4ω2

m). For our application we will be

working with an underdamped oscillator, where our oscillation frequency is

close to the natural frequency ωm ≈ ω0 =
√

k
meff

.

2.2.1 Mechanical Resonator Hamiltonian

The following derivation is derived following similar a derivation in refer-

ence [18]. The potential and kinetic energy of a harmonic oscillator are given

9



by [18]:

V =
1

2
meffω

2
mx

2, (2.24)

T =
p2

2meff

, (2.25)

and the classical Hamiltonian of this system is the sum of the total energy in

the system [18]:

H =
p2

2meff

+
meffω

2
mx

2

2
. (2.26)

Similar to how we treated the optical Hamiltonian, we can move from a classi-

cal Hamiltonian to a quantum Hamiltonian by using second quantization. To

do this we introduce the phonon annihilation and creation operators [2]:

b̂(t) =
1

2xzpf

(
x̂(t) +

i

meffωm

p̂(t)

)
, (2.27)

b̂†(t) =
1

2xzpf

(
x̂(t)− i

meffωm

p̂(t)

)
, (2.28)

or similarly:

x̂(t) = xzpf(b̂(t) + b̂†(t)), (2.29)

p̂(t) = −imeffωmxzpf(b̂(t)− b̂†(t)), (2.30)

where:

xzpf =

√
ℏ

2meffωm

, (2.31)

is the zero point fluctuation amplitude of the mechanical mode. Inserting these

annihilation and creation operators into the classical Hamiltonian yields [2]:

Ĥ = ℏωm(b̂
†b̂+ 1/2), (2.32)

which is the standard quantum harmonic oscillator Hamiltonian.

2.2.2 Input-Output Theory for Mechanical Resonators

The procedure for deriving the input-output theory equation for a me-

chanical resonator is very similar to what we did for the optical cavity. This

derivation follows a similar derivation found in reference [18]. First, we use

Heisenberg’s equation to determine the time evolution of our field [18]:

˙̂
b(t) = −iωmb̂(t), (2.33)
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which describes a lossless mechanical resonator with a mechanical frequency

ωm. Next we need to consider terms for any inputs and outputs [2]. The

main output of our system is associated with the mechanical dissipation of the

mechanical mode. This is given by the exponential term in Eq. (2.23) and will

be added to our equation of motion as −Γm

2
b̂(t) [2]. Similarly, any mechanical

signal that is added to the system can be added as
√
Γmb̂in(t) [2]. This leads

to the expression [18]:

˙̂
b(t) = −iωmb̂(t)−

Γm

2
b̂(t) +

√
Γmb̂in(t), (2.34)

which is the input-output theory equation of motion for our mechanical res-

onator.

We can also look at the steady state solutions of the mechanical resonator’s

equation of motion to determine the average number of phonons in the cavity.

The steady state solutions are given by [2]:

b̂(t) =

√
Γmb̂in(t)

Γm

2
− iω2

m

, (2.35)

b̂†(t) =

√
Γmb̂in(t)

Γm

2
+ iω2

m

, (2.36)

and we can find the average number of phonons by taking the expectation

value ⟨b̂†b̂⟩, giving us the expression [2]:

n̄m = ⟨b̂†b̂⟩ = Γm|b̂in|2
Γ2
m

4
+ ω2

m

. (2.37)

2.3 Optomechanical Theory

2.3.1 Radiation Pressure Force

As mentioned in Chapter 1, radiation pressure force is the fundamental

mechanism that couples the cavity radiation field to the mechanical motion [2].

Recall that due to conservation of momentum, both the photon and mirror of

the optical cavity must experience a change in momentum of ∆p = 2ℏω
c
. From

this, we can derive the radiation pressure force from the expression F = ∆p
∆t
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where ∆t = 2L/c is the round-trip time for a Fabry-Perot cavity of length L,

and ∆p is as defined above. The result is:

⟨F̂ ⟩ = ℏωc

L
n̂c, (2.38)

where n̂c = ⟨â†, â⟩ is the average number of photons inside the cavity. It is

also convenient to define the frequency pull parameter G = −δωc/δx which

allows us to relate the change in cavity resonance frequency with position [2].

In the case of a Fabry-Perot cavity the frequency pull parameter is G = ωc/L.

2.3.2 Interaction Hamiltonian

The following derivation is derived following a similar derivation in refer-

ence [2]. The Hamiltonian for the uncoupled optical and mechanical modes is

given by:

Ĥ0 = ℏωcâ
†â+ ℏωmb̂

†b̂,

where the 1/2 terms have been dropped for simplicity. Since the cavity reso-

nance frequency is modulated by the mechanical amplitude, we can approxi-

mate the cavity frequency as the series [2]:

ωc(x) ≈ ωc + x∂ωc/∂x+ ... (2.39)

The displacement due to radiation pressure is typically small, so truncating to

first order is sufficient to approximate the dynamics of the system. Inserting

this expression for the cavity frequency back into the optical component of the

uncoupled Hamiltonian yields [2]:

ℏωc(x)â
†â ≈ ℏ(ωc −Gx̂)â†â,

but if we recall from Eq. 2.29 that the position is given by x̂ = xzpf(b̂+ b̂†) we

arrive at an expression for the interaction Hamiltonian [2]:

Ĥint = −ℏg0â†â(b̂+ b̂†), (2.40)

where we have now defined the single-photon optomechanical coupling rate

[2]:

g0 = Gxzpf. (2.41)
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This is the rate at which single-photons are converted into single-phonons, or

in other words the rate at which energy is transduced from the optical mode

to the mechanical mode [18].

We can now compute radiation pressure force from the interaction Hamil-

tonian. The general expression for the radiation pressure force is the derivative

with respect to displacement of the interaction Hamiltonian F̂ = −dĤint/dx̂

[2]. For our system we obtain:

F̂ = ℏ
g0
xzpf

â†â = ℏGâ†â. (2.42)

If we replace G = ωc/L and n̄c = â†â we arrive at the same expression for the

radiation pressure force for the Fabry-Perot cavity as shown in Eq. 2.38, as

expected.

2.3.3 Rotating Wave Approximation

A standard technique to simplify the analysis of our system easier is to

perform the rotating wave approximation. Applying the unitary transforma-

tion Û = eiωlâ
†â effectively switches our frame of reference to one that rotates

with the laser frequency ωl [2]. In other words, frequencies that are far from

ωl average to zero and can be ignored. In addition to this, it also makes the

driving terms time independent [2]:

Û
(
â†e−iωlt + âeiωlt

)
Û † = â† + â. (2.43)

Performing the unity transformation Ĥnew = ÛĤoldÛ
†− iℏÛ∂Û †/∂t yields [2]:

Ĥ = −ℏ∆â†â+ ℏωmb̂
†b̂− ℏg0â†â(b̂+ b̂†) + ... (2.44)

Where we have defined a new parameter called the detuning ∆ = ωl − ωc.

Contained in the (...) are terms such as the driving and decay terms, which

we omit from this Hamiltonian since they are much better described using

input-output theory.

2.3.4 Linearizing the Hamiltonian

The mechanical mode of our system slightly distorts the geometry of our

optomechanical crystal (OMC), which leads to a modulation of the optical
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mode [2]. This allows us to approximate this modulation of the optical mode

as an average coherent mode ᾱ plus a fluctuating term δâ [2]:

â = ᾱ + δâ, (2.45)

which can then be inserted into our interaction Hamiltonian and expanded in

orders of ᾱ. This expansion gives [2]:

Ĥint = −ℏg0(|ᾱ|2 + ᾱ∗δâ+ ᾱδâ† + δâ†δâ)(b̂+ b̂†), (2.46)

but can be simplified by assuming that ᾱ = ᾱ∗ =
√
n̄c is real valued. The

|ᾱ|2 term then just represents an average radiation pressure force F̄ = ℏG|ᾱ|2,

and can be omitted by moving the displacement’s origin by δx̄ = F̄ /meffω
2
m

and by shifting the detuning to ∆new = ∆old +Gδx̄ [2]. We can also omit the

δâ†δâ term since it is significantly smaller than ᾱ. Expanding out the rest of

the terms leads to the full Hamiltonian given by [2]:

Ĥ = −ℏ∆â†â+ ℏωmb̂
†b̂− ℏg0

√
n̄c(δâ

†b̂+ δâ†b̂† + δâb̂+ δâb̂†), (2.47)

and allows for defining the cavity enhanced optomechanical coupling strength

[2], g ≡ g0
√
n̄c. This is named cavity enhanced because of its dependence on

the term
√
n̄c meaning that we can tune the coupling strength by adjusting

the number of photons inside our cavity.

2.3.5 Coupled Optomechanical Equations of Motion

The interaction term we added to our Hamiltonian will also result in addi-

tional terms that must be included in the input-output equations of motion.

Similar to our derivation of the uncoupled equations of motion, we can use

Heisenberg’s equation to derive the coupled equations of motion [2]. Perform-

ing this derivation results in the interaction terms:

˙̂aint = ig0(b̂+ b̂†)â, (2.48)

˙̂
bint = ig0â

†â, (2.49)
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being added. The resulting equations of motion are given by [2]:

˙̂a(t) = i∆â(t)− κ

2
â(t) + ig0(b̂+ b̂†)â+

√
κeâin, (2.50)

˙̂
b(t) = −iωmb̂(t)−

Γm

2
b̂(t) + ig0â

†â+
√

Γmb̂in(t). (2.51)

From these two equations of motion we can see that the optical mode will

be shifted by the mechanics due to its motion about its center of mass x̂ =

xzpf(b̂ + b̂†), while the mechanical mode will be shifted based on the number

of photons in the cavity â†â.
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Chapter 3

Photonic crystal design,
simulation, and fabrication

The first OMCs were designed and fabricated by the Oskar Painter lab at

Caltech in 2009 [3]. The original device was made by periodically patterning

rectangular shaped holes into an optical waveguide in such a way that it sup-

ported both optical and mechanical modes. Future iterations optimized the

unit cell geometry, using circles and ellipses instead of rectangles [21]. Inspired

by the success of these devices, and since previous members of the group have

used elliptical hole unit cells in the past [16], we decided to base our designs

off of the elliptical hole unit cell geometry.

An essential consideration in the design of an OMC is what material to

use. Materials commonly used in the fabrication of OMCs include: silicon [3],

silicon nitride [22, 23], gallium arsenide [16, 24, 25], aluminum nitride [26–28],

gallium phosphide [29, 30], diamond [31–33], and lithium niobate [34, 35]. To

date it is not yet certain which material will produce the best devices, so ma-

terial choice is largely dependent on personal preference and tool and material

availability. For the work presented here we chose to use stoichiometric silicion

nitride (SiN). This choice was motivated by the high intrinsic tensile stress of

SiN, which leads to higher mechanical resonance frequencies, as well as SiN’s

large optical bandgap, reducing optical heating [36, 37]. Another motivating

factor was that SiN has been used in optomechanical systems successfully in

the past. SiN trampoline resonators with quality factors (Q = ωc/κ) greater

than 107 at room temperature have been achieved [38, 39], while our group
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has fabricated SiN nanostrings with quality factors of 106 at cryogenic tem-

peratures [40].

