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Abstract

Restructured wholesale electricity markets in North America are subject to con-
tinuing concerns about the market power of sellers. Market power assessments have
typically compared market outcomes to those predicted by a static competition model.
However, electricity generation is subject to a variety of inter-temporal costs and con-
straints that are not adequately captured by static models. This paper develops a
dynamic model of wholesale market competition that incorporates two important fea-
tures of electricity generation technology: minimum generation rates and generator
startup costs. Taking these features into account, this paper characterizes a dynamic
competitive equilibrium and develops an approach for computing the equilibrium. This
model’s computed equilibrium prices provide an alternative competitive benchmark to
assess market power. The model is applied to the 2014 wholesale electricity market of
the Electric Reliability Council of Texas. Predicted peak hour prices from the dynamic
competition model are above those from the static competitive model, but still less
than actual peak prices on average. Average markups predicted by the dynamic model
are about 20% less than markups predicted by the static model for the full sample of
hours. When comparisons are restricted to hours of days with little or no transmission
congestion, both the static and dynamic models predict much smaller markups over
marginal cost. The variation in prices predicted by the dynamic model is more similar
to observed variation in wholesale prices than is price variation from the static model.
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1 Introduction

Many economic analyses of the performance of wholesale electricity markets utilize static

models of perfect competition. Such analyses are based on the merit order stack for generation

units, which orders units from those with lowest marginal cost (MC) to those with highest MC

and uses generation capacities to create a short run supply curve for the market. Mansur

[2008] refers to this approach as the competitive benchmark analysis; I will refer to this

as static competitive benchmark analysis, to distinguish it from the dynamic approach I

use in this paper. This static approach has been the basis for assessments of the exercise

of market power by generation suppliers in numerous studies [see, for example, Borenstein,

Bushnell, Wolak [2002]; Joskow and Kahn [2002]; Bushnell et al. [2008], Wolak [2010]]. Long-

run versions of this approach have been the foundation for assessments of regulatory policy

changes, such as the introduction of real-time pricing for retail electricity customers [see

Borenstein and Holland, 2005, Borenstein, 2005].

Borenstein et al. [2002] applied static competitive benchmark analysis to the California

wholesale electricity market following restructuring in the 1990’s. They use detailed infor-

mation about generator characteristics, fuel costs, and emissions permit costs to estimate

marginal generation costs. They combine estimated marginal costs with information about

transmission line capacities, generator outages, electricity imports and exports, and market

demand quantities to construct predicted hourly perfectly competitive prices for the wholesale

market. Comparing actual wholesale prices to constructed competitive prices leads Boren-

stein et al. [2002] to conclude that producers exercised significant market power during peak

summer demand periods of 1998, 1999, and 2000.1

Harvey and Hogan [2001] argue that tests of market power in wholesale electricity mar-

kets should recognize that generation units are subject to several types of technological

constraints, such as minimum operating rates, ramping constraints, unit startup lags, min-

imum down-times, and unit startup costs. They criticize the static competitive benchmark

1In summer 2000 actual payments by California wholesale electricity customers Ire almost twice as high
as predicted competitive payments - roughly $9 bwellion actual vs. $4.5 bwellion predicted. The difference
is comprised mainly of production inefficiency and market power rents to firms.



approach used in Borenstein et al. [2002] and Joskow and Kahn [2002], arguing that the

apparent large price-cost margins estimated in these papers could be due, at least in part,

to unmodeled technological constraints. Mansur [2008] explores this issue in an analysis of

markups in PJM, a regional transmission organization that operates in 13 states in the East-

ern U.S. He uses production and cost data from the year prior to PJM restructuring, when

firms operated as regulated utilities, to estimate a reduced form model of generation costs.

These estimates (implicitly) take into account technological constraints that are ignored by

the competitive benchmark approach. He applies estimates from the reduced form model

to post-restructuring data in PJM to estimate markups of price over MC. He finds that

this reduced form approach yields significantly smaller estimates of price-cost markups than

does the competitive benchmark approach. Mansur’s results suggest that static competitive

benchmark analysis provides biased predictions of markups. Note however that his approach

of using reduced-form estimates of costs is not viable in most cases because the required

pre-competition data is not available.

In this paper I develop a dynamic model of a wholesale electricity market and use it to pro-

duce an alternative competition benchmark, which I term a dynamic competitive benchmark.

The model incorporates important features of electricity generation technology: minimum

operating rate constraints, unit startup lags, and unit startup costs. Supply-side dynamics

introduced by these technology features may have important implications for competitive

market outcomes. In addition, the significance of supply-side dynamics is likely increasing

over time as penetration of intermittent renewable power increases and net load (load less

renewable generation) becomes more variable; see Perez-Arriaga and Batlle [2012].

There are two main parts of the analysis. The first is a formulation and analysis of

a dynamic competition model. Dynamics are important because decisions about startups

and shut-downs of electricity generators are inherently forward-looking. A profit-maximizing

generator operator will not start a generator unless she believes that wholesale prices during

the next operating cycle will be high enough to recoup both production and startup costs.

Incorporating these technology features into an economic analysis is challenging because it re-

quires a dynamic formulation and must accommodate non-convexities in production. I build
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on results in Cullen and Reynolds [2017], who formulate and analyze a dynamic competition

model in which demand fluctuates over time and generation suppliers have minimum operat-

ing rate constraints and unit startup costs. The analysis in Cullen and Reynolds [2017] allows

for different types of fossil fuel generators (coal, combined cycle gas, etc.) but assumes all

generators of a given type are identical. I extend their analysis to allow for unit startup lags

and heterogeneity in generator efficiencies (i.e., heat rates) within a given type of generator.

Generator heterogeneity is crucial for an empirically realistic short run model of wholesale

electricity market supply.

