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Abstract 

In the electricity sector, innovation in large-scale storage is anticipated to reduce costs and 

improve performance. The effect on greenhouse gas emissions of lower storage costs depends on the 

interactions between storage and the entire grid. The literature has disagreed on the role of storage in 

reducing emissions. In this paper we present a stylized model, which suggests that the effect of storage 

costs on emissions depends on the supply responsiveness of both fossil and renewable generators. Under 

common conditions in the United States, lower storage costs are more likely to reduce emissions when 

wind investment responds to equilibrium electricity prices and when solar investment does not. 

Simulations of a computational model of grid investment and operation confirm these intuitions. 

Moreover, because of its effect on coal and natural gas–fired supply responsiveness, introducing a carbon 

dioxide emissions price may increase the likelihood that lower storage costs reduce emissions. 
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1. Introduction 

In the absence of policy intervention, private decision makers do not consider the external 

costs of greenhouse gas emissions, such as using electricity generated by fossil fuel combustion. 

Standard economic theory suggests that setting an emissions price equal to social damages, via 

either an emissions tax or cap-and-trade, is the welfare-maximizing approach to addressing this 

market failure. However, policymakers seeking to reduce greenhouse gas emissions have 

demonstrated a preference for subsidizing low-emitting technologies rather than fully pricing 

emissions. A vast array of explicit and implicit subsidies for low-emitting technologies exists, 

such as renewables tax credits and requirements that renewables provide a specified fraction of 

electricity generation. Although some policymakers have adopted an emissions price, the price 

rarely if ever fully internalizes the costs of greenhouse gas emissions. For example, recent 

attempts to reduce US electricity sector emissions would have imposed an emissions price of 

approximately $10 per ton of carbon dioxide (Energy Information Administration (EIA) 2014), 

which is likely to be substantially lower than the external cost of emissions (Greenstone et al. 

2013; Nordhaus 2014). 

Several recent articles argue that subsidizing low-emitting technologies is not 

economically efficient. Subsidizing the adoption of low or zero-emissions technologies reduces 

the private costs of adopting these technologies. However, Holland et al. (2009), Fell and Linn 

(2013), and others show that these policies can have ambiguous effects on emissions and social 

welfare. For example, subsidizing wind- and solar-powered electricity generators can reduce 

electricity prices, increasing consumption and generation from fossil fuel–fired generators. This 

effect can offset the emissions reductions from such policies, reducing efficiency compared with 

an emissions price. 

Under the rationale of subsidizing low-emitting technologies, subsidies for research and 

development (R&D) and adoption of large-scale electricity storage are also becoming more 

widespread. For example, since 2009 the US Department of Energy has provided roughly $200 

million in funding for such storage research. Storage subsidies are commonly supported by the 

view—which many recent studies (e.g., de Sisternes et al. 2016) have largely confirmed—that 

electricity storage reduces the costs of achieving very high levels of renewables generation and 

limiting greenhouse gas emissions, as well as providing other benefits to the electricity system. 

Because electricity production from wind- and solar-powered generators is more difficult to 

control than production from conventional technologies, integrating large amounts of wind and 

solar increases the challenge of balancing electricity demand and supply. Storage can address 

this challenge by charging the storage device when electricity supply is abundant relative to 
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demand, and discharging when supply is scarce. According to this view, subsidizing storage 

R&D and adoption reduces the costs of integrating renewables and reduces emissions (or, 

alternatively, reduces the cost of meeting an emissions objective). 

However, Carson and Novan (2013) and Graff Zivin et al. (2014) provide an alternative 

view of storage. They show that adding an incremental amount of storage can increase 

greenhouse gas emissions by causing a shift in generation from lower- to higher-emissions 

sources, such as from natural gas– to coal-fired generation. Thus, a central question for storage 

policies is whether anticipated reductions in the cost of storage will reduce emissions—that is, 

whether the widespread view of storage as facilitating emissions reductions is valid. The 

literature has provided conflicting views on this question. 

We reconcile these opposing views of storage by taking an alternative approach, in which 

we consider potentially large amounts of storage and renewables capacity added to the existing 

grid, and analyze the effects of storage costs on emissions. Previous studies differ in the time 

horizon, either considering an incremental amount of storage added to the existing grid (e.g., 

Carson and Novan 2013) or redesigning the entire power system in the long run (e.g., de 

Sisternes et al. 2016). A short-run analysis is confined to the interaction between storage and 

existing generators, and cannot assess whether storage reduces the cost of integrating 

renewables. In contrast, we consider the medium run, a timeframe of 10 to 20 years, and include 

the interaction between storage and investment in new electricity generators. We focus on 

renewables investment because the literature has emphasized the relationship between storage 

and emissions in reducing emissions (de Sisternes et al. 2016). The medium run, rather than the 

long run, is the relevant timeframe for studying current policies that affect storage costs and 

near-term investment in generation and storage capacity. 

Whereas most other studies analyze the effects of an exogenous increase in storage 

capacity (e.g., Walawalkar et al. 2007; Sioshansi et al. 2009; Nyamdash et al. 2010), we consider 

a context in which storage investment depends on storage costs and other market factors. This 

focus is motivated by several considerations. First, in practice, storage investment depends on 

decisions made by individual investors (in some cases with regulatory oversight) in response to 

market conditions, but most previous studies have treated storage as exogenous to the model. 

Second, the focus on storage costs is relevant to storage policies, which primarily reduce storage 

costs in the short run (via investment incentives) and the long run (via R&D subsidies). Third, 

partly but not entirely because of storage policy, technological innovation over the coming years 

is likely to reduce storage costs (Kintner-Meyer et al. 2010). In the context of declining costs, the 
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most relevant question for the future of storage is how the anticipated reduction in storage costs 

will affect emissions and other outcomes.1 

We argue that the effect of storage costs on emissions depends on the responsiveness of 

generation technologies to electricity prices. We focus on storage used for arbitrage purposes, 

charging when wholesale electricity prices are low and discharging when prices are high 

(wholesale prices are the prices received by electricity generators supplying electricity to 

retailers or utilities). We begin by using a simple, stylized model of a wholesale power market 

that generalizes Carson and Novan (2013) to include investments in wind and solar power 

generation. The model illustrates intuitively why the effect of storage costs on emissions depends 

on relative supply responsiveness—mathematically, the derivative of generation with respect to 

electricity price—of fossil fuel–fired and renewables generation plants. We confirm this intuition 

using a computational model calibrated to the Texas power system. 