This chapter will proceed as follows. Section 3.1 will discuss the crystal

theory needed to find the plane wave solutions and dispersion relation for the

optical and mechanical modes of the OMC, and then use index guiding and

discrete translational symmetry to show that our solutions take the form of

Bloch states. Section 3.2 will go over how we performed both unit cell and

full device simulations for the OMC as well as construct band diagrams for

the optical and mechanical modes of these devices. Lastly, in section 3.3 we

describe the process flow we followed to fabricate these OMCs.

3.1 Crystal Theory

3.1.1 Optical Plane Waves

An OMC shares many similarities to periodic dielectric structures such as

a Bragg mirror. In both cases we are concerned with how light in the form of

electromagnetic waves behaves inside the medium. Following the derivations

in references [19] and [41], we begin with Maxwell’s equations for single mode

electric E(x, t) = E(x)eiωt and magnetic B(x, t) = B(x)eiωt fields [41]:

∇ · ϵ(x)E = 0, (3.1)

∇ ·B = 0, (3.2)

∇× E = −iωB(x), (3.3)

∇×B = i
ωϵr(x)

c2
E(x). (3.4)

Here ϵ(x) = ϵ0ϵr(x) where ϵ0 is the permittivity of free space, ϵr(x) is the

relative permittivity at position x, and we have used the relation c = 1/
√
µ0ϵ0.

We can derive the eigenvalue equation for our system by inserting Eq. 3.3 into

Eq. 3.4, yielding:

∇× 1

ϵr(x)
∇×B(x) =

ω2

c2
B(x), (3.5)

where we have defined the Hermitian operator Θ̂ [19]:

Θ̂B(x) = ∇× 1

ϵr(x)
∇×B(x). (3.6)
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One possible set of solutions to this eigenvalue problem are the plane wave

solutions B(x) = B0e
(ik·x) with eigenvalues |k|2/ϵr and dispersion relation

(ω/c)2 = |k|2/ϵr.

Index Guiding

Consider a waveguide with index n1 suspended in air with index n2. When

light is incident on the interface between the waveguide and air two quantities

must be conserved: frequency and the component of the wave vector parallel

to the interface [41]. The parallel component of the wave vector is given by:

k∥ = |k| sin θ =
nω

c
sin θ, (3.7)

from which we obtain Snell’s law by requiring the parallel component on both

sides of the interface be equal to each other:

k1,∥ =
n1ω

c
sin θ1 =

n2ω

c
sin θ2 = k2,∥, (3.8)

n1 sin θ1 = n2 sin θ2. (3.9)

No such relationship exists for the perpendicular component of the wave vector,

which leads to a concept called index guiding [41]. To explain this, consider

modes that are not confined by the waveguide. Far from the waveguide our

modes are free-space plane waves:

ω = c|k| = c
√

k2
∥ + k⊥, (3.10)

where k⊥ can take any real value. For a given value of k∥ we will have infinitely

many possible frequencies above ck∥. In a band diagram this region of modes

is called the light cone, and the lower limit ω = ck∥ is called the light line [19,

41].

Below the light line the only solutions that exist will have imaginary k⊥

given by:

k⊥ = ±i
√

k2
∥ − ω2/c2, (3.11)

representing modes that decay exponentially away from the waveguide [41].

These modes called index guided modes will be confined to the waveguide,

and they will produce a discrete spectrum of frequencies that depend on k∥.

Fig. 3.1B) provides a simple example of the band diagram of a waveguide.
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Figure 3.1: A) A schematic of how light rays refract at the interface of two materials
with index n1 and n2. The parallel component of the wavevectors of the two light
rays must be conserved, from which one can derive Snell’s law. B) An example of a
band diagram for a waveguide. The light line (ω = ck∥) is shown in red. Above this
line there is a continuous spectrum of modes called the light cone, and below this
line there is discrete spectrum of modes called index guided modes. C) Example of a
waveguide periodically patterned with holes which will exhibit discrete translational
symmetry. Each hole is separated by a distance a, such that the system is unchanged
when moving up or down the waveguide in steps of na where n ∈ Z.

Discrete Translational Symmetry

Now consider a waveguide periodically patterned with holes separated by

a unit cell width a such as the one shown in Fig. 3.1C). This system exhibits

discrete translational symmetry [41], meaning that our system is unchanged if

we move up or down the waveguide in steps of size na where n ∈ Z. For each

n, we define the translation operator:

Tnf(z) ≡ f(z + na), (3.12)

which shifts the z coordinate of our solution by na. This translation operator

can be used to classify our solutions, but in order to do so it must satisfy

two conditions: Our permittivity must be translationally periodic T̂nϵ(z) =

ϵ(z + na) = ϵ(z) and we must also have [T̂n, Θ̂] = 0 [41]. The first condition is

known to hold based on the geometry of our system. Following the derivation

in reference [41], the second condition can be shown to be true by showing
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how the commutator acts on the state B(x):

[T̂n, Θ̂]B(x) = T̂n

(
∇× 1

ϵr(x)
∇×B(x)

)
−
(
∇× 1

ϵr(x)
∇× T̂nB(x)

)
,

(3.13)

= T̂n

(
ω2

c2
B(x)

)
−
(
ω2

c2
T̂nB(x)

)
= 0. (3.14)

Satisfying these two conditions means that we can write the new eigenvalue

equation T̂nB(x) = αB(x). This new eigenvalue equation has a simple set of

eigenvalue functions with the form eikz and eigenvalues eikna. By inspection

we can see that the functions eikz and ei(k+2πm/a)z are degenerate for m ∈ Z,

therefore, after defining the primitive reciprocal lattice vectors b = (2π/a)ẑ,

we must have:

B(x) =
∑
m

cm(x, y)e
i(k+mb)z, (3.15)

= eikz
∑
m

cm(x, y)e
imbz, (3.16)

= u(x, y, z)eikz, (3.17)

where the cm terms are expansion coefficients and u(x, y, z) is periodic in z

such that u(x, y, z + na) = u(x, y, z) [41].

The result of discrete translational symmetry are solutions that are the

product of plane waves and a periodic function. Solutions of this form are

called Bloch states and have the special property that states that differ by

integer multiples of the reciprocal lattice vector are identical [41]. This means

that we can significantly reduce the range of wave vectors we look at to the

range −π/a ≤ k < π/a called the first Brillouin zone. Our system can be

further reduced to the range 0 ≤ k < π/a called the irreducible Brillouin zone

due to the time-reversal symmetry of our system [19].

3.1.2 Mechanical Plane Waves

Following the derivation shown in reference [19], a similar set of solutions

can be found for the displacement field u(r, t) of acoustic waves propagating

in a solid. For a homogeneous, linear elastic medium with no body forces, the
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equation of motion is given by [19]:

1

ρ(r)
∇jCijmn(r)∇num(r, t) =

∂2

∂t2
ui(r, t), (3.18)

where ρ(r) is the mass density and Cijmn is the rank 4 elasticity tensor. This

tensor is often symmetric such that Cijmn = Cjimn = Cijnm = Cjinm, which

allows us reduce the 3× 3× 3× 3 tensor to a 6× 6 matrix using the mapping

[19]:

xx → 1,

yy → 2,

zz → 3, (3.19)

yz, zy → 4,

xxz, zx → 5,

xy, yx → 6.

This dimension reduction is called Voigt notation [42], and the elasticity tensor

for an isotropic medium using this notation is given by:

C(r) =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 , (3.20)

where c11 = K(r) + 4
3
µ(r), c12 = K(r)− 2

3
µ(r), and c44 = µ(r), where K(r) is

the bulk modulus and µ(r) is the shear modulus.

Due to the discrete translational symmetry of the waveguide, the displace-

ment takes the form of a Bloch state:

ui(r, t) = eik·rui(r)e
iωmt. (3.21)

Inserting this into Eq. 3.18 results in the eigenvalue equation:

Θ̂ui(r, t) =
ω2
m

c2t
ui(r, t), (3.22)

where:

Θ̂ui(r, t) =
1

ρ(r)
∇jCijmn(r)∇num(r, t), (3.23)
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is a Hermitian operator similar to what we had obtained for the optical case.

This eigenequation has eigenvalues |k|2 = (k2
x + k2

y + k2
z) and the dispersion

relation |k|2 = ω2
m/c

2
t where ct is the transverse sound velocity of the acoustic

waves within the material [43]. These solutions can then be plotted in the first

Brillouin zone to visualize the band structure of these mechanical modes.

3.2 Simulations

Designing and simulating the OMC was done primarily through the use

of COMSOL Multiphysics [44] in conjunction with MATLAB [45]. COMSOL

was used to build the simulation geometry and run the numerical simulations,

while MATLAB was connected with COMSOL using Simulink in order to

control parameter sweeps and data collection. Initial COMSOL simulations

were performed to determine a good unit cell geometry for the mirror unit cell

of the OMC. The results of these simulations were used to generate optical

and mechanical band diagrams of the OMC. Afterwards, simulations of the

full OMC were performed to calculate values such as the quality factor and

optomechanical coupling rate. The goal when designing the OMC is to find a

geometry with large optical and mechanical quality factors such that we are

sideband resolved, have good optomechanical coupling, and a high mechanical

frequency.

3.2.1 Unit Cell Simulations

As shown in Fig. 3.2A), our unit cell can be characterized by its width,

ellipse semi axes hz and hx, thickness (not shown), and the unit cell width a.

The goal of simulating the unit cell of our OMC is to generate k vs ω plots in

the first Brillouin zone. These plots are called band diagrams and they provide

a visual representation of the different optical and mechanical modes of our

unit cell.

When performing the optical simulations, some of the field will exist out-

side the waveguide and must also be simulated. Fig. 3.2B) shows that this

can be done by surrounding the unitcell with a box of air and capping this
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Figure 3.2: Examples of the unit cell geometry used in our COMSOL simulations.
A) Unit cell geometry with labels for the unit cell width (a), the ellipse semi-axes
(hx and hy), and the width of the waveguide. The unitcell also has a thickness t, but
this is not shown in this figure. Figures B-D show the geometry of the unit cell and
air box used for the optical simulation. The blue shaded regions are B) the PML
layer, C) the periodic boundary condition, and D) the perfect magnetic conductor
boundary condition. E) Geometry of the unit cell for the mechanics simulation with
the periodic boundary condition labeled in blue. Note that the periodic boundary
conditions are placed on both the shown surface and the surface opposite the one
shown.

box with perfectly matched layers (PMLs). PMLs are open boundaries that

imitate a non-reflecting infinite domain [44]. These prevent fields that leak

outside the waveguide from reflecting off the boundary and leaking back into

the waveguide. Note that this air box is not needed for the mechanics simula-

tion.