The second part of the analysis is an application of the model to a particular wholesale

market setting: the Electric Reliability Council of Texas (ERCOT) in 2014. supplier market

power has been a concern in ERCOT, as it has been in many restructured wholesale electricity

markets. The Public Utility Commission of Texas has market power mitigation rules aimed

at detecting and deterring bidding consistent with exercise of market power; see Schubert

et al. [2006]. Several features of ERCOT in 2014 facilitate application of the model. ERCOT

operates a grid that has virtually no interconnections with the other major grids in the U.S.,

so that I can safely ignore energy imports and exports. In 2014 Texas had the largest amount

of wind turbine capacity of all U.S. states; wind intermittency may increase the importance

of supply side dynamics. Also, by 2014 ERCOT had completed most of the Competitive

Renewable Energy Zone (CREZ) transmission capacity project linking ist Texas wind farms

to load centers in the rest of Texas, so that transmission constraints were less significant in

2014 than in some prior years; see LaRiviere and Lu [2018].

I use data regarding generators, loads, and prices from ERCOT in 2014 to parameterize

the model. I use the parameterized model to compute static and dynamic competitive bench-

mark prices, and compare these prices to actual ERCOT wholesale market prices. Several

key results emerge. One is that markups of price over marginal cost implied by the static

model are 20-40% greater than markups implied by the dynamic model. These results on the

markup bias from the static competitive benchmark model are roughly consistent with the

markup bias estimate in Mansur [2008]. Also, the dynamic model predicts a larger peak vs.

off-peak price differential than the static model; this larger dynamic model price differential
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comes closer to matching the large peak vs. off-peak differential in actual prices. Many

of the price spikes in the wholesale market occur during times of transmission congestion.

When the sample is restricted to days with little to no congestion, the levels of peak and

off-peak prices and the variation around these levels predicted by the dynamic competition

model are similar to those of actual prices. By comparison, static competition benchmark

prices fluctuate within a relatively narrow band that is well below the average level of actual

wholesale prices.

There are several limitations of the approach used here. First, while the analysis captures

some generation technology features that contribute to dynamics, there are additional un-

modeled features that could affect market outcomes. Second, the analysis assumes a single

integrated wholesale market with no transmission congestion. The ERCOT wholesale market

experienced congestion in about 42% of hours in 2014; see Potomac-Economics [2015]. Third,

the computations reported here abstract from uncertainty regarding future loads and wind

generation, and rely on a perfect foresight assumption. Fourth, the analysis also abstracts

from generator outages, and this will likely bias both static and dynamic model predictions

toward lower and less variable prices.

Nonetheless, the results reported here suggest that a dynamic competition model is able to

capture key features of wholesale electricity price movements and in addition, that omitting

market dynamics may lead to a large upward bias in market power estimates. The concluding

section of the paper discusses approaches for addressing some of the limitations of the analysis

in this paper.

The next sub-section discusses related work. Sections 2 and 3 formulate and analyze

the model. Section 4 provides data and information for ERCOT. Section 5 explains the

computational approach. Section 6 describes results and Section 7 concludes and provides

directions for future research.
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1.1 Related Papers

A variety of features of electricity technology may be important for market performance:

transmission and distribution system constraints, minimum and maximum output rate con-

straints for generation units, generation unit ramping constraints that limit changes in the

rate of generation, time-lags for generation unit startup, and generation unit startup costs.

There is a large power systems engineering literature that examines how a utility or electricity

system should be operated and managed, taking these technological constraints into account.

A common approach involves a so-called unit commitment model, which allows optimization

methods to be applied to a complex system with multiple generation units and a connecting

transmission network [see Bouffard et al. [2005] and Hobbs et al. [2002]]. Both unit commit-

ment models and the analysis of the present paper use a dynamic optimization approach that

takes generator operating constraints into account. The model in this paper abstracts from

transmission constraints and some other details incorporated into unit commitment models,

but allows for a more complex formulation of uncertainty and makes an explicit connection

between optimization and competitive equilibrium.

Cho and Meyn [2011] formulate and analyze a theoretical model of a dynamic competitive

market system in which demand evolves according to a stochastic process (continuous time

Brownian motion) and generators are subject to ramping constraints. There is a single

type of generation in their model that operates with constant marginal cost. Generation

suppliers provide services both to an energy market and an operating reserves market. Cho

and Meyn prove existence of a dynamic competitive equilibrium and show that, because of

ramping constraints, equilibrium energy price frequently deviates from marginal generation

cost. Their results suggest that using marginal generation cost as a basis for competitive

prices (as in the static competitive benchmark analysis) may be problematic. However, the

model of Cho and Meyn [2011] is very stylized and would not seem to provide a good basis

for assessing deviations from competitive energy pricing in real-world markets.

Staffell and Green [2016] modify the basic merit order stack model for generator operations

and investment to account for startup costs. They develop a heuristic approach aimed at
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approximating the solution to a full dynamic equilibrium model. They argue that a relatively

simple heuristic may be valuable if it improves on the merit order stack model and, at the

same time, does not require major computation.

Reguant [2014] estimates a dynamic structural model of generation costs using data from

Spanish wholesale electricity auctions. She observes unit startups in this data and estimates

generation cost parameters, including unit startup costs. She uses her estimates for coun-

terfactual simulations, including a competitive simulation aimed at measuring exercise of

market power. Markups estimated from a static competitive benchmark model with the

Spanish data tend to be quite high during peak periods and low (sometimes negative) during

off-peak periods. Reguant’s estimates of markups from her dynamic model are smoother over

time. In particular, the static competitive benchmark model overestimates price markups

during peak periods due to its failure to consider unit startup costs.2

Cullen [2013] estimates a dynamic structural model of generation costs, using a different

data set - ERCOT data on generation and prices. His model assumes that firms are price-

takers, have rational expectations over future prices, and choose startup and shut-down de-

cisions to maximize expected profit. Importantly, he uses estimated generation and startup

costs to numerically simulate a dynamic competitive equilibrium, which he uses for counter-

factual analysis of environmental policies. He does not consider market power, although his

approach could be used for that purpose.3

This model formulation in this paper is closely related to that of Cullen and Reynolds

[2017]; hereafter labeled as CR. As noted above, I build on the model formulation in CR,

extending it to allow for heterogeneous efficiencies within generator types. This paper is

focused on short run operating dynamics in wholesale electricity markets. By contrast, CR

2Reguant’s approach to assessment of market power is quite different from the present paper. The dynamic
competitive benchmark model she estimates is the solution to an individual firm’s cost minimization problem,
in response to actual bidding behavior of rivals. As such, it can be used to assess unilateral market power
for individual firms. however, it does not provide a competitive equilibrium solution for the market that can
be used to assess market-wide exercise of market power, as the present paper does.