More specifically, we begin by noting that storage charging and discharging raises 

equilibrium prices during what would otherwise be low-price periods and reduces prices during 

what would otherwise be high-price periods; in the extreme case of free storage, equilibrium 

prices are equal across periods. Storage therefore has two effects on operation and investment of 

generators. The first is that storage raises generation from existing fossil-fired generators in low 

price periods and reduces generation from existing fossil-fired generators in high-price periods. 

As we show empirically for Texas, coal-fired generation is typically more price responsive than 

is natural gas–fired generation during low-price periods, whereas natural gas–fired generation is 

typically more price responsive than is coal-fired generation during high-price periods. 

Importantly, this is true for Texas even given the decline in natural gas prices that occurred after 

2008. Therefore, reducing storage costs raises storage capacity and causes a shift from natural 

gas– to coal-fired generation. Because coal-fired generation is more emissions intensive than 

natural gas–fired generation, given estimated price responsiveness, a decrease in storage costs 

raises emissions; this is the effect that Carson and Novan (2013) identify. 

The second effect is novel: it is the response of renewables investment to storage. For 

wind- and solar-powered generators, it is useful to focus on the responsiveness of investment 

with respect to the generation-weighted average electricity price. Renewables generation may be 

                                                 
1 If storage raises emissions, subsidizing storage R&D could improve welfare by correcting market failures 

associated with early-stage technologies, such as learning spillovers and capital market failures (Fischer and Newell 

2008; Acemoglu et al. 2012). However, this economic justification pertains to all early-stage technologies, and not 

specifically to storage, in which case R&D subsidies should be offered to technologies including but not limited to 

storage. 
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positively or negatively correlated with electricity price changes caused by storage, depending on 

the availability of the underlying resource and other factors. For example, in many regions wind 

generation peaks during the nighttime, when electricity demand and prices tend to be low. In that 

case, storage would increase nighttime electricity prices, and wind generation would be 

positively correlated with the electricity price changes caused by adding storage. This situation 

could apply to solar at high levels of solar penetration. When renewables generation—either 

wind or solar—is positively correlated with electricity price changes, lower storage costs raise 

the generation-weighted average electricity price and therefore renewables investment, 

displacing fossil fuel–fired generation and emissions. In this case, the more price responsive is 

renewables investment, the more likely that lower storage costs reduce emissions. 

In contrast, when renewables generation is negatively correlated with electricity price 

changes caused by storage, reducing storage costs reduces the generation-weighted average 

electricity price, causing renewables investment to decrease. Lower renewables investment 

implies lower renewables generation, which raises fossil fuel–fired generation and emissions. 

Therefore, the more price responsive is renewables investment, the more a reduction in storage 

costs reduces renewables investment and raises fossil generation and emissions. This is often the 

case for solar, particularly at low levels of penetration. In short, the effect of storage costs on 

renewables investment depends on the correlation between generation from the renewables and 

storage-induced electricity price changes.  

Thus, the stylized model suggests that the effect of storage costs on emissions depends on 

the price responsiveness of fossil fuel–fired and renewables generation. We confirm this intuition 

using a more detailed optimization model that endogenizes storage operation, dispatch of coal 

and natural gas–fired generators, and investment in storage, wind, and solar. The model accounts 

for the nondispatchability of renewables and includes supply curves for renewables and fossil 

fuel–fired generators. The model is calibrated to reproduce observed short-run substitution 

between fuels and current long-run investment projections. Applying the model to the Texas 

power system (i.e., the Electric Reliability Council of Texas, ERCOT), we first consider the case 

of zero renewables investment, which is comparable to Carson and Novan (2013). We find that 

lower storage costs increase storage investment and raise emissions precisely for the reasons 

identified in the stylized model: coal-fired generation is more price responsive during low-price 

periods, and natural gas–fired generation is more price responsive during high-price periods. 

This relative supply responsiveness is true even accounting for the fact that current forecasts of 

natural gas prices cause many natural gas-fired units to have lower generation costs than coal-

fired units. 
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As in much of the United States, in ERCOT wind generation is positively correlated with 

storage-induced electricity price changes, and solar generation is negatively correlated. If we 

allow for wind and solar investment, lower storage costs raise emissions, as in the case without 

investment. However, changes in the price responsiveness of wind and solar investment have the 

predicted effects: a reduction in storage costs is more likely to reduce emissions the more price 

responsive is wind investment, and a reduction in storage costs is less likely to reduce emissions 

the more price responsive is solar investment. These results demonstrate the importance of price 

responsiveness in determining the effects of storage costs on emissions. In regions other than 

ERCOT, solar generation may be negatively correlated with storage-induced electricity price 

changes. In that case, lower storage costs would be more likely to reduce emissions the more 

price-responsive is solar investment—but even in that case lower storage costs would not 

necessarily reduce emissions. 

An extension of our stylized model suggests that a carbon price has an ambiguous effect 

on the likelihood that lower storage costs reduce emissions. On the one hand, the carbon price 

causes fossil fuel–fired generation to be less price responsive relative to wind generation, which 

raises the likelihood that lower storage costs reduce emissions. On the other hand, the carbon 

price causes fossil fuel–fired generation to be less price responsive relative to solar generation, 

which reduces the likelihood that a reduction in storage costs reduces emissions. In the baseline 

model calibration, adding a carbon price makes it less likely that lower storage costs raise 

emissions. 

Our paper contributes to the literature in several ways. First, we characterize an internally 

consistent set of supply conditions under which lower storage costs reduce carbon emissions. In 

contrast, Carson and Novan (2013) hold fixed renewables investment, and long-run studies do 

not characterize these supply conditions. Second, because wind investment responsiveness is 

central to the relationship between storage costs and emissions, we present the first attempt to 

estimate this responsiveness directly from observed investment decisions. By comparison, other 

studies rely on simulation-based cost estimates. Third, our computational model endogenizes 

investment in storage, wind, and solar capacity; previous studies have treated one or more of 

these as determined outside the model. This allows us to consider the question most relevant to 

storage policies: how a reduction in storage costs affects emissions, given the makeup of the 

existing grid. 
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2.  Stylized Representation of the Effects of Storage Costs on Emissions  

This section uses a stylized power sector model to illustrate the central channels by which 

storage costs affect emissions. The model is set up to approximate conditions on ERCOT, and 

we discuss generalizations of the model in the Conclusion. In the stylized two-period model, 

storage reduces price differences between the two periods and has ambiguous effects on 

emissions. 