In order to simulate a periodically repeating unit cell we add a Floquet

periodic condition [44] on both sides of the unit cell. Fig. 3.2C) and E) show

how this was done for optics and mechanics respectively. This condition allows

us to define a Floquet vector k⃗F = {kx, ky, kz} that determines the periodicity

of our unit cell. Our unit cell is only periodic in z so we set kx = ky = 0 and

kz = 2πk/a where k = [0, 0.5] is a unitless factor that is used in generating

band diagrams. The optical simulation has one more additional boundary
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Figure 3.3: A) Optical band diagram for our unit cell geometry. The grey region
represents the continuum of modes that exist outside the unit cell, while the white
region represents index guided modes of the unit cell. The light line ω = ck sepa-
rates these two regions. The black lines and blue dot-dashed lines represent modes
with different polarizations (see text). The red shaded region is the quasi-bandgap
between the lower and upper black bands. The inset shows the simulated electric
field profiles for the lower and upper bands labeled with a black line. B) Mechanical
band diagram for our unit cell geometry. The black lines and blue dot-dashed lines
represent symmetric and non-symmetric modes respectively. Simulated displace-
ment field profiles are shown in the inset for the lower and upper bands respectively.

condition that greatly reduces computation time. Fig. 3.2D) shows how we

place a perfect magnetic conductor boundary that splits our unit cell in half

along its thickness. This imposes symmetry for the electric fields in the unit

cell, allowing us to simulate only half of our geometry.

We can simulate all the modes needed to generate the band diagrams by

performing a parameter sweep of k from 0 to 0.5, which translates to sweep-

ing kz from 0 to π/a. As predicted in section 3.1, our optical band diagram

(Fig. 3.3A)) has both a continuous mode region and a discrete mode region

separated by the light line ω = ck. Modes within the discrete mode region de-

pend on polarization [19]. The black lines represent modes polarized along the

xz-plane, while the blue dot-dashed modes are modes polarized along the yz-

plane. As shown in red, by adjusting the polarization of light entering into our

system we can filter out the yz-polarized modes, generating a quasi-bandgap

in the range ωc = (188.2, 218.9) THz. Fig. 3.3B) shows the mechanical band
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diagram for our unit cell. Here the two modes labeled by a black line are modes

that are symmetric about the yz-plane, while all other modes are labeled by

a blue dot-dashed line. Once again we see a quasi-bandgap which spans from

ωm = 1.50 GHz to ωm = 2.47 GHz. The insets of each figure show the electrical

field or the displacement field profiles of the two bands respectively.

3.2.2 Full Device Simulations

The goal of simulating the full OMC is to now apply a modification to the

unit cell geometry such that we can simultaneously localize an optical mode

and a mechanical breathing mode to the center of the OMC. In Fig. 3.4A) we

show how we can split the OMC into two categories of unit cells: two sections

of mirror unit cells and a defect unit cell in between. The defect unit cell is

made by adjusting the size of the holes (hx and hz) and the unit cell width a

of the mirror unit cell such that frequencies that used to fall within the band

gap now lie within one of the bands. In order to prevent scattering, there must

be a smooth transition between the mirror unit cell and the defect unit cell.

Taking inspiration from reference [19], our transition occurred over 7 unit cells

and changes in a, hx, and hz had the form:

a = amirror − δa
(
2 (j)3 − 3 (j)2 + 1

)
, (3.24)

hx = hxmirror − δhx
(
2 (j)3 − 3 (j)2 + 1

)
, (3.25)

hz = hzmirror − δhz
(
2 (j)3 − 3 (j)2 + 1

)
, (3.26)

where j = n/7 for n ∈ [0, 7] labels each transition unit cell. Variables amirror,

hxmirror, and hzmirror represent mirror unit cell width and semi-axes respec-

tively, while δa, δhx, and δhz, are the changes between the mirror and defect

unit cell for these same variables. We can provide further control of the slope

of the transition by remapping the values of j to:

m =

{
1
2
(2j)ϵ j < 0.5,

1− 1
2
(2(1− j))ϵ j ≥ 0.5,

(3.27)

where ϵ can be adjusted to fine tune the slope of the transition [19].

As shown in Fig. 3.4A), after the transition region we repeat the mirror unit

cell 12 times. This was found to be the optimal number of unit cells needed to
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Figure 3.4: A) Schematic of our OMC with the mirror regions outlined in blue and
the defect region outlined in green. B) Simulated optical mode electric field profile.
Notice how the field is confined to the defect region. C) Simulated mechanical mode
displacement field profile. Comparing the optical and mechanical modes notice that
there is a large amount of spatial overlap between the two modes.

create a high-reflectivity mirror section that confined our optical mode to the

defect region. Using more mirror unit cells than 12 had diminishing returns.

Fig. 3.4B) and Fig. 3.4C) show the field profile of the simulated optical and

mechanical modes of the full OMC. The optical mode was found to occur at

202.26 THz while the mechanical mode occurred at 2.46 GHz, both of which

exist within the bandgaps we predicted from the unit cell simulations.

Once the simulations are working, we can then perform calculations within

COMSOL to predict many optomechanical characteristics of our OMC. From

the optical simulation, we can calculate the optical mode volume using [18,

46]:

Vopt =

∫
ϵ(r)|E(r)|2dV

max(ϵ(r)|E(r)|2)
, (3.28)

where ϵ(r) is the relative permittivity and |E(r)| is the normalized electric field

calculated numerically. Similarly, we can also calculate the mechanical mode

volume using [18, 46]:

Vm =

∫
|Q(r)|

max(|Q(r)|)2
dV, (3.29)

where Q(r) is the numerically calculated displacement field. From these calcu-

lations, COMSOL predicted that Vopt = 0.364 µm3 and Vm = 1.39 µm3. The

effective mass can then be calculated from the mechanical mode volume by

multiplying by the density, giving a value of meff = 4.33 pg, which can then
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be inserted into our expression for xzpf yielding xzpf = 0.886 fm. Lastly, the

optomechanical coupling rate g can be estimated by computing the overlap

integral of the optical and mechanical modes. This method of calculating g

gives the moving boundary optomechanical coupling rate [18, 46]:

gmb =
ωcxzpf

2Vopt

∫
u(r) · n(r)

[
(ϵ2 − ϵ1)|E∥(r)|2 −

ϵ2(r)|E⊥(r)|2

ϵ2 − ϵ1

]
dA, (3.30)

which is maximized for small optical mode volumes and large xzpf paired with a

large overlap integral. These simulations predicted that the moving boundary

optomechanical coupling rate of these devices would be gmb/2π = 348 Hz.

3.3 Fabrication

The devices described in the previous two sections were fabricated at the

University of Alberta in the NanoFAB Fabrication and Characterization Cen-

ter [47]. The wafers were purchased from Rogue Valley Microdevices [37] and

consist of a 300 nm layer of PECVD low-stress silicon nitride (SiN) deposited

on silicon (Si). The fabrication process flow can be split into 4 parts: sub-

strate cleaning and preparation, electron beam lithography (EBL), reactive

ion etching (RIE), and wet etching.

3.3.1 Substrate Cleaning and Preparation

The first step of fabrication is to dice the wafer into smaller, easier to work

with chips. We chose to dice the wafer into 10 mm x 10 mm chips with 5 mm

x 5 mm score lines on the back using the disco DAD 3240 dicing saw available

at the NanoFAB. This allows us to fabricate 4 devices at once, and then break

the chip along the score lines after fabrication. Next, the chips are cleaned by

soaking them in a piranha solution, made by adding 1 part hydrogen peroxide

to 3 parts sulfuric acid, for 20 minutes.

Once the chips are diced and cleaned, we deposit a 50 nm film of aluminum

(Al) onto the chips using the KJLC CMS-18 sputtering system (nicknamed

“Floyd” at the nanofab). Al is conductive, so during EBL the Al will help

dissipate extra charge, providing better pattern resolution. The primary rea-

son for depositing this layer of Al is that after EBL the Al layer will serve
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Figure 3.5: Schematic of how an EBL system works. Taken from [5].

as a hard mask material for etching the SiN layer. The last step of substrate

preparation is to spin on a layer of electron beam resist. The electron beam

resist we used is ZEP 520A, which was spun onto our chips at 3000 rpm for

60 seconds and then baked at 180◦C for 5 minutes on a hot plate.

3.3.2 Electron Beam Lithography

EBL is one of the most important and powerful techniques for creating

nanometer scale devices [5]. EBL works similar to film photography. The films

used for photography are coated in a light sensitive material such that when

a picture is taken (i.e. the film is exposed to light) the films undergo a slight

chemical reaction. This chemical reaction does not alter the film visually, but

we can bring out the colours of the photo by soaking the films in a developer

solution. Instead of using light to expose the electron beam resist we spun on

our chips, the EBL technique uses a focused beam of electrons. This allows

for drawing nanometer scale patterns into the resist. A schematic of a typical
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Figure 3.6: A) Full device geometry and B) hole geometry for the GDSII files used in
this thesis. The bulk area around the waveguide drawn in green is patterned using
straight or curved lines while the holes are patterned using a dot-dose array. The
colour of the dots corresponds to the dose that dot receives, with red dots receiving
a higher dose while blue dots receive a lower dose.

EBL system is shown in Fig. 3.5, while the EBL system that we used to create

our OMCs was the Raith 150TWO commercial EBL system. The Raith reads

patterns with the GDSII filetype, so the first step in EBL is to take the design

we made in COMSOL and write Python or Matlab code that draws it in the

GDSII format.

Proximity effects due to scattering of electrons greatly complicates our

pattern design. Scattering causes a broadening of the electron beam after it

enters the electron beam resist due to low energy elastic collisions [5]. Under

most circumstances this broadening is fairly predictable, and can be mitigated

by using a higher energy electron beam and by making GDSII patterns slightly

larger or smaller than predicted. Very small patterns such as the holes in our

unit cells require much more precise control over how the electron beam resist

is exposed. This is done through the use of a dot-dose array as shown in

Fig. 3.6B). Each dot receives a specified dose of electrons, allowing for precise

control over how the resist is exposed. The Matlab function responsible for

creating the dot-dose array was originally written by the fabrication group

manager at the nanofab, Aaron Hryciw [48], and then modified to fit my

purpose.
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Figure 3.7: The above plot is taken from [49]. This plot compares the dose needed
to fully develop the exposed electron beam resist (dose to clear) to the temperature
of the developer used. When taking this data the authors submerged the chips in
the developer for 10 s. The four square data points represent their four separate
trials, while the blue dashed curve is a fit to their data points.

After exposure, the chips are dipped in the developer liquid ZED N50 which

dissolves the sections of electron beam resist that were exposed to the electron

beam. The amount of electron beam resist that is dissolved greatly depends

on the temperature of the liquid and length of time the chip is submerged.