3The approach used in the present paper offers advantages over the approach in Cullen [2013]. There is
no guarantee that the computational approach used in Cullen converges to an equilibrium, in contrast to
the approach used here. Also, his approach is computationally intensive, requiring iterations over dynamic
optimizations for all firms in the market, in contrast to the solution of a single planner’s problem here.
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use a more stylized formulation of generators and extend the analysis to incorporate long run

competitive equilibrium investment decisions.

2 A Model of Wholesale Electricity Competition

In the static benchmark competition model, suppliers make production (generation) decisions

period by period. There are no dynamic linkages across periods in that model. However, if

generation units have minimum production constraints and suppliers incur a startup cost each

time a unit is started, then suppliers’ decisions depend on current and expected future market

conditions. A dynamic market model is required in order to capture the decision problem

faced by suppliers and also to capture how dynamic constraints shape market outcomes.

In this section I formulate a perfect competition model that includes short-run market

dynamics. The model specifies several different types of generation technologies (coal, natural

gas combustion turbine, etc.), with an exogenous fixed amount of total generation capacity

for each type of technology. Each supplier is assumed to operate a single generating unit that

uses one of the generation technologies. The model is comprised of an unlimited number of

time periods in which suppliers make operating decisions regarding their generation units;

when to start a unit, when to shut down a unit, and generation rates for ‘on’ units. Time

periods are indexed by t ∈ {1, 2, ...,∞}, and the per-period discount factor is δ ∈ (0, 1). The

application uses one-hour time periods. Wholesale market demand varies over time according

to an exogenous stochastic process. Fuel prices, which influence marginal generation costs,

also vary over time according to an exogenous stochastic process.

The model is similar to that of CR, with three main differences.4 First, I allow for time

lags for generator startups, whereas CR assume no lags in startups. Second, CR assume fixed

fuel prices, in contrast to fuel prices that may vary over time in the present paper. Third,

CR assume that all generation units within a given technology type are identical, whereas

I allow for heterogeneity in the efficiency and marginal operating cost of units within each

4The model in CR includes a generator investment decision stage. Their application is focused on invest-
ment incentives.
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type. This kind of heterogeneity is crucial for capturing empirically observed differences in

heat rates for units within any technology type.

The model has a firm-specific binary state variable indicating each firm’s current oper-

ating status; active or inactive. A firm must incur a lump sum cost in order to transition

from inactive status to active. Firm-specific transitions are not continuous in firms’ decision

variables under this formulation. Results from Hopenhayn [1990] may not be applied because

that paper assumes a continuity condition on firm-specific state transitions. I address the

discontinuity in firm-specific state transitions by assuming that firms are ‘small’; specifically

that firm size is measure zero. While firm-specific state transitions are discontinuous, the

transitions for the aggregate states that are relevant for the planner’s problem are continuous,

and this allows for a solution to the planner’s problem that is equivalent to a competitive

equilibrium allocation. To state things differently, binary states for firms coupled with lump

sum transition costs pose an analytical difficulty in a model with large (positive measure)

firms. In such a model, supply functions are not continuous in market prices and a compet-

itive equilibrium need not exist. The small firms assumption side-steps this difficulty and

also provides a way to link the planner’s solution to a competitive equilibrium allocations.5

2.1 Market Demand

Demand varies across time periods according to the value of a demand shock (or, shift)

variable, θt. The evolution of demand shocks over time is explained below. There is an

inverse market demand function, P (Q, θt), that is continuous and weakly decreasing in total

output Q. P (0, θt) is assumed to have a finite upper bound for all possible values of θt.

I define the gross benefit function B by:

B(Q, θt) ≡
∫ Q

0

P (u, θt)du (1)

For our electricity market application I focus on the wholesale market. Wholesale demand

5If firms are not small then non-convexities may require modifications to the equilibrium formulation. For
instance, O’Neill et al. [2005] show that efficient market-clearing prices may be obtained by complementing
energy prices with additional prices for generator startups.
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is derived from downstream retail electricity demand. Many retail electricity customers face

prices that are fixed over long periods of time, e.g., due to regulatory constraints. In such

cases the wholesale inverse demand would not reflect marginal willingness to pay for energy,

and its integral in (1) would not correspond to gross benefit. Regardless of the welfare

interpretation of the function B(·), this function plays an important role in our dynamic

competitive analysis.

2.2 Generation

There are J different types of generation technologies. Suppliers are atomistic, price-taking

firms. Each supplier owns and operates one (arbitrarily small) unit of a particular type of

generation capacity. I use the following notation for exogenous generation parameters:

sj = startup cost per unit of type j capacity, sj > 0

mj = minimum generation rate per unit of type j capacity; mj ∈ (0, 1]

fjt = fuel price for type j unit in period t

kj = total amount of type j capacity summed over all firms

Whenever a type-j generation unit is ‘on’ (i.e., active) it must produce positive output in

the interval, [mj, 1]. If a firm’s current and near-term projected future prices are below its

marginal generation cost then the firm may choose to shut down to avoid losing money. But a

shut-down implies that the firm will have to incur a startup cost in order to begin producing

later on when prices are higher. It is the combination of positive minimum generation rate

and positive startup cost that yields a dynamic decision problem for generation suppliers.