2.1  Equilibrium without Storage or Renewables 

The model structure is similar to Carson and Novan (2013) and Fell and Linn (2013). 

There are two time periods, which are labeled off-peak and peak. The off-peak period has 

instantaneous exogenous electricity demand of 
oD  and the peak period has demand of pD , with 

p oD D  (demand and generation are in megawatt hours, MWh). We use the terms off-peak and 

peak heuristically to reflect periods in which storage is charged and discharged; the periods could 

reflect nighttime and daytime, or alternatively midday and late afternoon. In both periods there is 

an exogenous set of coal- and natural gas–fired generators, and the total capacity of coal-fired 

generators is cQ , with c oQ D . Thus, there is sufficient coal-fired generation capacity to meet 

off-peak demand. Generators are competitive price takers and the marginal costs (in dollars per 

MWh) are expressed as 
c c cm Q , where 

c  is a positive constant and 
cQ  is coal-fired 

generation. The marginal costs of natural gas–fired generators are expressed as g g g gm Q   , 

where g  and g  are positive constants.  

Figure 1 illustrates the market supply curve and the equilibrium off-peak and peak 

electricity prices (in dollars per MWh) under assumption (A1) that g c cQ  . The natural gas–

fired portion of the market supply curve lies above the equilibrium off-peak price.2 Equilibrium 

off-peak and peak prices are 

o c oP D           (1) 

( )p g g p cP D Q            (2) 

with p oP P  following from assumption (A1). 

                                                 
2 As we argue below, the main analytical results depend on price responsiveness of coal and natural gas, and not on 

the fact that coal is less expensive than natural gas in the stylized model. Therefore, the results are more general than 

might appear. 
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Emissions equal the sum of coal- and gas-fired emissions across the off-peak and peak 

time periods. The emissions rate of coal-fired generation is
ce , in tons of carbon dioxide (CO2) 

per MWh, and the emissions rate of gas-fired generation is ge , with c ge e . Total emissions, in 

tons of CO2, are 

( ) ( )o c c p c gE D Q e D Q e    .       (3) 

Importantly, in the off-peak period coal-fired generators are operating at the margin, and 

a hypothetical increase in off-peak electricity demand would raise the off-peak electricity price 

and coal-fired generation by moving along the coal-fired generation supply curve in Figure 1. In 

contrast, an increase in peak electricity demand would raise the peak electricity price and natural 

gas–fired generation by moving along the natural gas–fired generation supply curve in Figure 1. 

Although this situation is not universal in electricity markets, it is fairly common and is relevant 

to the numerical modeling below (Linn et al. 2014). 

2.2  Equilibrium with Storage 

In the following subsections we add investments in storage, wind, and solar to the model. 

We maintain the two-period structure of the model, and conceive of the model as representing a 

long-run steady state that includes investments and generation. We introduce to the model a 

storage technology that has an amortized capital cost of 
bK  per unit of storage capacity (in 

MWh). The amount of storage investment is endogenous, and investing in 
bQ  units of storage 

costs 
b bK Q , allowing the owner to store 

bQ  units of electricity in the off-peak period and 

discharge 
bQ  units in the peak period (we abstract from storage losses for simplicity). 

The difference between the peak and off-peak prices creates an arbitrage opportunity. 

The owner of the storage can charge the device in the off-peak period at a cost of 
oP  dollars per 

MWh, then discharge in the peak period and receive revenue of pP  dollars per MWh. Assuming 

that owners of the storage technology are competitive price takers, any equilibrium with positive 

storage investment must satisfy the arbitrage condition: b o pK P P  . When this condition holds, 

the cost of storing electricity in the off-peak period (inclusive of capital costs) exactly equals the 

revenue of discharging in the peak period. 

Relative to the no-storage equilibrium, storage raises coal-fired generation by
bQ  in the 

off-peak period and reduces gas-fired generation by 
bQ  in the peak period (Panel B of Figure 1). 

These generation changes raise the off-peak price and reduce the peak price. Because c ge e , the 

generation changes increase total greenhouse gas emissions.  
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We solve for the equilibrium amount of storage capacity in terms of the exogenous 

parameters by combining the storage arbitrage condition with a market clearing condition (total 

generation across the two periods equals total supply), along with price equations analogous to 

(1) and (2). This yields 

1
{[ ( ) ] }b g g p c c o b

c g

Q D Q D K  
 

    


.

     (4) 

The term in square brackets in equation (4) is the difference between the peak and off-

peak prices in the no-storage equilibrium. Thus, storage capacity increases with the difference 

between peak and off-peak prices in the no-storage equilibrium. Furthermore, the storage 

capacity decreases with storage capital costs, 
bK . 

Total emissions with storage equal emissions without storage, plus ( )c g be e Q . That is, 

adding storage to the model raises emissions because the storage raises off-peak coal-fired 

generation and reduces peak natural gas–fired generation.  

Equation (4), combined with the fact that c ge e , implies that a decrease in storage 

capital costs raises emissions. The more price responsive is coal and gas generation (i.e., the 

smaller is the sum c g  ), the more a given reduction in storage costs raises storage capacity. 

In turn, a larger increase in storage capacity translates to a larger increase in off-peak coal-fired 

generation and a larger decrease in peak gas-fired generation, causing a larger increase in 

emissions. 

2.3  Equilibrium with Renewable Investment and No Storage 

We return to the initial case with no storage technology, and instead allow for investment 

in wind and solar generation capacity. There is a large set of potential locations for the wind and 

solar generators to be constructed. At each location it is possible to construct a single generator 

that produces one unit of electricity. Generation from wind and solar is nondispatchable, 

meaning that the owner of a generator cannot control when it produces electricity. To 

approximate typical real-world temporal variation in the availability of wind and solar generation 

(e.g., in the ERCOT region), we assume that the wind generation is available only in the off-peak 

period and solar generation is available only in the peak period. As with the off-peak and peak 

labels, the wind and solar technologies are heuristics; the terms wind and solar refer to 

renewables that generate electricity when storage is charged and discharged, respectively. 
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For both wind and solar generators, the marginal cost of producing electricity is zero, but 

there is a positive capital cost. Recall that the two-period model represents a long-run steady 

state, so that capital costs are amortized. Investors choose to construct generators at locations as 

long as the equilibrium electricity price exceeds the amortized capital costs. We assume that the 

distribution of capital costs across locations is such that wind and solar generator investment 

levels are proportional to the corresponding electricity prices: /w o wQ P   and /s p sQ P  ; we 

refer to these equations as the investment functions. 