Fig. 3.7 shows a plot taken from [49] that compares the dose needed to fully

develop the exposed electron beam resist to the temperature of the developer

for a development time of 10 seconds. They found that lower temperatures

greatly reduced the edge roughness of the patterns, which motivated our de-

cision to develop our chips for 11s at -20 ◦C. Following development in ZED

N50, the chips were dipped in an isopropyl alcohol solution for 20s at -20 ◦C

which removes any remaining ZED N50, therefore preventing any further de-

velopment. The necessary electron dose was then optimized based on these

development parameters.
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Etch Step Cleaning Conditioning Etching SF6 clean

Chamber Pressure (mTorr) 10 4 4 10
Chamber Temperature (◦C) 50 50 50 50 50

Forward ICP power (W) 1000 1000 1000 2000
RF power (W) 0 65 65 100
O2 flow (sccm) 50 0 0 0
Cl2 flow (sccm) 0 10 10 0
BCl3 flow (sccm) 0 10 10 0
HBr flow (sccm) 0 30 30 0
SF6 flow (sccm) 0 0 0 50
He backing (Torr) 0 10 10 10

Process time (hour:min:sec) 00:10:00 00:02:00 00:00:40 00:15:00

Table 3.1: Al RIE recipe used in this thesis. This is the nanofabs standard
recipe for etching Al [47]. Adjustments to the etching steps process time can
be made depending on the thickness of the Al layer.

3.3.3 Reactive Ion Etching

Reactive Ion Etching (RIE) combines physical etching with reactive etching

through the use of a plasma-based dry etching technique [6]. For etching the Al

layer of our chips, the plasma is formed from a gas consisting of Cl2, BCl3, and

HBr, while the SiN etch uses a gas of C4F8 and SF6. Within a vacuum chamber,

a glow discharge plasma is formed from the reaction gas through the process of

electron-impact ionization. The plasma contains many different species, such

as radicals, positive and negative ions, electrons, and neutrons. The bottom

surface of the vacuum chamber is made from a capacitively coupled electrode

that is driven at a high frequency (typically 13.56 MHz [6]). The electrons in

the plasma will be more strongly attracted to the electrode than the ions, so

after plasma ignition the electrode will acquire a negative charge. The negative

charge of the electrode will attract the positive ions in the plasma, resulting

in the chip and electrode being bombarded with energetic, positive ions. At

the same time as this ion bombardment, the radicals inside the plasma will

react with the surface of the chip, creating a thin, uniform layer of material.

This thin layer of material acts as a passivation layer that protects the vertical

surfaces of the chip, which helps with etching straight vertical sidewalls. After

the reaction, the reaction products diffuse away from the etching surface into
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Etch Step Cleaning Conditioning Etching

Chamber Pressure (mTorr) 20 10 10
Chamber Temperature (◦C) 15 15 15
Forward ICP power (W) 2000 1200 1200

RF power (W) 150 20 20
DC bias (V) 200 40 40

O2 flow (sccm) 100 0 0
C4F8 flow (sccm) 0 14 14
SF6 flow (sccm) 10 14 14
He backing (Torr) 0 10 10

Process time (hour:min:sec) 01:00:00 00:20:00 00:07:00

Table 3.2: SiN RIE recipe used in this thesis. This etch recipe was given to me
by my colleague Elham Zohari [50]. Adjustments to the etching steps process
time can be made depending on the thickness of the SiN layer.

the bulk of the plasma before being pumped out of the chamber.

The Al hard mask was etched using the Oxford Cobra ICPRIE with the

etch parameters provided in Table 3.1. This is the nanofabs standard recipe for

etching Al [47]. The etching steps process time can be adjusted depending on

the thickness of the Al layer. The SiN layer of our chips was etched using the

Oxford Estrelas ICPRIE (DRIE) using the etch parameters provided in Table

3.2. This etch recipe was given to me by my colleague Elham Zohari [50], and

we can similarly adjust the etching steps process time in order to fully etch

the SiN layer. Note that the flow rate of gases in the chamber is measured

using the units of standard cubic centimeters per minute (sccm). For both

recipes, the first step is to clean the chamber to ensure that anything that

may have been deposited on the walls of the chamber by the previous user

does not contaminate our chips. Following this, we perform a conditioning

step without our chips in the chamber. This is the same recipe we will use to

etch our devices, but we first run it without our chips in the chamber so that

the surface chemistry of the chamber can reach its steady-state [51]. After

conditioning the chamber we mount our chips in the chamber and etch the

chips for 40 seconds for the Al etch and for 7 minutes for the SiN etch. An

additional cleaning step is needed after performing the Al etch that uses SF6

instead of O2. This is to prevent coating the surfaces of the chamber with
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Figure 3.8: Example of how KOH etches Si along the < 111 > crystal axis, leading
to features with an angle of 54.7◦ when etching Si with a < 100 > crystal orientation.
Image taken from [53].

B2O3 which does not react with O2 [52] and therefore can not be removed

using a normal plasma clean.

3.3.4 Wet etching

Once the pattern is transferred to the SiN layer, the final step is to etch the

Si underneath the SiN layer in order to suspend the OMC. It is very important

to choose an etching technique that only targets the Si, so we decided to

etch our devices using a 32% KOH solution which etches Si at a rate 7300

times faster than PECVD SiN [53]. KOH etching is anisotropic, with etching

primarily happening along the < 111 > crystal plane [53]. For Si with < 100 >

orientation used in this thesis, this means that the etch will proceed at an

angle of 54.7◦ from the surface normal. This results in trenches or holes being

shaped like triangular prisms, as shown in Fig. 3.8. The etch dimensions can
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Figure 3.9: A) A collection of various liquids with their associated critical temper-
atures and pressures taken from [55]. B) Phase diagram for CO2 taken from [54].

be calculated from the formula [53]:

A = B + 2×D × cot(54.7◦), (3.31)

where A is the feature size in SiN, B is the feature size at the bottom, and D is

the etch depth. To ensure that the OMCs were fully suspended, we etched our

chips for one hour. Afterwards, we rinsed the chips in three deionized water

baths before submerging them in an isopropyl alcohol (IPA) solution.

The last step in fabricating the OMCs is to dry the chips using a critical

point dryer. If dried normally the surface tension of the liquid when transi-

tioning from liquid to gas may be enough to damage the devices. Beyond the

critical pressure and temperature there is no distinction between liquid and

gas and no surface tension [54], making this an ideal method for drying fragile

structures. As shown in Fig. 3.9A), many liquids have undesirable properties

such as being flammable, toxic, or corrosive, so typically liquid CO2 is used in

critical point drying.

The Nanofab uses the Tousimis AutoSamdri 815B critical point dryer [56],

which performs the critical drying process automatically. The user first fills

the process chamber with enough IPA to cover their chip before transferring

their chip to the chamber and sealing the chamber. The chamber is then

cooled to 0◦C and filled with liquid CO2 while simultaneously purging the IPA

from the chamber. At this point the chamber only contains liquid CO2, so
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when the chamber is heated to 38◦C and pressurized to 9.3 MPa, the CO2

becomes a supercritical liquid. The supercritical CO2 is slowly vented out of

the chamber until the chamber pressure reaches 2.5 MPa, at which point the

chamber is cooled and vented quickly to atmosphere since the CO2 can no

longer transition into a liquid.

3.3.5 Fabrication Summary

A brief summary of the fabrication process is shown in the flow chart in

Fig. 3.10A), and a scanning electron micrograph of the final result of this

fabrication is shown in Fig. 3.10B). The final geometry of the device was

measured using a scanning electron microscope (Zeiss Sigma FESEM). When

measuring the devices, our accuracy is limited by the size of pixels in the

image. We performed all measurements at a magnification of 40000x, where

the scale bar of 200 nm is 72 pixels long. This means that each pixel is 2.78 nm

long. Rounding up to the nearest nm, this means that we have an uncertainty

of ±3 nm in our measurements. As such, we measured our device to have a

waveguide width of 1527± 3 nm, the holes of the mirror section had semiaxes

hz = 240 ± 3 nm and hx = 943 ± 3 nm, and the center hole had semiaxes

hz = 212± 3 nm and hx = 896± 3 nm.
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Figure 3.10: A) A flow chart briefly summarizing the steps required for fabricating
the OMCs used in this thesis. More details can be found within the text. B)
Scanning electron microscope image of one of the OMCs fabricated for this thesis.
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Chapter 4

Measurement Techniques

This section discusses the methods used to measure the optical and me-

chanical characteristics of our OMC. Section 4.1 will cover the optical mea-

surement techniques used, beginning with dimpled-tapered fiber coupling and

ending with a discussion on the optical direct detection method. Section 4.2

will discuss methods for performing a phase detection measurement of the me-

chanical mode. This includes a discussion of the homodyne detection scheme,

electrical downmixing of the signal, and how to obtain power spectral densities

from the measurement. Lastly, in Section 4.3, we talk about our experimental

setup, our procedure for measuring the optical and mechanical modes, our

results, and a discussion on how we calculated the optomechanical coupling

rate of our system.

4.1 Optical Measurement Techniques

4.1.1 Dimpled-Tapered Fibers

As shown in section 3.2, the optical mode of the OMC primarily exists

within the OMC, but some of the field also exists outside the OMC in the

form of an evanescently decaying field. Similarly, optical fibers will also have

optical modes that evanescently decay away from the fiber. Although the

evanescent fields represent the leaking of optical photons into the environment,

by overlapping these two evanescent fields we can couple light into and out

of the OMC. This is one of the reasons that motivated previous students in

the lab to develop a procedure for producing dimpled-tapered fibers. Below I
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provide a simplified explanation of how dimpled-tapered fibers are produced,

while a more detailed explanation is provided in [57].

Tapered fibers in our lab are generally produced using the heat and pull

method [57]. To begin, two fiber patch cords are spliced to the ends of a

∼1 m length of fiber. Both the patch cords and fiber are made from Corning

SMF28E+ fiber. In the center of the fiber we strip off ∼2 cm of the cladding

where we will be performing the tapering and dimpling procedure. Once the

fiber is prepared we connect one patch cord to a laser source and the other

to a photodiode, allowing us to monitor the transmission through the fiber

throughout the tapering and dimpling procedure. The stripped section of the

fiber is placed between two clamps, making sure that the fiber is not twisted

and that the clamps are aligned both horizontally and vertically. These clamps

are each mounted on linear motorized stages (Zaber T-LSM200A) and, through

the use of a computer, provide the pulling force during the tapering procedure.

The stripped section of the fiber is heated through exposure to a hydrogen

flame. Note that this does not melt the fiber, but instead softens it, such that

when the fiber is pulled the diameter of the fiber will be tapered down. Once

the hydrogen flame is in place, the two clamps are slowly pulled apart using

the linear motorized stages. Over the course of the pull, the signal amplitude

detected on the photodiode will begin to oscillate. The oscillations will increase

in frequency until suddenly the oscillations stop. This means that the fiber has

become single mode, and serves as a visual indicator of when to stop pulling

the fiber and remove the hydrogen flame. A schematic of a tapered fiber is

provided in Fig. 4.1A).