I assume that startup cost and minimum generation rate per unit of capacity are the

same for all generation units of any given type of generation technology. The marginal cost

of a generation unit is the product of the fuel price for that type of unit and the heat rate

(fuel required per unit of output) for the unit. Each active supplier with type j technology

is assumed to have constant marginal cost for output in [mj, 1]. I allow for heterogeneity in

the efficiency of generators within each technology type, by allowing different units to have

different heat rates. Let nj be the number of different heat rates for technology j and order
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heat rates so that, h1j ≤ h2j ≤ ... ≤ hnjj. Total capacity for units with heat rate hij is

kij and these capacities summed over all type-j units add to kj. A generation unit must be

turned on in order to generate output. Let xij be the amount of capacity with heat rate hij

that is turned on in a given period, where xij ∈ [0, kij]. Total output qj for technology j is

feasible if there exists a vector (qij, ..., qnjj) such that
∑nj

i=1 qij = qj and qij ∈ [mjxij, xij] for

i = 1, ..., nj. The total cost of generation for feasible type-j output qj when fuel cost is fj

may be written as,

Cj(qj, fj) = min(q1j ,...,qnjj
)

nj∑
i=1

fjhijqij, (2)

subject to,
∑nj

i=1 qij = qj and qij ∈ [mjxij, xij] for i = 1, ..., nj.

The notation that allows for heterogenous heat rates is cumbersome, but the underlying

economic intuition is straightforward. Given a vector (x1j, ..., xnjj) of on-capacities in a

period, the total cost of generation for feasible output levels is continuous in output, with

linear segments that have progressively steeper slopes as output increases. This implies that

cost function Cj is increasing and convex in qj, for feasible outputs.

2.3 Market, Feasibility, & Equilibrium

Demand shift variables and fuel prices are assumed to follow a stochastic process. Define a

vector, ψt, to include period t demand shock, fuel prices, and exogenous variables Zt - such as

hour-of-day and lagged demand shocks and fuel prices - useful for predicting future demand

shocks and fuel prices. That is, ψt ≡ (θt, f1t, ..., fJt, Zt). I assume that ψt follows a Markov

process. Feasible values of this process are restricted to a convex set, Ψ; that is ψt ∈ Ψ for

all t ≥ 1. A special case of the model is one in which there is no uncertainty, so that θt and

ft follow a deterministic path.

The market is comprised of a large number of small firms who operate as price takers.

Each firm is identified with one unit of capacity of a particular type of generation. The

production technology for a firm can be described quite simply. At the start of period t a

firm’s capacity is either ‘off’ or ‘on’. If ‘on’ then the firm chooses a generation rate between
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the min and max rates for its generation type and decides whether or not to shut down for

the next period. If the firm’s unit is ‘off’ at the start of the period then the firm chooses

whether or not to startup for next period.6 A type-j firm incurs startup cost sj in the period

in which the startup decision is taken.

An implication of this formulation is that the production possibilities set for an individual

firm is not convex. A firm’s generation unit is either ‘off’ or ‘on’; convex combinations of

‘off’ and ‘on’ for an individual firm are not permitted. This complicates showing existence of

a competitive equilibrium. I address this difficulty by assuming that individual firms are of

measure zero. This assumption yields a convex aggregate production possibilities set, even

though production possibilities for an individual firm are not convex.

Firm-level heterogeneity also potentially complicates the analysis. This is made more

manageable by our assumption that startup costs and minimum generation rates are identical

for all generators of the same type. In a competitive equilibrium, high marginal cost units

of a given type will never be started instead of lower marginal cost units of the same type.

Likewise, a low marginal cost unit of a given type will never be shut down instead of a higher

marginal cost unit of the same type in equilibrium. This implies that if a particular number

(or mass) xj of type-j firms are ‘on’ in a period in equilibrium, it must be that the type-j

firms with the lowest heat rates are the ones that are ‘on’.

The total mass of type-j technology firms is kj. The following notation is used to describe

the aggregate production technology. A vector x = (x1, x2, ..., xJ) indicates the amount of

each type of capacity that is ‘on’ at the beginning of the period; xjt is equal to the mass of

type-j firms whose capacity is ‘on’ at the start of period t. Define X(k) ≡ [0, k1]× [0, k2]×

...× [0, kJ ] as the set of feasible vectors of ‘on’ capacities. The vector y is the amount of each

type of generation that firms elect to continue to keep on into the next period; yjt is the mass

of type-j firms that keep their unit turned ‘on’ in t. The vector q is the amount of generation

from the J types of generators, where, qj ∈ [mjxj, xj] for j ∈ {1, ..., J}. startup decisions are

6Note that this formulation restricts the time for a unit startup to be one period (e.g., one hour). startup
times for units such as coal-fired steam turbines or combined cycle natural gas units may be several hours.
The model could be extended to permit multiple hours for startups, e.g. by expanding the state space to
keep track of when the startup process started.
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given by z, where zj ∈ [0, kj − xj] for j ∈ {1, ..., J}; zjt is the mass of type-j firms that start

up in t. The aggregate production technology has two parts: one that specifies constraints

within each period and a second that describes generator transitions across periods. For the

first part, define the constraint set:

PT (x) ≡ {(q, y, z) : 0 ≤ yj ≤ xj, 0 ≤ zj ≤ kj − xj,mjxj ≤ qj ≤ xj; j = 1, ..., J} (3)

PT (x) specifies how aggregate vectors of outputs, shut-down decisions, and startup decisions

for a period are constrained by x, the vector of ‘on’ capacities at the start of the period.

Given the vector of capacites k ∈ RJ
+, the set PT (x) is compact for any vector x ∈ X(k).