We focus on an equilibrium in which investors construct wind generators that produce 

electricity in the off-peak period, and they construct solar generators that produce electricity in 

the peak period. Therefore, the wind generators displace coal-fired generation and the solar 

generators displace gas-fired generation, relative to the initial equilibrium. Given the coal supply 

(
o c oP D ) and wind investment function ( /w o wQ P  ), the equilibrium coal-fired generation 

in the off-peak period is 

w
c o

c w

Q D


 



.        (5) 

Greater off-peak demand or less price responsive wind generation (higher 
w ) raises 

coal-fired generation (because of intermittency we use the term price responsiveness of wind 

generation interchangeably with the term price responsiveness of wind investment).  

We assume that the parameter values are such that coal continues to operate at full 

capacity in the peak period, cQ . Therefore, the solar generation is 

 ( )
g g

s p c

g s g s

Q D Q
 

   
  

 
.      (6) 

Solar generation increases with the relative cost of natural gas to solar, and with peak 

period demand. 

Combining the equilibrium solar generation with the fact that peak demand equals peak 

generation yields gas-fired generation in the peak period: 

( )
gs

g p c

g s g s

Q D Q


   
  

 
.      (7) 

Gas-fired generation increases with peak demand net of coal-fired generation, and 

increases with the cost of solar relative to natural gas. 
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2.4  Equilibrium with Storage and Renewables 

The final case includes endogenous investment in storage and wind. As in the previous 

equilibrium with storage, the storage capital costs determine the difference between the off-peak 

and peak prices: b o pK P P  . A reduction in storage capital costs therefore reduces the price 

difference, but in this case the increase in the off-peak price causes wind investment to increase, 

in addition to raising coal-fired generation. We show next that overall emissions can decrease if 

wind investment increases by a sufficient amount, which in turn depends on the responsiveness 

of wind relative to coal-fired generation. 

We solve for the equilibrium coal and gas-fired generation using the no-arbitrage 

equation ( b o pK P P  ) and three equilibrium conditions. First, demand across the two periods 

equals total supply c w c g o pQ Q Q Q D D     . Second, the marginal cost of coal-fired and wind 

generation equals the off-peak price, and 
o c c w wP Q Q   . Third, the marginal cost of gas-fired 

generation equals the peak period price: p g g gP Q   . 

Combining the arbitrage and equilibrium equations allows us to solve for the equilibrium 

coal and gas-fired generation levels in terms of the exogenous parameters. Because emissions are 

expressed as c c g gE Q e Q e  , we can solve for the derivative of emissions with respect to 

storage costs: 

( )c g w c g

b

dE
e e e

dK
    .  (8) 

The less price responsive is coal-fired generation (higher 
c ), or the more price 

responsive is the wind investment (lower 
w ), the more likely that a decrease in storage costs 

reduces emissions (i.e., the derivative is positive).  

A similar result applies to solar, except that a decrease in storage costs is more likely to 

reduce emissions the less price responsive is solar investment. The intuition is that the reduction 

in storage costs raises storage investment and the quantity of storage, 
bQ , reducing total 

generation during the peak period. Greater price responsiveness of solar investment implies a 

larger decrease in solar generation and an increase in fossil fuel’s share of total generation. 

To summarize, the stylized model yields three results: 

 In the absence of renewables investment, a decrease in storage costs raises emissions by 

causing a shift from natural gas- to coal-fired generation. 
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 When renewables generation is positively correlated with electricity price changes caused 

by storage (i.e., wind in the stylized model), a decrease in storage costs is more likely to 

reduce emissions the more price responsive is renewables investment. 

 When renewables generation is negatively correlated with electricity price changes 

caused by storage (i.e., solar in the stylized model), a decrease in storage costs is more 

likely to reduce emissions the less price responsive is renewables investment. 

These results follow directly from the fact that storage affects coal- and gas-fired 

generation in different directions, as well as from the nondispatchability of renewables. In the 

specific cases considered here, a reduction in storage costs affects wind and solar in different 

directions, and the net effect on emissions depends on the price sensitivity of renewables 

generation relative to that of fossil fuel–fired generation. In the following sections, we use a 

more detailed model of investment and generator dispatch to confirm the intuition provided by 

the simple model. 

3.  Computational Model, Data, and Model Validation 

3.1  Overview of the Computational Model 

This section outlines the computational model that we use to confirm the intuition from 

the previous section (the appendix contains details of the model formulation). The stylized model 

contains only two time periods, reflecting off-peak and peak demand hours. The two time 

periods roughly capture the correlations among demand, wind generation, and solar generation, 

and the computational model includes a larger set of time periods to more accurately capture 

these correlations. 

The model is calibrated to the ERCOT power system for several reasons. First, ERCOT is 

largely isolated from the remainder of the US power system, and many other studies (e.g., 

Carson and Novan 2013) have taken advantage of this feature, which simplifies the modeling. 

Second, the generation shares for coal and natural gas are roughly equal to the overall US 

average. Third, the correlations among demand, wind, and solar are fairly typical of much of the 

United States. On the other hand, ERCOT’s share of wind in total generation is more than twice 

the US average, and the solar share is less than the US average. Section 6 discusses the 

implications of the simulation results for other regions. 

For modeling convenience, we formulate the model as a cost minimization problem, 

which can be decentralized as a competitive equilibrium. The model consists of an initial 
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investment stage followed by a generation stage. The model contains six technologies that can 

supply electricity to meet demand: coal-fired generators, natural gas–fired generators, nuclear 

generators, solar generators, wind generators, and a storage unit.  

The capacities of nuclear, coal, and natural gas-fired generation are exogenous. As 

explained below, the capacities of these technologies reflect current projections of capacity in the 

year 2030, given expected fuel prices and policies (the projections incorporate currently planned 

retirements and new construction). In the investment stage, the model determines whether to add 

capacity for the solar and wind generators, as well as for the storage unit. Investment costs of 

these technologies are calibrated to match current investment projections. We allow for 

endogenous wind and solar but not for other generation technologies to highlight the interactions 

among renewables and storage, which has been the focus of the storage literature. The 

endogeneity of solar and wind is consistent with market conditions, in that Texas does not have a 

binding Renewable Portfolio Standard (RPS).3 As we explain below, the storage scenarios we 

consider would likely have small effects on investment and retirements of coal, natural gas, and 

nuclear, supporting the exogeneity assumption.. 