Once the fiber is tapered, we also add a dimple to the tapered section of

the fiber as shown in Fig. 4.1B). This dimple provides a section of the fiber

that is extended away from the rest of the fiber, which is then used as a probe

for measuring on-chip devices. The dimple is created by taking a previously

tapered section of fiber, lubricating it with graphite, and aligning it perpen-

dicularly with the center of the tapered region. The graphite coated fiber is

brought into contact with the tapered fiber, and then lifted while simultane-

ously loosening the tension in the tapered fiber, resulting in the tapered fiber
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Figure 4.1: A) A Schematic of the fiber after being tapered, adapted from a similar
schematic in reference [57]. d0 is the initial width of the fiber, dw is the final width of
the fiber, lt is the length of the tapered region, and lh is the region of fiber exposed to
the hydrogen flame. B) Optical microscope image of a completed dimpled-tapered
fiber.

wrapping around the graphite coated fiber. We continue to raise and loosen

the fibers until the ends of the tapered fiber extend vertically down from the

fiber mould. At this point the hydrogen flame is brought back near the fibers

for a short moment, annealing the dimple shape into the tapered fiber. The

graphite coated fiber can then be lowered, while tightening the tension in the

tapered fiber as necessary, until it detaches from the tapered fiber. The two

fibers may stick together due to being annealed for too long, but can often be

separated by either the flow of hydrogen gas from the unlit hydrogen torch, or

by a well placed drop of a solvent such as methanol.

Lastly, the dimpled-tapered fiber is glued to an aluminum mount with two
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arms. To secure the fiber to the mount, 5 minute epoxy is deposited on each

arm of the mount, and then the mount is raised into the fiber with the dimpled

section centered between the arms. The fiber will sink into the epoxy, so it

is important to compare the relative heights of the epoxy and the dimple to

ensure that the dimple is the highest point. If not, minor adjustments can

be made by raising and lowering the clamps holding the fiber. Once properly

adjusted, the epoxy is left to harden overnight.

4.1.2 Optical Direct Detection

The optical field of the laser, âin, has an intensity given by:

|âin|2 =
Pl

ℏωl

, (4.1)

where Pl is the power of the laser and ωl is the laser frequency [2]. Light

scatters away from the fiber at a rate κ = κ0 + κe, where the intrinsic scat-

tering rate κ0 is the rate that light scatters into the environment, while the

extrinsic scattering rate κe is the rate that light couples into and out of the op-

tomechanical crystal. κe depends on the distance between the dimple and the

optomechanical crystal and the positioning of the dimple above the optome-

chanical crystal which allows us to explore three different coupling regimes.

When κ0 > κe we are undercoupled, meaning that cavity losses are dominated

by intrinsic losses [2]. When κ0 < κe we are overcoupled, meaning that some

photons are entering and then exiting the cavity before they are able to leak

into the environment via intrinsic losses [58]. Lastly, when κ0 = κe we are

critically coupled, meaning photons are entering and exiting the cavity at the

same rate [2]. In combination with a three-axis positioning stage, the dim-

pled tapered fiber provides a convenient platform for coupling light into the

optomechanical crystal. An example of what this coupling looks like is shown

in the microscope image in Fig. 4.2B).

After interacting with the optical mode of the optomechanical crystal, light

couples back into the dimpled fiber at a rate of κe. This light is split into two

components, the reflected field and the transmitted field. The transmitted
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Figure 4.2: A) Example of a Lorentzian shaped transmission dip, such as the ones
we expect to observe when measuring the optical resonance of the OMC. The optical
resonance is located at the bottom of the Lorentzian, and the total coupling rate
is the full-width-half-max of the resonance. B) Microscope image of coupling a
dimpled-tapered fiber to an OMC. C) Schematic of how light is coupled into and
out of the optomechanical crystal.

optical field can be derived using input-output theory [18] and is given by:

âout = âin −
√
κe

2
â. (4.2)

The factor of 1/2 in the second term accounts for the reflection losses, which

do not reach the photodiode in this measurement scheme. Substituting the

steady state solution we derived in Eq. 2.19 into Eq. 4.2, we can obtain the

optical intensity detected by the photodiode [18]:

|âout|2

|âin|2
= 1− (κ0 + κe/2)

(
κe/2

∆2 + κ2/4

)
, (4.3)

where we have normalized the expression by dividing both sides by |âin|2. This

expression can be fit to a Lorentzian:

y = y0 −
A

(x− x0)2 +B
, (4.4)
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allowing for the extraction of key optical parameters: the resonance frequency

ωc, the total decay rate κ, and the quality factor Q = ωc/κ. Additionally, we

can calculate the intrinsic and extrinsic scattering rates using the expressions:

κ0 = 2
√

B − A, (4.5)

κe = 2
√
B − 2

√
B − A, (4.6)

where A and B are extracted from the fit. An example Lorentzian is plotted

in Fig. 4.2A) to provide an example of what an optical resonance should look

like.

4.2 Mechanical Measurement Techniques

Numerous methods exist for measuring the mechanical motion of a res-

onator, and these can be classified into the two categories of direct detection

and phase detection. In all cases, the mechanical signal appears as a mod-

ulation of the optical signal, requiring the time-domain signal to be Fourier

transformed to obtain information about the mechanical motion [2]. This

modulation of the optical mode can be modeled by the expression [18]:

â(t) = âe−iβm sin(ωmt), (4.7)

≈ â

[
1− βm

2
(eiωmt − e−iωmt)

]
, (4.8)

where ωm is the frequency of the mechanical signal and:

βm =
g0x0

ωmxzpf

, (4.9)

is the mechanical modulation index. By inspecting this expression for the

modulated optical mode, we can see that applying a modulation like this

results in the appearance of two new frequencies, called sidebands, located at

ωl + ωm and ωl − ωm respectively. Substituting Eq. 4.8 into our expression for

the optical output field yields [18]:

âout(t) = âin −
√
κe

2
â

[
1− βm

2
(eiωmt − e−iωmt)

]
. (4.10)
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Figure 4.3: A) When the optical mode is modulated by the mechanical signal, it
will cause the optical resonance to oscillate back and forth. This dω is shown by the
gray sinusoid. When doing mechanical direct detection, the laser is detuned from
the resonance to the point on the optical resonance with the steepest slope. This
translates the change in cavity resonance into a change in transmission detected on
the photodiode, dT . The phase of the optical mode is similarly modulated by the
mechanical signal, as shown by the grey sinusoid in figure B). In this case, the laser
is kept tuned to the optical resonance since this is the point with steepest slope.
Information about the mechanical mode is encoded in dθ.

4.2.1 Mechanical Direct Detection

The setup for mechanical direct detection is very similar to what was used

for optical direct detection, except instead of sweeping the laser frequency

across the optical resonance, we park the laser frequency at one of two points in

the optical resonance with the steepest slope. These points can be determined

by calculating the zeros of the second derivative of the output optical intensity

with respect to the detuning [59]. If our OMC is sideband resolved, κ ≪ ωm,

the steepest slope for a given ωm appears at the detunings:

∆ = ±1

2

√
2ω2

m − κ2 − 2
√

ω4
m − 2κ2ω2

m ≈ ±κ

2

(
1 +

κ2

4ω2
m

)
, (4.11)

whereas if the OMC is not sideband resolved the steepest slope appears at:

∆ = ±1

6

√
12ωm + 3κ2. (4.12)

At these points we will see a maximum change in signal amplitude when the

optical signal is modulated. This scheme is illustrated in Fig. 4.3A).

The AC voltage output by the photodiode is given by [18, 59]:

Vdir(t) = ηd(ω)|âin|2βmκeKdir(∆, ωm) sin(ωmt), (4.13)

where ηd(ω) is the detector efficiency andKdir(∆, ωm) is the transduction func-

tion responsible for transducing the cavity resonance frequency fluctuations
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into a voltage signal [59]. Both these parameters add gain to the measure-

ment, so they can be treated as fit parameters. Despite its simplicity, this was

not the primary method used for measuring mechanical modes in this thesis.

More detailed information on direct detection can be found in [59, 60].

4.2.2 Homodyne Detection

When photons enter the OMC they reflect back and forth between the two

mirror regions before coupling back into the fiber. These reflections increase

the photon path length, equivalent to phase shifting the light that enters the

OMC. As such, another way to detect the mechanical motion of the OMC is to

measure this phase response. One benefit of measuring the mechanical signal

using the phase instead of the intensity is that, as pictured in Fig. 4.3B), the

point of steepest slope for the phase response is at a detuning of ∆ = 0. Keep-

ing the laser tuned to the optical resonance has the advantage of increasing

the number of intracavity photons which, through cavity enhancement, will

increase the optomechanical coupling as was discussed in section 1.4.2. Addi-

tionally, having ∆ = 0 results in a more accurate measurement of the intrinsic

mechanical motion since any detuning dependent effects, such as optomechan-

ical backaction [2], are absent.

The phase response of the OMC cannot be measured directly, but instead

needs to be measured through interferometry. One such technique is homodyne

detection [18] where the light from the laser is split down two arms, the device

arm and the local oscillator arm. After the light in the device arm interacts

with the OMC, the two arms are recombined at a 50/50 beamsplitter before

being detected at a balanced photodiode (BPD). The mixing that occurs at

the 50/50 beamsplitter allows the phases of the two arms to be compared,

with such differences attributed to mechanical oscillations of the OMC.

Consider a beam splitter with two inputs and two outputs. Following the

derivation for the output fields of a beam splitter in reference [61], the beam

splitter equation can be described in matrix form as:[
E3

E4

]
=

[
R T
T R

] [
E1

E2

]
, (4.14)
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where R = |R|eiϕR and T = |T |eiϕT are the reflection and transmission coef-

ficients of the beam splitter respectively. Due to conservation of energy, the

power in must equal the power out [61]:

|E1|2 + |E2|2 = |E3|2 + |E4|2, (4.15)

which is satisfied for all inputs if:

|R|2 + |T |2 = 1, (4.16)

and:

ϕR − ϕT = ±π/2. (4.17)

The 50/50 beamsplitter is the special case where the reflection and transmis-

sion coefficients are equal to R = 1/
√
2 and T = i/

√
2, so our beam splitter

equation is given by: [
E3

E4

]
=

1√
2

[
1 i
i 1

] [
E1

E2

]
. (4.18)

Next, we follow the derivation in reference [58] to determine the intensity

detected on the BPD. In the frame rotating with the laser frequency, ωl, the

input fields can be described by [58]:

aLO(t) = aLOe
i(kzLO+ϕLO), (4.19)

and:

aD(t) = aDe
i(kzD+ωmt), (4.20)

where aLO(t) and aD(t) correspond to the local oscillator and device arm fields

respectively, k is the wavevector of the laser light, and the distance travelled

in each arm is given by zLO and zD [58]. The difference in phase between the

two arms has been included using the term ϕLO, which accounts for any time

independent phase fluctuations. Inserting these fields into Eq. 4.18 yields:

a1(t) =
1√
2

[
aLOe

i(kzLO+ϕLO) + iaDe
i(kzD+ωmt)

]
, (4.21)

and:

a2(t) =
1√
2

[
aDe

i(kzD+ωmt) + iaLOe
i(kzLO+ϕLO)

]
, (4.22)
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corresponding to the fields incident on the two ports of the BPD. The ports

of the BPD do not measure the amplitude of the optical fields directly, but

instead need to be converted to an intensity using the formula I = 1
2
ϵ0c|a|2.