Transitions over time satisfy:

xt+1 = yt + zt (4)

The combination of compact constraint sets within each period (PT (x)) and linear transitions

in (4) imply that the aggregate production technology is convex. This convexity property is

key for establishing a connection between a planner’s solution and competitive equilibrium.

The definition of a competitive market equilibrium is below.

DEFINITION: An allocation {qt, xt} together with a price process {p∗t} is a market equilib-

rium if:

(i) The allocation is feasible,

(ii) The allocation is consistent with profit maximizing policies for all firms, and

(iii) p∗t = P (
∑J

j=1 qjt, θt) for all t ≥ 1.

Note that condition (iii) is a standard market clearing condition.

3 Dynamic Market Equilibrium

In this section I develop the solution to a planner’s problem and rely on the claim that

this is a market equilibrium. The equivalence of a competitive market equilibrium and a

social optimum is, of course, a fairly standard type of result and parallels results for dynamic
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market equilibrium models in Lucas and Prescott [1971] Hopenhayn [1990]. The equivalence

of market equilibrium allocations and solutions to the planner’s problem is important because

it provides a way to prove existence of market equilibrium and because it allows the use of

the planner’s problem as a vehicle for computation.

The planner has access to a vector k of total generation capacities for the J technologies

and makes operating decisions in each period after observing (x, ψ), which serves as a state

vector for the planner; the state (x, ψ) ∈ X(k) × Ψ. Operating decisions are embodied

in a vector, (q, y, z), where q specifies production rates, y specifies how much of available

generation in the period is left ‘on’, and z specifies unit startups. The single period payoff,

H, for the planner is total surplus for the period, which is equal to gross benefit less generation

cost and startup cost.

H(q, z, ψ) = B(
∑
j

qj, θ)−
∑
j

Cj(qj, fj)−
∑
j

sjzj (5)

where ψ = (θ, f1, ..., fJ , Z). H is concave and differentiable in (q, z); concavity follows from

concavity of B in total output, convexity of generation cost for each generation quantity, and

linearity of startup costs in startup quantities.

The planner makes operating decisions to maximize expected total surplus, where the

single period return is H defined in (5). This can be described by an infinite horizon stochastic

dynamic programming problem with the following Bellman equation,

V (x, ψ) = max(q,y,z)∈PT (x){H(q, z, ψ) + δE[V (y + z, ψ′) | ψ]} (6)

where ψ′ is the next period value of the exogenous stochastic process.

Proposition 3.1. An allocation {at} = {qt, xt} and price process {pt} constitute a market

equilibrium iff the allocation solves the planner’s problem of maximizing discounted expected

total surplus.

Proofs are omitted, as they are similar to those in Cullen and Reynolds [2017]. The if part

of the proof of Proposition 3.1 is constructed by first showing that any welfare maximizing

13



allocation, along with the associated market clearing price process, maximizes aggregate

market profits of firms, taking the price process as exogenous. The second step is to show

that there is an assignment of operating policies to individual firms such that aggregate

market profit maximization implies maximization of individual firms’ profits. The only if

part of the proof uses concavity of the planner’s single period return H and convexity of the

set of feasible allocations, to show that no alternative feasible allocation yields higher payoff

to the planner than a market equilibrium allocation.

Proposition 3.2. A market equilibrium exists.

The proof proceeds by showing that a solution to the planner’s problem exists. An optimal

policy for a planner’s solution generates a feasible allocation and a price process which, by

Proposition 3.1 constitute a market equilibrium. Note that we have existence of a dynamic

competitive equilibrium here in spite of technology non-convexity at the firm level. Our

assumption of small (measure zero) firms effectively smooths out what would otherwise be

discontinuities in supply functions.

The planner’s policy (i.e., optimal choice) function yields a competitive equilibrium allo-

cation. In each period the planner’s policy function yields choices for generation outputs q,

unit shut-downs x − y, and unit startups z, as a function of the current state (x, ψ). The

outputs and the demand state yield the competitive equilibrium price for the period, accord-

ing to the inverse demand function, P (
∑

j qj, θ). The planner’s policy function, coupled with

a current state (x, ψ), imply a distribution of prices in future periods. Firms have rational

expectations over these future prices in the competitive equilibrium.

4 ERCOT & Data

ERCOT is the independent system operator (ISO) for an electric grid that covers most of

the state of Texas. There are very few connections between the system managed by ERCOT

and the rest of the U.S. electricity grid. Electricity generation and retailing are in ERCOT

are largely deregulated. Transmission and distribution are regulated, and regulations specify
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that firms engaged in generation and retailing have open access to the grid to buy and sell

power.

4.1 Generation

As of 2014 there were approximately 950 generators owned by 33 firms supplying electricity

in ERCOT. The ownership of generation facilities is concentrated enough to raise concerns

about supplier market power. Potomac-Economics [2015] estimate that there was a pivotal

supplier in approximately 23% of all hours in 2014. Two large suppliers - NRG and Calpine -

were participating in voluntary mitigation plans as a response to market power abuse claims

that had been raised against them; see Potomac-Economics [2015].

The major generation technologies are coal, nuclear, natural gas, and wind turbines.

There are small amount of hydroelectric power and utility scale solar PV; hydroelectric

generation was quite low since its capacity factor was less than 5%. Table 1 provides summary

information about different types of generation, including 3 types of natural gas generators:

combined cycle (CC), gas turbines (GT), and steam turbines (ST). Wind turbine capacity

increased by over a gigawatt during 2014.

Table 1: ERCOT Generation Capacity

Generation Total Avg Heat Rate
Type Capacity (MW) (MMBtu/MWh)

Hydro 539 -
Nuclear 5,139 -
Coal 23,078 10.6
NG CC 36,785 7.5
NG GT 8,475 8.3
NG ST 11,076 11.3
Wind 11,050 - 12,472 -
Utility Solar 171 -

Data from EPA eGrid2014 report.