The generation stage includes one year, which reflects demand and supply conditions 

forecasted for the year 2030. For computational reasons the model contains a subset of hours 

within the year; we choose the first week of each quarter of the year, for a total of 28 days (i.e., 

672 hours). This set of hours captures the variation in demand and generation from wind and 

solar over the course of the year. 

Hourly demand is exogenous. Hourly capacity factors of the wind, solar, and nuclear 

generators are also exogenous, and hourly generation from these technologies is equal to the 

capacity factor multiplied by the total capacity of the technology.  

Generation from natural gas and coal is determined endogenously. Each generator 

produces an incremental amount of electricity. Any particular generator produces electricity and 

incurs marginal costs that depend on fuel and nonfuel costs. Each generator is a price taker and 

operates if the electricity price exceeds its marginal costs, and does not operate otherwise. 

Marginal costs vary across generators such that, for each technology, generators can be arranged 

in order of increasing marginal costs, yielding a smooth and differentiable supply function. A 

functional form is chosen and the parameters are calibrated to approximate observed fuel 

                                                 
3 Even in states that have a binding RPS, wind and solar investment are likely to be endogenous because states set 

their RPS in response to market and other policy conditions. For example, California has repeatedly increased the 

stringency of its RPS as existing targets are reached and investment costs decline. 
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consumption. To approximate real-world operating constraints, coal-fired generators cannot 

operate below a specified share of rated capacity. 

The hourly electricity price equates supply and demand. The net electricity supply from 

the storage unit is determined endogenously, and the net hourly revenue accruing to the storage 

unit is equal to net supply (discharge less charge), multiplied by the equilibrium electricity price. 

In short, the objective of the model is to minimize the capital and operating costs of 

meeting demand each hour of the year subject to initial conditions and supply constraints, and 

given capital and operating cost functions. Capital costs, operating costs, and revenues are 

annualized. 

3.2  Data, Parameter Estimation, and Calibration 

3.2.1  Hourly Demand and Capacity Factors 

Hourly demand is constructed from ERCOT data on hourly electricity load for 2004, 

2005, 2006, and 2008. For the first week of each quarter, we compute the average hourly total 

load across the four years. Between 2003 and 2010, hourly load in ERCOT increased by 0.71 

percent per year. We assume that load grows at about 1 percent per year between 2015 and 2030, 

which is consistent with the EIA 2016 Annual Energy Outlook and ERCOT (2014). 

For wind and solar, we define the investment cost function as the level of investment 

costs as a function of the investment level. Wind and solar operating costs are much lower than 

for other technologies, and the average cost per unit of generation depends primarily on the up-

front capital costs and the average capacity factor (average hourly generation normalized by 

capacity). Computational models in the literature (e.g., Burtraw et al. 2015) rely on engineering-

based estimates of capital costs and capacity factors. Typically, capital costs per unit of capacity 

do not vary across locations. Under these assumptions, total investment for wind or solar 

increases with the generation-weighted average electricity price because as the electricity price 

increases, wind and solar generators are constructed at locations with progressively lower 

capacity factors. We take an alternative approach and derive an empirically based investment 

cost function for wind, such that investment costs vary across locations. This subsection 

describes how we estimate the hourly capacity factors, and the next subsection describes how we 

estimate the investment cost function.  

To construct hourly wind capacity factors, we use a set of simulated hourly wind 

generation that we obtained from ERCOT, which AWS Truewind assembled from 

meteorological data (Castillo and Linn 2011; Fell and Linn 2013). The data contain simulations 
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for 696 sites that were identified in a transmission planning study as among the most promising 

wind locations in the state. The simulations are based on wind and meteorological data, and there 

is heterogeneity in the production across wind sites. We compute the average capacity factor 

across all sites, and then use the capacity factors from the first week of each quarter.  

Because the wind data cover the years 2004–2006, the demand and wind data are 

averaged over slightly different time periods. This likely does not have a substantial effect on the 

main results, however, because the periods coincide closely. Note that we assume that the 

correlations among demand, wind generation, and solar generation in 2030 are similar to those 

between 2004 and 2008.  

The hourly solar capacity factors are computed based on simulation output from the 

National Renewable Energy Laboratory’s System Advisor Model (Fell and Linn 2013). Separate 

simulations are run for 17 cities in Texas, and hourly output is averaged across cities, again using 

the first week in each quarter.  

Figure 2 illustrates the correlations among hourly demand, the wind capacity factor, and 

the solar capacity factor. Panel A shows a negative correlation between the hourly wind capacity 

factor and demand, which reflects variation both within days and across seasons of the year. 

Panel B indicates a positive correlation between the solar capacity factor and demand. The 

positive correlation arises because demand tends to be low at night, when the solar capacity 

factor is zero, and also because daytime demand tends to be positively correlated with the 

amount of sunlight. 

Finally, we assume that nuclear generators have a capacity factor of 0.9 for all hours. 

This assumption is consistent with the estimated capacity factor from Davis and Wolfram (2012). 

3.2.2  Existing Generation Stock 

The initial conditions of the investment stage of the model include a set of existing 

nuclear, coal-fired, and natural gas-fired generators. We use the projected capacities of these 

technologies from the EIA 2016 Annual Energy Outlook, for the year 2030. The Clean Power 

Plan (CPP) sets electricity sector carbon emissions targets for each state, and was expected to 

cause a substantial shift from coal to natural gas-fired generation. However, because the CPP is 

likely to be made significantly less stringent than it was initially, we use projections of future 

generation capacity that do not include the CPP. The projections are from the EIA Annual 

Energy Outlook and they include the effects on generation capacity of the decline in natural gas 

prices since 2008, as well as other environmental regulations that have contributed to coal-fired 
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plant retirements. The projected generation stocks are: 4.9 gigawatts (GW) of nuclear, 16.7 GW 

of coal, and 58.9 GW of natural gas. We use projections from the EIA 2016 Annual Energy 

Outlook and ERCOT (2014) for wind and solar: 16.7 GW of wind, and 2.8 GW of solar. 

3.2.3  Maringal Cost Curves for Coal- and Natural Gas–Fired Generation 

We construct differentiable marginal cost curves for coal- and gas-fired generators based 

on operational data from the 2000s. For consistency with current capacity projections, the 

marginal cost curves include generators that are currently expected to come online, and exclude 

generators that are expected to retire. 

In the model, marginal costs of natural gas– and coal-fired generators are the sum of fuel 

and nonfuel operating costs. We construct the marginal cost curves by estimating fuel and 

nonfuel portions separately, and then summing. 