As such, the intensities detected by the ports of the BPD is given by [58]:

I1,2(t) =
1

2
ϵ0c
[
|aLO|2 + |aD|2 ± i(a∗LOaD − a∗DaLO)

]
,

=
1

2
ϵ0c
[
|aLO|2 + |aD|2 ∓ 2aLOaD sin(k∆z − ϕLO + ωmt)

]
, (4.23)

where ∆z = zD − zLO and we assume that the field amplitudes aLO and aD

are real. We can simplify this result by taking the difference between the two

intensities:

IB(t) = 2aLOaD sin(k∆z − ϕLO + ωmt), (4.24)

since both intensities contain the same first two terms. In addition to elimi-

nating the large DC terms, this has the benefit of eliminating noise common

to both arms. This is one of the reasons that phase detection measurements

typically have significantly better signal-to-noise ratios compared to direct de-

tection measurements [58], and is the primary reason why we chose to use the

homodyne measurement scheme for measuring the mechanical oscillations of

our OMC.

Lastly, in order to isolate the ωmt term of the detected intensity we must

set up our experiment such that k∆z − ϕLO = m2π where m ∈ Z. If the

local oscillator and device arm fields were originally split from the same laser

source, we can simply set ϕLO = 0, leaving us with:

∆z = m
λ0

n
, (4.25)

where we have substituted k = 2π
(λ0/n)

where λ0 is the wavelength of the laser

light in a vacuum and n ≈ 1.47 is the index of refraction of the fibers used in

the interferometer. Even if the path lengths are matched to an integer multiple

of the wavelength, it is ideal to minimize m since if m is large, any small shift

in the laser wavelength will result in a large phase fluctuation between the

interferometer arms. Therefore, it is necessary to match the lengths of the two

arms as closely as possible. A detailed procedure for doing this is provided in

[18].
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Similar to the AC output voltage we found in section 4.2.1, the BPD used

here will also have an output voltage given by [18]

Vhom(t) = ηd(ω)|aLO||aD|κeβmKhom(∆, ωm) sin(ωmt) (4.26)

where again ηd(ω) and Khom(∆, ωm) are the detector efficiency and transduc-

tion function respectively. In this case, the output voltage depends on both

the amplitude of signals in the device arm and local oscillator arm. By using

small amplitude signals in the device arm and large amplitude signals in the

local oscillator arm, we can perform low-power measurements of the mechan-

ical motion since the signal in the local oscillator arm amplifies the voltage

detected on the BPD.

4.2.3 Electrical Downmixing

The range of frequencies that can be measured using homodyne detection

is limited by the range of frequencies measurable by our analog to digital

converter (ADC). The ADC used in this experiment (Ultradyne AD14-500x2)

has a sampling rate of 500 megasamples per second (MS/s), so by Nyquist’s

theorem [62] which states that you need to sample twice as fast as the highest

frequency you want to measure, our ADC can at best measure signals up to 250

MHz. We expect mechanical frequencies on the order of 2.5 GHz, so in order

to measure these signals using the equipment we have we need to electrically

downmix the signal to below 250 MHz and then digitally upconvert it to the

true frequency.

Electrical mixers are much simpler than the mixing that occurs at a 50/50

beamsplitter since in this case the two signals are simply multiplied together

[63]. The signal from the BPD, Vhom(t), approximated as:

Vhom(t) ≈ A1 sin(ωmt), (4.27)

will be multiplied by a local oscillator signal provided by a signal generator:

VLO(t) = A2 sin(ωLOt), (4.28)
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Figure 4.4: A simple schematic of how an IQ mixer works. The RF and LO signals
are sent to two mixers, one of which has had the LO signal phase shifted by 90◦,
allowing access to both quadratures of the mixed signal.

which results in the mixed signal

Vmix(t) =
1

2
A1A2 [cos(ωmt− ωLOt)− cos(ωmt+ ωLOt)] , (4.29)

consisting of two new sinusoids with frequencies which are the sum ωm + ωLO

and difference ωm − ωLO of the two input frequencies. By choosing an appro-

priate signal generator frequency, the difference frequency can be downmixed

to below 250 MHz while the sum frequency is filtered out. The electrical

mixer that was used in these experiments is an IQ mixer (Marki Microwave

IQ1545LMP) which has slightly different properties than a standard mixer.

An IQ mixer contains two mixers, one of which has had the local oscillator

phase shifted by 90◦, allowing for separating the in-phase and quadrature sig-

nals [63]. The IQ mixer therefore has two output ports, as shown in Fig. 4.4,

which will output the signals:

I =
A1A2

2
[cos(ωmt+ ωLOt) + cos(ωmt− ωLOt)] , (4.30)

Q =
A1A2

2
[sin(ωmt+ ωLOt)− sin(ωmt− ωLOt)] . (4.31)

These signals can then be added in quadrature, I+iQ, or detected individually

depending on what analysis will be performed.
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4.2.4 Power Spectral Densities

The voltages described in the previous sections are in the time domain,

which when observed directly would appear as a noisy signal oscillating at

ωm. Additionally, due to mechanical damping and the thermal Langevin force

[2], the signal’s amplitude and phase will randomly fluctuate. In order to

obtain useful information about the signal, we need to transform it into the

frequency domain. For an arbitrary voltage signal V (t), the Fourier transform

over a finite time interval τ is defined as [2]:

V (ω) =
1√
τ

∫ τ

0

V (t)eiωt.dt (4.32)

We include the prefactor 1/
√
τ to ensures that it is well defined for τ → ∞.

This allows us to determine the noise power spectral density (PSD) SV V (ω)

using the Wiener-Khinchin theorem [2]:

lim
τ→∞ ⟨|V (ω)|2⟩ = SV V (ω), (4.33)

where:

SV V (ω) =

∫ ∞

−∞
⟨V (t)V (0)⟩eiωtdt, (4.34)

which contains all the information about mechanical fluctuations in the system.

This includes any unwanted background noise in the signal, which fortunately

can be separated out from the mechanical signal using the expression [2]:

SV V (ω) = Sw
V V + αx2

zpfSb̂†b̂(ω). (4.35)

Assuming that all the technical noise in our system is frequency independent,

Sw
V V encapsulates all background white noise generated by the equipment used

while performing the measurement, while x2
zpfSb̂†b̂†(ω) contains all the noise due

to mechanical motion which is scaled by the detection factor α. For thermally

driven motion, as is the case for all measurements in this thesis, Sb̂†b̂†(ω) can

be derived directly from the mechanical equation of motion, Eq. 2.51. When

∆ = 0, the thermal PSD is given by [18]:

Sth
b̂†b̂
(ω) =

Γmn̄th(ωm)

(ωm + ω)2 + Γ2
m/4

, (4.36)

49



Figure 4.5: A) A schematic of the experimental setup used in this thesis. The optical
paths are drawn using a red line while the electronic paths are drawn in black. Beam
splitters are denoted using a black line angled at 45◦, polarization controllers are
denoted using 3 sequential circles, and the optical switch is denoted using three red
dots oriented in a triangle. Note that the beam splitter right after the laser is a
variable beam splitter, allowing for adjusting the ratio of light in the local oscillator
and device arms. The various electronic and optical components are as follows:
EOM = electro-optic modulator, FS = fiber stretcher, OMC = optomechanical
crystal, BPD = balanced photodiode, IQ = IQ mixer, LO = local oscillator. B) A
photo of the fiber setup used in this thesis. Note that an additional polarization
controller and EOM have been added to the local oscillator arm, allowing for also
doing heterodyne measurements.
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where the number of thermal phonons can be calculated using the Bose-

Einstein distribution:

n̄th =
1

eℏωm/kBT − 1
. (4.37)

4.3 Experimental Setup and Results

All measurements performed in this thesis were done at room temperature.

A schematic and a photo of the experimental setup are shown in Fig. 4.5.

This setup is equipped with an optical switch, allowing for quickly switching

between optical direct detection and homodyne measurement schemes. When

doing direct detection the switch is opened, which sends the transmission

signal to a single photodiode, while homodyne measurements are done while

the switch is closed, which sends the signal to the 50-50 beam splitter where

it mixes with the local oscillator before being sent to the BPD.

4.3.1 Optical Mode Characterization

The procedure for measuring the optical mode characteristics is quite sim-

ple. As mentioned previously, we will couple light into the OMC using a

dimpled-tapered fiber and then measure the transmission on a photodiode.

The first step in this measurement is to find the mode of interest, which is

done by sweeping the full range of the laser and adjusting the polarization of

light that couples to the OMC until we see a dip in transmission. We then

narrow the range of the sweep so that it is centered around the mode of in-

terest and adjust the polarization to maximize the depth of the transmission

dip.

Once the polarization is properly optimized, we can probe the charac-

teristics of the optical mode by adjusting the coupling distance between the

dimpled-tapered fiber and the OMC. When the fiber is far away we are under-

coupled, but as the fiber is brought closer we transition to being overcoupled as

shown in Fig. 4.6A) and B). Our positioning stage is controlled using the Thor-

labs APTmodel BPC203 peizo controller. This controller comes equipped with

an electronic display which, once properly zeroed, shows the approximate lo-
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Figure 4.6: A) A plot comparing the coupling distance to the shape of the optical
transmission. More details are shown by comparing the coupling distance to B) the
total, intrinsic and extrinsic coupling rates, and C) optical resonance wavelength.

cation of the stage in micrometers. For our purposes we set the point at which

the fiber touches our chip as our zero point, and measured coupling distances

with respect to that.

In Fig. 4.6B) and C) we show how the coupling distance shifts the optical

resonance and affects the various coupling rates. Photo-elastic effects due

to the high number of cavity photons causes the cavity wavelength to shift

from an intrinsic value of λc = 1482.55 nm, to a distorted value of λc =

1482.85 nm at a coupling distance of ≈ 200 nm. Additionally, the OMC

has an intrinsic linewidth of κ0 = 1.19 GHz, but the proximity of the fiber

causes additional photons to scatter out of the OMC, resulting in the intrinsic

linewidth increasing [18].