The marginal cost of fossil fuel generation is constructed using data on plant capacities,

plant average heat rates, and fuel costs. I use monthly prices for natural gas delivered to Texas
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electric power producers.7 Natural gas prices ranged from $4.01/MMBtu to $6.54/MMBtu

during 2014. I use monthly prices for coal, drawn from EIA Electric power Monthly Reports.8

Delivered coal prices in Texas varied from $1.93/MMBtu to $2.06/MMBtu in 2014. Prices

for SO2 and NOx permits had dropped to almost zero in 2014, so I do not include emissions

rates or costs of emissions permits in the analysis. The marginal cost of fossil fuel gener-

ation is depicted in Figure 1. The marginal cost curve reflects the presence of substantial

heterogeneity in heat rates, even within each fossil fuel generator type.

Dynamics enter the model through three features: startup costs, startup lags, and mini-

mum output rates. If these features are removed then the model is completely static. Without

startup costs, current actions to startup or shut-down generators have no implications for

future profits. On the other hand, if generators are completely flexible in their output level,

then they can avoid incurring startup costs by producing minuscule quantities.

Some economic studies of wholesale electricity markets have taken the position that

startup costs are small enough that they can be safely ignored in an analysis of energy

supply decisions.9 This is likely true if one focuses on fuel and other energy costs associated

with startups. However, the bulk of the opportunity cost of a generator startup is associated

with additional maintenance and wear-and-tear on generators.10 Kumar et al. [2012] esti-

mate that capital and maintenance expenses comprise 80-98 percent of total startup costs,

depending on generator and fuel type. The startup cost parameters used here and listed in

Table 2 are based on Kumar et al. [2012], using their lower bound estimates for the capital

and maintenance portion of startup costs. These startup cost parameters are broadly con-

sistent with the structural estimates in Reguant [2014] and much lower than the structural

estimates in Cullen [2013]. I assign the same startup cost (per unit of capacity) and minimum

generation rate for NG combined cycle plants and NG steam turbine plants. Including both

types as a single generation technology in the model reduces the number of state variables

and simplifies computation. Note however, that generation units within the NG CC/ST

7https://www.eia.gov/dnav/ng/hist/n3045tx3m.htm
8Table 4.10.1 in 2014 and 2015 monthly reports.
9See for example, Borenstein et al. [2002], p. 1391.

10Perez-Arriaga and Batlle [2012] emphasize this point in their analysis of the effects of renewable inter-
mittency on conventional power plant operations.
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Figure 1: Marginal Cost of Fossil Fuel Generation (January 2014)
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generation technology type are permitted to have different heat rates.

I calibrate minimum output rates for natural gas units using data from Cullen [2013]; see

Table 2 below. Hentschel et al. [2016] reports minimum operating rates for new, state-of-

the-art coal plants. I set the minimum operating rate for coal in Table 2 is somewhat higher

than the rates in Hentschel et al. [2016], as the ERCOT plants are older and less flexible

than new plants.

Table 2: Startup Cost and Minimum Generation

Generation Startup Min Generation
Type Cost ($/MW) Rate (MWh/MW)

Coal 150 0.70
NG CC/ST 90 0.60
NG GT 65 0.45

There is a large amount of wind capacity in ERCOT. I use hourly wind generation data

for 2014 from ERCOT. Wind generation is highly variable; swings of 7-8 thousand MWh’s

in a 24 period are not uncommon. Wind generation is sometimes curtailed during high-wind

hours.

I treat nuclear and hydroelectric generation as must-run generation and fix output in each

hour for each type of generation equal to capacity factor times total capacity. For hydro,

this yields constant generation of 26 MW per hour. I do not have data for generation from

utility scale solar in ERCOT. I use average hourly solar insolation data coupled with typical

PV performance for the Dallas, Texas area to calculate hourly average solar PV capacity

factors (see, https://pvwatts.nrel.gov/). I multiply these hourly capacity factors by total

utility-scale solar PV capacity to yield hourly solar PV generation.

4.2 Markets, Prices and Transmission

The wholesale market in ERCOT operates with a nodal structure, with over 4,000 nodes

(points of transmission system interconnection); ERCOT [2010]. Hourly locational marginal

prices (LMPs) are determined for the nodes in the system for both a day-ahead market and
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a real-time market. Network nodes are organized into 4 regional competitive load zones. I

use hourly real-time market settlement prices aggregated to the 4 competitive load zones.

Summary statistics for hourly prices for 2014 are reported in Table 3.

The biggest transmission bottleneck involves transmission lines that move wind energy

generated in West Texas to load centers in the rest of the state. By 2014 progress on the

CREZ project had expanded capacity on these transmission lines, but there Ire still many

hours with transmission congestion. When there is no congestion in the system there is a

common price across the 4 load zones. I use price differences across the 4 load zones as an

indicator of transmission congestion. I adopt an admittedly arbitrary indicator of no-system-

congestion as a percentage difference between max and min hourly zonal price less than 10%

or an absolute difference less than $5/MWh. This yields a congestion count of 42% of all

hours in 2014. This is close to the figure of 44% of hours in 2014 with binding transmission

constraints, reported in Potomac-Economics [2015].

Table 3: Hourly Price Data ($/MWh)

Houston Zone Average 37.76
North Zone Average 36.74
South Zone Average 38.80
West Zone Average 41.80
System-Wide Average 38.80

System-Wide Peak (2 - 8 pm) Average 49.33
System-Wide Peak Maximum 4,454

System-Wide Off-Peak Average 35.29
System-Wide Off-Peak Minimum -1.21

Percent of Hours Congested 42%

The wholesale market price cap varied between $5,000/MWh and $7,000/MWh in 2014.