The cost of the fuel needed to generate one unit of electricity is equal to the price of fuel 

multiplied by the generator’s heat rate, which is the ratio of fuel input to net electricity 

generation (i.e., the reciprocal of fuel efficiency). We use net rather than gross electricity 

generation to account for electricity that is used to power the plant’s equipment. In the model, all 

generators face the same fuel prices, but fuel costs per unit of electricity generation vary across 

generators because of variation in heat rates. We characterize the variation in heat rates by 

estimating the relationship across generators between marginal fuel costs and cumulative 

generation capacity. We begin by computing the heat rate from EIA data for each coal- and 

natural gas–fired plant in ERCOT. We order coal-fired generators by increasing heat rate and 

compute the cumulative sum of rated capacity (also obtained from EIA data) for each generator, 

where the sum includes all generators with a heat rate no greater than that of the generator. For 

the capacity, we use the net summer capacity and assume a 10 percent outage rate. We exclude 

generators that are planned for retirement, and we include generators that are expected to come 

online within the next three years according to EIA. Thus, the sets of generators embodied in the 

supply curves include those expected to be in service in the near future.  

We regress the cumulative sum of generation capacity on the unit’s heat rate. Multiplying 

the predicted heat rate functions by the corresponding projected Texas fuel prices for the year 

2030 from EIA (2015) yields the fuel cost component of the marginal cost curves. The procedure 

is similar for natural gas–fired plants, except that we fit a cubic function in heat rate rather than a 

linear function. The functional form assumptions are chosen such that additional polynomials 

terms would not be statistically significant. 
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The model also includes heterogeneity in the nonfuel portion of marginal costs for natural 

gas–fired plants. If we were to assume that all generators have the same nonfuel portion of 

marginal costs, the resulting simulated electricity prices would exhibit less price variation than 

observed. This discrepancy may reflect underlying variation across generators in the nonfuel 

portion of marginal costs. Therefore, we calibrate nonfuel marginal costs to reproduce observed 

levels of electricity price variation. We assume that the nonfuel portion of marginal costs for 

natural gas–fired generators is a quadratic function of the level of generation, and we estimate 

the parameters such that the model yields a mean price similar to that observed in 2008. This 

calibration excludes hours in which observed prices are above $500 per MWh, because such high 

prices likely reflect scarcity of available generation capacity, rather than marginal generation 

costs. We choose the quadratic function based on Linn and McCormack (2017).4 For coal-fired 

plants, we assume that nonfuel marginal costs are equal to variable operation and maintenance 

costs from EIA (2015). The marginal cost curves for gas and coal are the sums of the estimated 

fuel and nonfuel portions; see the appendix for further details. 

Dynamic factors, such as constraints on rapidly varying generation levels across hours at 

coal- or natural gas–fired plants, could contribute to the observed price variation (Cullen 2015). 

For computational reasons we do not allow for such dynamics. The implications of omitting the 

dynamic operating constraints likely increase with the share of wind and solar power because 

these generation sources increase the temporal variation in the level of electricity that must be 

supplied by natural gas– or coal-fired generation. However, in the simulations, we consider 

modest increases in wind and solar generation from observed levels, mitigating this concern. 

Figure 3 shows the marginal cost curves for natural gas– and coal-fired generation using 

two price levels—2008 and 2030. At both price levels the coal-fired curve is flatter than the 

natural gas–fired curve, suggesting that when coal-fired generation is not at full capacity, coal-

fired generation is more responsive than gas-fired generation to changes in demand induced by 

storage or other factors; simulations of the year 2030 are consistent with this (see Section 4.1). 

The figure also indicates the degree to which the curves shift across the two periods. The year 

2008 represents the maximum natural gas price in recent years, and prices in 2030 are projected 

to be somewhat higher than they have been recently but considerably lower than they were in 

2008. The lower natural gas prices in 2030 cause a downward shift of the marginal cost curve for 

                                                 
4 Linn and McCormack (2017) estimate non-fuel costs from observed generator utlization, using a sample of natural 

gas-fired units located in the Eastern interconnection. Their analysis suggests that a quadratic function fits the 

observed variation well. Unfortunately, the sample of natural gas-fired units located in ERCOT is too small to 

reproduce their methodology for ERCOT. 
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natural gas. Coal prices in 2030 are projected to be similar to 2008 coal prices, and the coal 

marginal cost curves in the two years are similar to each other. Importantly for the results 

reported in the next section, in 2030 the coal marginal cost curve is flatter than the natural gas 

marginal cost curve, even accounting for the decline in natural gas prices that occurred after 

2008. 

3.2.4  Investment Cost Functions for Storage, Wind, and Solar 

The total capital cost of the storage facility depends on its energy capacity (in kilowatt 

hours, kWh) and power rating (in kilowatts, kW). We assume that both capacity and power costs 

scale linearly with the capacity and power. Based on analysis described in the appendix, we 

assume that power is chosen to be proportional to capacity. Under these assumptions, the total 

capital cost is a linear function of the energy capacity. Kintner-Meyer et al. (2010) suggest that 

the total capital costs of typical battery storage facility are currently roughly $400 per kWh. All 

costs reported in the following analysis include the costs of both energy capacity and power 

rating.  

For wind and solar, we assume that capital costs per unit of capacity increase linearly 

with total investment. That is, the cost of the first unit of investment reflects the level of 

technology at a particular time; we select cost levels to reflect projected technology in 2030. 

Capital costs increase with the level of investment to reflect variation across locations in costs of 

construction, connecting to the grid, and so on. That is, similarly to other studies, we assume that 

wind generators are located at the sites with the lowest costs. Note that we assume that capital 

costs vary across locations, whereas many other studies assume that capacity factors differ across 

locations, but that capital costs do not vary. This difference is inconsequential in the current 

context, however, because either case would result in a positive relationship between equilibrium 

investment and the generation-weighted electricity price. We take this approach for modeling 

convenience. 

As noted above, most computational models that include renewables rely on engineering-

based estimates of costs. Instead of taking this approach, we make the first attempt to use 

observed investment decisions to estimate capital costs and variation in capital costs across 

locations. We perform this exercise for wind but not solar because of the limited investment in 

solar generators in ERCOT.  