4.3.2 Mechanical Mode Characterization

Due to the narrow 200 MHz search bandwidth imposed by the downmixing

scheme, searching for the mechanical resonance signal proved to be the most

difficult part of this experiment. A previous member of the group [18] found

that the amplitude of the mechanical signal was maximized when κ ≈ 5 −

7 GHz, so using a coupling distance between 350-450 nm, corresponding to

an optical quality factor between 25000-40000, should result in a maximum

amplitude of our mechanical signal. We eventually found a mechanical signal
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Figure 4.7: A) PSD of the mechanical resonance of our OMC for an input laser power
of 10 mW. Also shown here is a fit to the data, from which we obtain Qm = 2126 and
Γm = 1.23 MHz. B) PSD for various laser powers, showing the power dependence
of our mechanical signal. C) Simultaneous measurement of the mechanical PSD
and the optical resonance, showing the relationship between laser wavelength and
mechanical signal amplitude.

with a frequency ωm = 2.62 GHz, but the amplitude of this signal was still

quite small. Signal-to-noise was improved by remembering that the amplitude

of the optical signal in the local oscillator arm amplifies the mechanical signal

at the 50/50 beam splitter. The input beam splitter is variable, allowing

tuning of the ratio of light in the local oscillator and device arms. Fig. 4.7A)

shows the resulting measurement when the laser is outputting 10 mW and the

variable beam splitter is tuned such that 95% of the light goes to the local

oscillator arm. The obtained mechanical signal has a mechanical quality factor

of Qm = 2126 and a mechanical damping rate of Γm = 1.23 MHz.

Once the mechanical signal has been maximized, there are 2 measurements

that must be done to confirm that the signal we are seeing is due to thermome-

chanical motion. From Eq. 4.26 we note that the voltage detected by the BPD

depends on the amplitude of fields in both the device arm and local oscillator

arm. Therefore, as shown in Fig. 4.7B), we first verify that the signal we are

seeing is due to the mechanical motion of the OMC by sweeping the power of
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the laser. When the laser power is low we see no mechanical signal, whereas

when the laser power is high we see a well defined mechanical resonance. The

second measurement we perform is a laser wavelength sweep to verify that

the mechanical signal amplitude is maximized when ∆ = 0 and decreases to

zero as we tune the laser away from ∆ = 0. Referring to Fig. 4.3B), this is

because the phase has maximum slope at ∆ = 0 and the slope vanishes as we

tune the laser away from ∆ = 0. This behaviour is confirmed in Fig. 4.7C)

where we stepped the laser frequency and measured mechanics at each step.

The optical resonance overlaid on top of this plot had an optical quality factor

of Q = 15488. Due to difficulties with maintaining the position of the fiber

throughout the course of this measurement, the quality factor for the optical

resonance is outside the ideal range of Q = 25− 40k. Future implementations

of this measurement will use on chip wave guides to optically couple to the

OMC, mitigating this problem.

4.3.3 Optomechanical Coupling Rate

The natural next step once we have characterized both the optical mode

and mechanical mode is to determine the optomechanical coupling rate. As

discussed in section 2.3, the definition of the single-photon optomechanical

coupling rate is g0 = Gxzpf where G = dω
dx

is the optical frequency shift per

displacement [2]. Typically G cannot be measured directly, so instead we

implement a technique called thermomechanical calibration [64]. Using the

chain rule, the thermomechanically calibrated optomechanical coupling is:

g0 =
dω

dx
xzpf =

dω

dVDC

· dVAC

dx
· xzpf. (4.38)

This equation now has three terms that can be either experimentally mea-

sured or calculated numerically.
√
α = dVAC

dx
is a fit parameter of the mechan-

ical power spectrum, dω
dVDC

can be extracted from the fit of the optical reso-

nance, andmeff can be obtained numerically and inserted into xzpf =
√

ℏ
2meffωm

.

Thermomechanical calibration requires precise information of how AC and DC

signals are affected by the various electronic and optical components in the

system. At low frequency, these components typically contribute very little
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noise or gain to the signal, but in the GHz regime their contribution becomes

large, leading to inaccurate values of g0. Since our mechanical resonances

are in this GHz regime, we will need to use a different technique to reliably

determine g0.

An alternative way of calculating g0 is through phase calibration [18]. In

addition to the mechanical signal, Fig. 4.7A) and B) shows another narrower

peak next to the mechanical signal. This peak is the signal provided by an

EOM that is placed in the device arm before the OMC (see Fig. 4.5). Phase

calibration compares the mechanical signal of our device to the signal from

an EOM with a known driving voltage and frequency near the mechanical

frequency [18]. This extra modulation in the signal arm of our homodyne

setup can be modeled as a Dirac delta function, leading to a slightly different

expression for the PSD:

SV V (ω) = Sw
V V + αxzpfSb̂†b̂(ω) + SEOM

V V δ(ω − ωEOM), (4.39)

where SEOM
V V is the amplitude of the modulation provided by the EOM.

The power contained in the two peaks can be determined by calculating

the area under the curve. This can be done either by extracting the area from

the fit or by numerical integration. For the mechanical signal, the power is

given by [18]:

P (ωm) =

∫
ωm

(SV V (ω)− Sw
V V )dω =

SV V (ωm)Γm

2
= αβ2

m, (4.40)

while the linewidth of the EOM is typically narrower than the resolution of our

Fourier transform so its power needs to be calculated differently. Instead, we

can approximate the linewidth from the effective noise bandwidth (ENBW) of

the Fourier transform we performed [18]. The ENBW is set by the frequency

spacing of points, which can be determined from the ratio:

ENBW =
RATE

NFT
, (4.41)

where RATE is the rate at which voltage data is collected, and NFT is the

number of points in the Fourier transform. For our Fourier transform, we

collected data at a rate of RATE = 5 × 108 samples/s and used NFT = 214
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points in the Fourier transform, yielding ENBW ≈ 30500 Hz. Using this, the

power of the EOM peak can be calculated as:

P (ωEOM) =

∫
ωEOM

(SV V (ω)− Sw
V V )dω =

SV V (ωEOM) · ENBW
2

= αβ2
EOM.

(4.42)

Both the power of the mechanical signal and the power of the EOM signal

depend on their respective modulation indices. For the mechanical signal the

modulation index, previously defined in Eq. 4.9, is given by:

βm =
g0x0

ωmxzpf

. (4.43)

This can be experimentally determined using equipartition theorem [18].

Equipartition theorem relates the average potential energy to the thermal

energy of the mechanical mode:

⟨U⟩ = 1

2
meffω

2
mx

2
0 =

1

2
kBT. (4.44)

Rearranging the previous two equations with respect to x0 and solving for βm

gives:

βm =

√
2kBT

ℏω3
m

g0. (4.45)

Rearranging this to solve for g0, and then inserting the two powers we obtained

in Eq. 4.40 and 4.42 we arrive at:

g0 =

√
ℏω3

m

2kBT
β2
EOM

SV V (ωm)Γm

SV V (ωEOM) · ENBW
, (4.46)

which can now be determined, assuming we know the modulation index of the

EOM.

The modulation index of the EOM can be found by performing a simple

calibration of the EOM. To begin, the EOM with modulation index βEOM

driven at the frequency ωEOM produces the modulation of the optical field

[18]:

âin(t) = âine
−iβEOM sin(ωEOMt). (4.47)

For an EOM, the modulation index is defined as βEOM = πVEOM

Vπ
which is the

ratio of the EOM driving voltage to the voltage needed to phase shift the light
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Figure 4.8: A) Example of a frequency spectrum of an EOM. Adapted from a figure
taken from [66]. B) The amplitudes of the carrier and first side band of the EOM
are fit to the first two squared Bessel functions. The point where βEOM = π is used
to calibrate the Vπ of the EOM.

by π [65]. For small driving voltages this can be simplified by taking the Taylor

expansion, but in the case of large driving voltages, as can be the case with

EOMs, we instead consider the Jacobi-Anger expansion [18]:

e−iβEOM sin(ωEOMt) = −
∞∑

n=−∞

Jn(βEOM)e
inωEOMt, (4.48)

which expresses the field in terms of Bessel functions Jn(βEOM). The amplitude

of the carrier and sidebands can be fit to the squared values of the correspond-

ing Bessel functions to estimate a value for Vπ and therefore an estimate of

βEOM.

The amplitudes of the carrier and sidebands can be measured by monitoring

the transmission of light through a tunable Fabry Perot cavity as the cavity

resonance is swept across the laser frequency [18, 66]. When VEOM = 0, only

the carrier will be visible. As shown in Fig. 4.8A), when the applied voltage

is increased the sidebands will also appear. The carrier and first sideband

amplitudes for various applied voltages, normalized to the maximum carrier

amplitude, are plotted and fit to the corresponding squared Bessel functions

in Fig. 4.8B). For our EOM we find that the point βm = π corresponds to

the point when VEOM ≈ 1.91 V, which when inserted into the equation for the

EOM modulation index allows us to approximate our Vπ as Vπ ≈ 1.91 V.

Having successfully calibrated the EOM, we can now determine the value of
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g0 for this system. The EOM was driven by a signal generator with ωEOM/2π =

2.622 GHz and Pcal = −60 dBm, resulting in a PSD amplitude of SV V (ωEOM) =

1.373e−11 V2/Hz. Converting this power to a peak-to-peak voltage yields Vpp =

2.236e−4 V, which can then be substituted into our equation for the EOM

modulation index, yielding βEOM = 0.001 rad. The mechanical signal occurs at

ωm/2π = 2.619 GHz, and from the fit we obtain SV V (ωm) = 1.668e−11 V 2/Hz

and Γm = 1.232 MHz. Inserting these values into Eq. 4.46 results in the

optomechanical coupling rate

g0/2π = 98.7 kHz. (4.49)

As mentioned in section 2.3.2, this is the rate that energy is transferred between

the optical mode and the mechanical mode. As such, this is the main figure

of merit for this experiment.

To provide context to this value for the optomechanical coupling rate we

can compare this to similar devices made by other research groups. In reference

[22] they fabricated a similar device from SiN and measured an optomechanical

coupling rate of g0/2π = 130 kHz. In reference [31] they fabricated their

devices out of diamond and measured g0/2π = 217 kHz. This indicates that the

devices measured in this thesis have room for improvement. As mentioned in

section 3.2.2, the moving boundary optomechanical coupling rate is maximized

for small optical mode volumes, large xzpf, and large overlap integrals between

the optical and mechanical mode volumes. For the devices measured in this

thesis, the mechanical mode volume was calculated to be an order of magnitude

larger than the optical mode volume, which we predict contributed to the small

value for g0. In addition to this, the COMSOL simulations predicted a value

of gmb/2π = 348 Hz, which is significantly smaller than what we measured.