The cap was not binding during the sample period.
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4.3 Demand

Residential and commercial users purchased virtually all of their electricity at retail prices

that were held fixed over long time periods. So in the short run, wholesale demand for elec-

tricity is almost completely price inelastic. Electricity load varies significantly both intraday

and across seasons. For 2014 the minimum hourly load was 24,083 MW in April and the

maximum hourly load was 66,464 MW in August. In addition, there were roughly 12,000

MW of wind capacity in 2014. The hourly variation in load coupled with hourly variation in

wind generation yields a high degree of hourly variation in net load. Given that there was

essentially no energy storage in the system, the variation in net load must be matched with

variation in fossil fuel generation in order to maintain supply-demand balance.

5 Computation

I compute results for both a static competitive benchmark model and the dynamic compet-

itive benchmark model. The models are calibrated using information and data described in

Section 4. The dynamic model developed in Sections 2 and 3 allows for uncertainty about

future demand levels, wind generation, and fuel prices. In this paper I simplify computation

dramatically by adopting a perfect foresight assumption on future demand, wind generation,

and fuel prices.11 Under this assumption, owners of fossil fuel units have perfect foresight

over future wholesale electricity prices and fuel prices. The corresponding condition for the

social planner is perfect foresight over demand (load) levels, wind generation, and fuel prices.

One point to emphasize is that the dynamic perfect foresight prices are the endogenous prices

that emerge from the dynamic benchmark model; I am not assuming that agents have per-

fect foresight over actual ERCOT wholesale market prices. Also note that abstracting from

uncertainty does not affect static competitive benchmark results, since that model is not

forward-looking, but it does affect dynamic competitive benchmark results and likely yields

11Incorporating uncertainty in computations requires estimation of a stochastic process governing the
evolution the ψt, and using the estimated process as a component of the planner’s optimization problem.
This approach is definitely feasible, but is not undertaken in this paper.
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prices that are less variable compared to results from a model with uncertainty.

Computing the solution to the planner’s problem was also simplified by replacing the

infinite horizon problem with a series of finite horizon problems. Coupling perfect foresight

with a finite horizon yields a planner’s problem that is a collection of straightforward - though

large-scale - multi-variate constrained optimization problems, instead of a complex stochastic

dynamic programming problem.

The dynamic analysis assumes a fixed one-hour startup lag for fossil fuel units. This tends

to be less than cold startup time for coal and NG CC/ST units. However, the specification

of length of startup lags will be less significant for a perfect foresight model than for a model

with uncertainty.

The theoretical formulation of generation does not provide for intermittent renewable

generation, such as generation from wind turbines. In the computations I assume all wind

generation is must-take energy and subtract this from load to yield a net load demand

quantity. I do not account for possible curtailment of wind in the computations reported

here.

The dynamic model assumes a downward sloping wholesale demand. In order to imple-

ment the model for the nearly completely inelastic demand of the ERCOT wholesale market,

I specify a nearly-vertical linear inverse demand function for each hour with a fixed slope

and horizontal intercept equal to actual net load for the hour. The slope parameter is set so

that price elasticity is in the range of -0.001 to -0.002 over the domain of load variation.

Another simplification made for computations is to ignore generator outages. Borenstein

et al. [2002] compute static competitive benchmark results for California by running a Monte

Carlo simulation for each hour that incorporates multiple draws of (low probability) generator

outages into the creation of merit order stacks. Ignoring these potential outages is likely to

bias computation results for both the static and dynamic models toward lower and less

variable prices.

Another feature of the Borenstein et al. [2002] analysis is incorporation of fast-response

operating reserves. They add up-regulation quantities to load to arrive at a total demand

quantity when computing equilibrium prices. The argument is that up-regulation would be
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provided mainly by partially loaded generators, and so the identity of the marginal generator

would be determined by the quantity of load plus up-regulation. I did not find hourly up-

regulation quantities for my analysis. Mago [2017] reports that average up-regulation is

approximately 300 MW, so I added a fixed quantity of 300 MW to load for each hour to

account for up-regulation for both static and dynamic computations.

For the dynamic model I use an annual discount rate of 8%, which corresponds to an

hourly discount factor (δ) very close to one. For dynamic model computations, I divide the

year into 3-day segments and solve an 80 hour (3.5 day) optimization problem for the planner

for each segment. There are 3 decision variables for the planner for each of the 3 fossil fuel

generation types for each one-hour period, so each constrained optimization problem has

720 choice variables. I discard the last 8 hours prior to the end of the horizon in reported

results. Since each of my 3-day segments end at midnight when load is relatively low, the

number of future periods incorporated past midnight has very little effect on startup or shut-

down decisions, or on predicted equilibrium prices, within the 3-day segment. The Knitro

optimization package was used for dynamic model computations.

6 Results

I report static and dynamic competitive benchmark results for hourly prices and compare

these to actual prices. As a preview of these results, Figure 2 shows an hourly time series of

actual and predicted prices for 8 days in January. This was a period of relatively low demand

and one in which there was no transmission congestion, by my measure. Note that actual

prices are much more volatile than static benchmark prices. Static prices fluctuate in a fairly

narrow band between $20 and $34/MWh during this period, while actual prices fluctuate

between $5 and $95/MWh. Dynamic benchmark prices exhibit variation similar to that of

actual prices during this period, although it’s also clear that these predicted price swings do

not match up precisely with those of actual prices.

Figure 3 shows an hourly time series of generator startup capacities predicted by the

dynamic model for the same 8 days in January. Startups occur in a relatively small number
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of hours that tend to line up with price peaks for the dynamic model. Total predicted startup

capacity per day during this period ranged from a few hundred MW to about 10,000 MW.

Summary results for actual and simulated prices are reported in Table 4. Average peak

and off-peak prices are reported, as well as standard deviations of peak and off-peak prices.