The intercept of the capital cost curve is the level of capital costs with zero investment 

beyond observed levels, and the slope is the change in capital costs for a one megawatt (MW) 

increase in investment. We calibrate the intercept and slope of the wind capital cost curve in 
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three steps. First, we simulate the model using 2010 data for fuel prices and demand. In the 

simulation, storage and solar investment are fixed at zero, but wind investment is endogenous. 

We calibrate the intercept of the wind capital cost function such that simulated wind investment 

equals the observed wind investment in 2010. Underlying this calibration is the argument that the 

intercept is sufficiently high to prevent additional investment beyond the observed level, and that 

capital costs will not change between 2010 and 2030. The assumption of constant costs is 

consistent with recent trends and with EIA projections. This calibration yields an estimated 

intercept of $1,685 per kW of wind capacity, which is similar to the EIA estimate of $1,560 from 

the 2016 Annual Energy Outlook (all values reported in this paper are in 2010 dollars). 

An increase in the profitability of potential wind generators causes an increase in 

investment. The amount of investment depends on the slope of the capital cost curve; the steeper 

the curve, the less investment for a given profitability increase. Therefore, in the second step, we 

estimate the effects of market and policy factors on wind investment. Investment is a dynamic 

decision that depends on the expected profitability of a new wind generator. Because wind 

generators supply electricity to the grid, the value of their electricity depends on wholesale 

electricity prices. Fuel prices should positively affect wind investment because an increase in 

fuel prices raises wholesale electricity prices and the value of wind generation (Linn et al. 2014). 

Electricity demand should also have a positive effect on wind investment because an increase in 

demand raises electricity prices, all else equal. Moreover, in many years of the sample, the 

federal government has offered a production tax credit for new wind generators. The tax credit 

increases the revenue earned by a wind generator, stimulating investment, but the tax credit was 

unavailable in certain years of our sample, which may have affected investment in those and 

adjacent years. Note that Texas has a renewable portfolio standard that mandates a specific level 

of wind capacity, but in practice the standard has not been binding. Thus, investment may 

depend on fuel prices, electricity demand, and tax credits. 

To estimate the effects of these factors on wind investment, we construct a panel data set 

of wind investment by year and ERCOT region for 1996 through 2015 (historically, ERCOT 

consisted of four regions, across which wholesale market prices could differ). We estimate a 

reduced-form model that links investment to proxies for future profitability assuming perfect 

foresight. The dependent variable is megawatts of wind investment, and the independent 

variables include the logs of natural gas and coal prices (from EIA), ERCOT-wide electricity 
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generation (a proxy for demand, from ERCOT), and a dummy variable equal to one in which the 

production tax credit was not available.5  

Table 1 reports the results and indicates the expected relationships among the variables. 

In column 1, fuel prices have positive effects on investment, generation has a positive but 

statistically insignificant effect, and the absence of the production tax credit has a negative effect. 

Coal prices have a larger effect on investment than do natural gas prices, which is consistent with 

the negative correlation between wind generation and demand: during low-demand hours, coal-

fired generators are more likely to determine wholesale prices than during high-demand hours 

(Castillo and Linn 2011; Carson and Novan 2013).  

Column 1 uses current fuel prices, under the assumption that current fuel prices are 

proportional to expected future fuel prices. We relax this assumption in column 2 by replacing 

current fuel prices with forecasted prices that we construct based on EIA prices from 1980 

through 1995 (i.e., prior to the estimation sample). The results are qualitatively similar, although 

the forecasted natural gas prices yield larger standard errors than the current prices, reflecting the 

limited variability in forecasted prices.  

Column 1 includes demand-side influences on wind investment, and column 3 includes a 

supply-side factor: the log of the ratio of natural gas to wind capital costs, as estimated by EIA. 

Low wind costs should have a positive effect on investment, and the coefficient on this variable 

is expected to be positive. In practice, the estimated coefficient is negative but the standard error 

is very large, and we conclude that there is insufficient variation to identify this coefficient. 

Column 4 reports results if we include a linear time trend, and column 5 uses annual 

observations aggregated across ERCOT. Across the five columns the coefficients usually have 

the expected signs, but the available variation prevents identification of some of the coefficients, 

particularly when the time trend is included. The time trend appears to absorb too much of the 

fuel price variation to identify those coefficients. We use column 1 as the basis for the calibration 

because the fuel price coefficients are precisely estimated; we note that we expect similar results 

if we use projected wind investment costs rather than estimated wind investment costs. 

                                                 
5 For most years of the sample, owners of wind generators received the production tax credit. Under current law, 

owners of future wind generators are eligible for an investment tax credit equal to 30 percent of the capital costs, 

which for most wind generators is more valuable than the production tax credit. Owners of wind generators cannot 

receive both tax credits, and the simulations for the year 2030 include the investment but not the production tax 

credit.  
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We perform this calibration by fixing initial wind capacity at 16 GW, which is the level 

of wind capacity in 2015. We use the model to simulate a baseline scenario using observed fuel 

prices, and a counterfactual scenario in which fuel prices are 10 percent higher than observed. 

We calibrate the slope parameter such that the change in investment is as close as possible to that 

predicted by the coefficients in column 1. 

Because ERCOT has very few installed solar generators, we calibrate the solar capital 

cost curve without using market outcomes. We fix the vertical intercept at $1,400 per kW, which 

is similar to the level assumed by ERCOT (2014) for future solar investment costs. We calibrate 

the slope of the cost function such that a simulation of 2030 demand and fuel cost conditions 

yields the 2.8 GW of solar that is currently projected.  

3.3  Model Validation 

Because the model is calibrated using data from the 2000s, we compare observed market 

outcomes with simulated outcomes for the three years with consistent data: 2004, 2008, and 

2010. Table 2 reports the model inputs for each scenario in Panels A and B, and the simulated 

outcomes in the lower panels.  

Comparing observed and simulated generation shares, the simulated nuclear and wind 

shares are typically slightly higher than the observed levels. In the case of wind, this could reflect 

the fact that the available wind capacity increased each year as new generators were constructed. 

The simulations use the amount of available capacity at the end of the year, which may cause the 

simulations to overstate the amount of wind capacity that was available on average during the 

year.  

The simulated natural gas and coal generation shares are fairly close to the observed 

levels in 2004 and 2010 but differ more in 2008. Natural gas prices were lower in 2004 and 2010 

than they were in 2008, suggesting that the model yields more accurate results for moderate 

natural gas prices. Reassuringly, the fuel prices used for the 2030 simulations in the next section 

are closer to the 2004 and 2010 levels than to the 2008 levels.  