Future simulations will need to be performed to find a mechanical mode that

better overlaps with the optical mode and which provides a better estimate

for the optomechanical coupling rate.
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Chapter 5

Conclusion

5.1 Summary

The primary focus of this thesis was the design, fabrication, and mea-

surement of OMCs made from silicon nitride. We began by discussing the

theory of optical and mechanical resonators, including the theory for coupled

optomechanical systems. Hamiltonians for the optical and mechanical modes

were derived using second quantization, then the interaction Hamiltonian was

derived as a modulation of the optical mode due to the mechanical motion of

the OMC. This method of deriving the interaction Hamiltonian also enabled

us to derive the optomechanical coupling strength, one of the main figures

of merit for optomechanical systems. Input-output theory was then used to

derive the equations of motion that described the optomechanical interaction,

as well as accounting for the various ways photons and phonons are coupled

into the system or are lost to the surrounding environment.

Following our discussion of optomechanical theory, we described how we

designed the OMC in chapter 3. We began by discussing the theory behind

OMC band structures, then performed simulations of the mirror and defect

unit cells to produce band diagrams of both the optical and mechanical modes.

These mirror and defect unit cells were then combined into simulations of both

the optical and mechanical modes of the full OMC. Through these simulations

we found an OMC geometry that supported a high quality factor optical mode

and learned that large spatial overlap between the mechanical and optical

modes should result in large optomechanical coupling.
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Parameters Optics Mechanics
Wavelength/Frequency λc ≈ 1482.55− 1482.85 nm ωm/2π ≈ 2.62 GHz

Quality Factor Qc ≈ 10000− 160000 Qm ≈ 2126
Total Coupling/Damping Rate κt/2π ≈ 1.22− 17.47 GHz Γm/2π ≈ 1.23 MHz

Intrinsic Coupling Rate κ0/2π ≈ 1.21− 12.40 GHz -
Extrinsic Coupling Rate κe/2π ≈ 0.01− 5.07 GHz -

Optomechanical Coupling Rate g0/2π ≈ 98.66 kHz

Table 5.1: Summary of the optical and mechanical properties of the OMC
measured in this thesis

Continuing in chapter 3 we described in detail the fabrication process for

making the OMCs. The silicon nitride chips were coated in a thin layer of

aluminum, followed by a layer of photoresist. Electron beam lithography was

used to transfer the OMC pattern into the photoresist layer, which was then

used as a mask for etching the subsequent aluminum and silicon nitride layers.

The OMCs were suspended by submerging the chips into a bath of KOH,

which selectively etched away the silicon layer below the silicon nitride, before

being dried using a critical point dryer.

Lastly, we spent Chapter 4 discussing the various techniques used to mea-

sure the OMC. Dimpled tapered fiber couplers were made and used as a probe

for coupling light into and out of the OMC. Optical direct detection was used

to measure the optical resonance of the OMC, allowing us to relate the distance

between the fiber and OMC with changes in the coupling rate and resonant

frequency. Once the optical mode was characterized, we used a homodyne

detection scheme with electrical downmixing to measure the power spectral

density of the mechanical mode. Then, after calibrating the EOM, phase cali-

bration was used to determine the vacuum optomechanical coupling rate of the

system. A summary of all the experimental results is provided in Table 5.1.

5.2 Next Steps

As mentioned in section 4.1.2, this system cannot be critically coupled and

at best will have κe = κo/2. This is because half the light that couples from

the OMC back into the fiber is lost due to being reflected back down the
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fiber towards the laser. To mitigate this, future iterations of the OMC will

have light coupled into them using an on chip waveguide. One end of this

waveguide will be coupled to a fiber, while the other half will have mirror unit

cells patterned into it such that all light will be reflected back to the fiber.

Since all light is reflected back down the fiber these devices will need to be

measured in reflection, which will require making changes to the experimental

setup such as adding a circulator and potentially adding some Fabry-Perot

optical filters.

Upon writing this thesis it was discovered that, although the designs we

made had great optical properties, the mechanical properties suffered as a re-

sult. Future iterations will need to be re-simulated in order to find a geometry

that has both good optical and good mechanical properties. This will also

present the opportunity to fix the calculation for determining the optome-

chanical coupling rate since there is a large discrepancy between the simulated

and measured results. Fortunately, the simulations performed for this thesis

can still be used and will only require slight modifications.

The final goal of these devices is to place them inside a 3D microwave

cavity and perform transduction from optical photons to microwave photons,

similar to what was done in reference [18]. In this system, the phonons in-

side the OMC are coupled to the microwave field piezoelectrically, requiring

us to switch from using silicon nitride, which is not a piezoelectric material,

to lithium niobate, which has great piezoelectric properties. Changing mate-

rials will make it necessary to complete new simulations of the OMC, which

provides a great opportunity to improve the mechanical characteristics. Once

the new simulations are done, there will also need to be some alterations to

the fabrication process, since the etch chemistry used for silicon nitride is not

compatible with lithium niobate.

61



Bibliography

[1] A. Einstein, “Zur Quantentheorie der Strahlung”, Phys. Z. 18, 121–128
(1916).

[2] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optome-
chanics”, Rev. Mod. Phys. 86, 1391–1452 (2014).

[3] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter,
“Optomechanical crystals”, Nature 462, 78–82 (2009).

[4] P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic trans-
mission and networking: the previous 20 and the next 20 years [invited]”,
Opt. Express 26, 24190–24239 (2018).

[5] M. A. Mohammad, M. Muhammad, S. K. Dew, and M. Stepanova, “Fun-
damentals of electron beam exposure and development”, Nanofabrica-
tion, 11–41 (2011).

[6] S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, and G. S. Oehrlein, “Re-
active ion etching”, in Handbook of plasma processing technology: fun-
damentals, etching, deposition, and surface interactions (Noyes Publ.,
1990), 196–232.

[7] J. Z. Buchwald, R. Fox, and A. E. Shapiro, “Newton’s optics”, in Oxford
handbook of the history of physics (Oxford University Press, 2013), 166–
198.

[8] R. Descartes and N. Poisson, Discours De La Methode Pour bien con-
duire sa raison, & chercher la verité dans les Sciences: Plus la Diop-
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and S. Gröblacher, “Gallium phosphide as a piezoelectric platform for
quantum optomechanics”, Phys. Rev. Lett. 123, 163602 (2019).

[30] K. Schneider, Y. Baumgartner, S. Hönl, P. Welter, H. Hahn, D. J. Wil-
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[55] D. Sanli, S. Bozbağ, and C. Erkey, “Synthesis of nanostructured materi-
als using supercritical CO2 : part i. physical transformations”, J. Mater.
Sci. 47, 2995–3025 (2011).

[56] S. Munro and A. Hryciw, Critical point drier sop, Accessed: 2022-12-05.

[57] B. D. Hauer, P. H. Kim, C. Doolin, A. J. MacDonald, H. Ramp, and J. P.
Davis, “On-chip cavity optomechanical coupling”, EPJ Techn Instrum
1, 4 (2014).

[58] A. MacDonald, “Cryogenic Optomechanics with Silica Microresonators”,
MA thesis (University of Alberta, 2015).

[59] M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J.
Kippenberg, “Determination of the vacuum optomechanical coupling
rate using frequency noise calibration”, Opt. Express 18, 23236 (2010).

[60] A. J. MacDonald, G. G. Popowich, B. D. Hauer, P. H. Kim, A. Fredrick,
X. Rojas, and J. P. Doolin P. nd Davis, “Optical microscope and tapered
fiber coupling apparatus for a dilution refrigerator”, Review of Scientific
Instruments 86, 013107 (2015).

[61] R. Loudon, “Classical theory of optical fluctuations and coherence”, in
The quantum theory of light (Oxford University Press, 2010), 82–124.

[62] C. Shannon, “Communication in the presence of noise”, Proceedings of
the IRE 37, 10–21 (1949).

[63] D. Jorgesen, The why and when of IQ Mixers for Beginners, Accessed:
2022-12-05.

[64] B. Hauer, C. Doolin, K. Beach, and J. Davis, “A general procedure
for thermomechanical calibration of nano/micro-mechanical resonators”,
Annals of Physics 339, 181–207 (2013).

[65] Lithium niobate electro-optic modulators, fiber-coupled (1260 NM - 1625
nm), Accessed: 2022-12-05.

[66] I. Dotsenko, “Raman spectroscopy of single atoms”, MA thesis (Bonn
University, 2002).

66

https://doi.org/10.1007/s10853-011-6054-y
https://doi.org/10.1007/s10853-011-6054-y
https://confluence.nanofab.ualberta.ca/display/EQ/Critical+Point+Drier+SOP
https://doi.org/10.1140/epjti4
https://doi.org/10.1140/epjti4
https://sites.ualberta.ca/~jdavis/allisonmacdonald_msc_lowqua.pdf
https://doi.org/10.1364/oe.18.023236
https://doi.org/10.1063/1.4905682
https://doi.org/10.1063/1.4905682
https://books.google.ca/books/about/The_Quantum_Theory_of_Light.html?id=AEkfajgqldoC&redir_esc=y
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://www.markimicrowave.com/blog/the-why-and-when-of-iq-mixers-for-beginners/?afid=1&amp;gclid=Cj0KCQiAyracBhDoARIsACGFcS4NW2CAZHXoTDwoaz2K8HU2kB_VIIBlIs3Vd0KmHo4eU_L3UNyPj0oaAj5DEALw_wcB
https://doi.org/10.1016/j.aop.2013.08.003
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3918
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3918
http://www.lkb.upmc.fr/cqed/wp-content/uploads/sites/14/2015/10/Master_Thesis_-_Igor_Dotsenko.pdf

	 Introduction and Theory  
	Introduction

	 Optomechanical System Theory  
	Optical Cavity Theory
	Optical Cavity Hamiltonian
	Input-Output Theory for Optical Cavities

	Mechanical Resonator Theory
	Mechanical Resonator Hamiltonian
	Input-Output Theory for Mechanical Resonators

	Optomechanical Theory
	Radiation Pressure Force
	Interaction Hamiltonian
	Rotating Wave Approximation
	Linearizing the Hamiltonian
	Coupled Optomechanical Equations of Motion


	 Photonic crystal design, simulation, and fabrication  
	Crystal Theory
	Optical Plane Waves
	Mechanical Plane Waves

	Simulations
	Unit Cell Simulations
	Full Device Simulations

	Fabrication
	Substrate Cleaning and Preparation
	Electron Beam Lithography
	Reactive Ion Etching
	Wet etching
	Fabrication Summary


	 Measurement Techniques  
	Optical Measurement Techniques
	Dimpled-Tapered Fibers
	Optical Direct Detection

	Mechanical Measurement Techniques
	Mechanical Direct Detection
	Homodyne Detection
	Electrical Downmixing
	Power Spectral Densities

	Experimental Setup and Results
	Optical Mode Characterization
	Mechanical Mode Characterization
	Optomechanical Coupling Rate


	 Conclusion  
	Summary
	Next Steps

	Bibliography