For the full sample of all hours of the year, the static model under-predicts actual peak

prices by about $20/MWh and under-predicts off-peak prices by about $10/MWh. Looking

at the the static benchmark prices versus actual prices for the full sample would suggest that

actual prices include markups over marginal cost of roughly 50% on average. The dynamic

model predicts significantly higher peak prices than the static model, but overall it still would

suggest that actual prices include substantial markups over marginal (opportunity) cost, of

roughly 38% on average.

Table 4: Actual and Simulated Wholesale Prices ($/MWh)*

Static Dynamic
Actual Model Model

Full Sample

Peak Hours
Average Price 49.33 28.23 38.05
Standard Deviation 48.86 5.03 23.20

Off-Peak Hours
Average Price 35.29 25.27 24.81
Standard Deviation 74.39 4.78 16.79

Non-Congested Days

Peak Hours
Average Price 37.93 26.10 34.41
Standard Deviation 28.71 4.59 21.41

Off-Peak Hours
Average Price 28.63 24.15 24.35
Standard Deviation 13.76 3.73 16.41

* Peak hours are defined as 2 pm - 8 pm.

The full sample includes many hours with transmission congestion, and some actual price

spikes are undoubtedly related to congestion. Some of the highest hourly wholesale prices

occurred off-peak, contributing to the high standard deviation of off-peak prices. Table 4 also

23



Figure 2: Hourly Prices for 8 Days in January 2014
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reports average hourly peak and off-peak prices and standard deviations for non-congested

days. Implied markups for both static and dynamic models are considerably smaller for this

sample, compared to those for the full sample. The implied markup for the static model

is roughly 25%, or one-half of the corresponding full sample markup. The implied markup

for the dynamic model is roughly 15%, less than one-half of the corresponding full sample

markup. Comparing the implied markups of the two models for the non-congested sample,

we can see that the dynamic model markup is about 40% smaller than the static model

markup.

The results for non-congested days reported in Table 4 suggest that the dynamic model

yields a peak vs. off-peak price price differentiable and degrees of price variability that are

roughly consistent with actual prices. By contrast, the static model predicts a smaller peak

vs. off-peak price differential and much less price variability than we see in actual prices.

7 Conclusions and Future Research

This paper develops a model of short-run operating dynamics of a wholesale electricity mar-

ket. The model provides a dynamic competitive benchmark for market power assessment.

This benchmark is alternative to a commonly used static competitive benchmark. The dy-

namic model incorporates important features of electricity generation technology: minimum

operating rate constraints, unit startup lags, and unit startup costs. Supply-side dynamics

introduced by these technology features have important implications for competitive mar-

ket outcomes. And the significance of supply-side dynamics is likely increasing over time as

penetration of intermittent renewable power increases and net load becomes more variable.

There are two main contributions. The first is to extend the dynamic competition analysis

of Cullen and Reynolds [2017] to allow for unit startup lags and heterogeneity in generator

efficiencies (i.e., heat rates) within a given type of generator. Generator heterogeneity is

crucial for an empirically realistic short run model of wholesale electricity market supply.

The second contribution is to show how dynamics matter for market power assessment in a

particular wholesale market setting: the Electric Reliability Council of Texas (ERCOT) in
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2014. Markups of price over marginal cost implied by the static model are 20-40% greater

than markups implied by the dynamic model. In particular, the dynamic model predicts a

much larger peak vs. off-peak price differential than the static model; this larger dynamic

model price differential comes closer to matching the large peak vs. off-peak differential

in actual prices. Many of the price spikes in the wholesale market occur during times of

transmission congestion. When the sample is restricted to days with little to no congestion,

the levels of peak and off-peak prices and the variation around these levels predicted by

the dynamic competition model are similar to those of actual prices. By comparison, static

competition benchmark prices fluctuate within a relatively narrow band that is well below

the average level of actual wholesale prices.

There are several limitations of the analysis in this paper. Some limitations are intrinsic

to the approach used here. For example, the ‘small firms’ assumption is crucial for the perfect

competition analysis, as it provides a way to deal with production non-convexities that arise

because of startup costs and minimum generation constraints. In fact, electricity generation is

from discrete, lumpy units of capacity, and this discreteness may have an impact on observed

wholesale prices. Also, the analysis assumes a single integrated wholesale market with no

transmission congestion. The ERCOT wholesale market experienced significant congestion

in many hours in 2014. While it may be possible to include some transmission constraints

in the analysis, extending this dynamic market analysis to incorporate an interconnected

transmission grid is a formidable task.12

Other limitations of the analysis could be addressed in future versions of the paper. Some

improvements could be made by incorporating better data. Acquiring hourly data for so-

lar PV generation and for up-regulation quantities would provide more precise estimates of

load served by fossil fuel generators. Fuel price data with a finer time scale would yield more

accurate generator marginal cost estimates. Alterations in the model could address other lim-

itations. Wind generation is taken to be exogenous in this analysis. The dynamic model could

be extended to allow curtailment of wind output when prices become negative. The perfect

12A key transmission bottleneck involves lines that connect West Texas wind generation to Texas load
centers. It may be possible to extend the dynamic analysis to include a constraint for this transmission link.
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foresight assumption used for computations may be relaxed and replaced with a model with

uncertainty about future electricity and fuel prices. This would require the use of numerical

approximation methods for stochastic dynamic programming, rather than the constrained

optimization approach used in this version. It should be possible to incorporate random

generator outages, as done in the static competitive benchmark analysis of Borenstein et al.

[2002]. Also, it should be possible to incorporate additional generation technology features

and constraints, such as additional types of fossil fuel generators, longer startup lags, and

(possibly) ramping constraints. The primary challenge associated with most of these changes

is the increased difficulty of numerically solving the planner’s optimization problem. Lastly,

given the potential computation challenges for the dynamic model, it would be interesting

to compare the static and dynamic competition benchmark results to competitive pricing

results using the heuristic approach outlined in Staffell and Green [2016].
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