As noted above, the natural gas marginal cost curve was calibrated to roughly reproduce 

the observed mean electricity price in 2008. The simulated electricity prices have lower standard 

deviation than the actual prices in 2008, which appears to reflect the limitations of the model 

when natural gas prices are very high. In 2004, by contrast, the standard deviation of simulated 

prices is actually somewhat higher than the observed standard deviation (observed prices are not 

available in 2010).  
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Finally, Panel E reports the carbon dioxide emissions intensity across coal- and natural 

gas–fired generation, which is defined as the ratio of carbon dioxide emissions to generation. 

Consistent with the generation results reported in Panel C, the simulated carbon dioxide 

emissions intensity is similar to the actual intensity in 2004 and 2010 but differs more for 2008. 

Overall, we observe that the model reproduces observed outcomes to a reasonable extent, 

particularly when natural gas prices close to those modeled in the year 2030. 

4.  Effect of Storage Costs on Emissions 

In this section we use the computational model to confirm the intuition from Section 2, 

that the effect of storage costs on emissions depends on the price responsiveness of natural gas, 

coal, and renewables. 

4.1  Coal- and Gas-Fired Generation Only 

First, we report simulations that characterize the effects of storage costs on emissions, 

assuming that wind and solar investments do not respond to storage costs. To provide some 

intuition for the results, given the emphasis in Section 2 on price responsiveness, we begin by 

using the computational model to characterize the price responsiveness of natural gas– and coal-

fired generation. Figure 4 reports results from two scenarios based on 2030 fuel prices, using the 

baseline parameterization described in the previous section. In the first scenario, the hourly 

electricity demand is equal to the projected hourly demand in the year 2030. In the second 

scenario, demand in each hour is increased by 2 percent. In both scenarios, there is no investment 

in storage, wind, or solar. Natural gas– and coal-fired generation must increase to meet the 

higher level of demand.  

The figure plots the change in hourly generation between the two demand scenarios for 

natural gas and coal on the vertical axis, and the hourly demand from the first scenario along the 

horizontal axis. Hourly demand increases from left to right in the figure, and the left-hand side of 

the figure includes nighttime and winter periods, whereas the right-hand side includes daytime 

and summer periods.  

The figure indicates that when demand is below about 45,000 MWh, often coal responds 

more to a demand increase than does natural gas. Above 45,000 MWh, coal-fired generators are 

producing at their maximum capacity, and natural gas meets the entire demand increase. These 

patterns are consistent with the fact that the coal marginal cost curve is flatter than the natural 

gas marginal cost curve (see Figure 3). Figure 4 implies that adding storage, which tends to 
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increase generation in low-demand periods and decrease generation in high-demand periods, will 

cause an increase in generation from coal and (to a lesser extent) natural gas during low-demand 

periods, and a decrease in natural gas–fired generation during high demand periods. Therefore, 

reducing storage costs is likely to increase carbon dioxide emissions in the case when there is no 

wind and solar investment. 

Building on this intuition, we report a series of simulations that characterize the effects of 

storage costs on emissions. We begin with our baseline model calibration and 2030 hourly 

demand and fuel prices. With these inputs, the model yields zero storage investment for storage 

costs above about $280 per kWh. This cost is about two-thirds of recent cost estimates for 

storage (Kintner-Meyer et al. 2010) and is roughly comparable to the results in de Sisternes et al. 

(2016). Starting from this level of storage costs, we simulate the model at sequentially lower 

storage costs, considering up to a 50 percent reduction in storage costs. 

Figure 5 shows the main results, illustrating storage costs on the horizontal axis and the 

percentage change in various outcomes relative to a case with zero storage investment on the 

vertical axis. For reference, Appendix Figure 1 shows the level of storage investment for this 

scenario and the other scenarios reported in later subsections. Table 3 reports the levels of the 

outcomes for the case of zero storage investment, when storage costs are $280 per kWh.  

Figure 5 indicates that coal-fired generation increases as storage costs fall. Natural gas–

fired generation follows the opposite pattern, falling as storage costs fall. Overall, carbon dioxide 

emissions rise as storage costs fall, extending the conclusions of Carson and Novan (2013) to 

nonmarginal levels of storage investment. Thus, their conclusions are robust to modeling the 

projected makeup of the ERCOT system in the year 2030, which includes a substantial shift from 

coal to gas-fired generation relative to historical levels.  

Lower storage costs reduce the average and standard deviation of electricity prices. The 

effect on average prices arises from the convexity of the natural gas–fired marginal cost curve 

(see Figure 3). Adding storage raises prices during low-demand prices but reduces prices during 

high-demand periods. Therefore, the more storage is added to the system, the more prices 

converge between low- and high-demand periods, reducing price variation.  

To illustrate the effects of storage on hourly generation by fuel type, Figure 6 compares 

two scenarios: storage costs of $280 per kWh (Panel A) and $140 per kWh (Panel B). To 

construct the figure, we select the first four simulation days and plot hourly generation by fuel 

type. Panel A shows that with zero storage, wind generation tends to be highest during the low-

demand hours, and that natural gas and coal vary production so that total generation equals total 
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demand. The variation in coal generation reflects the fact that given projected fuel prices, coal 

has much lower capacity factor than it has had historically, when coal typically operated closer to 

full capacity at all hours.  

Comparing the two storage cost cases, reducing the cost of storage causes more coal- and 

natural gas–fired generation in low-demand hours, with a larger effect on coal-fired generation 

than on gas-fired generation. Storage reduces both coal- and natural gas–fired generation in high-

demand hours. These results are consistent with the overall findings in Figure 5, that reducing 

storage costs causes a shift from natural gas– to coal-fired generation, raising emissions. 

4.2  Adding Renewables Investment 

To provide intuition for the interaction between storage and renewables, Figure 7 reports 

results from a set of demand simulations similar to those in Figure 4, except that wind capacity 

can increase in response to the demand increase. An increase in wind capacity causes hourly 

wind generation to increase in accordance with the hourly capacity factor. The figure shows that 

wind generation increases more during low-demand periods than during high-demand periods, 

which reflects the negative correlation between wind’s capacity factor and demand. The 

increases in the low-demand periods are smaller than for coal and natural gas but are nonetheless 

substantial. Comparing Figures 4 and 7 indicates that coal- and natural gas–fired generation 

increase by less when wind capacity is endogenously determined, demonstrating the importance 

of accounting for renewables investment when assessing the effect of storage costs on emissions. 

Figure 8 illustrates the effects of storage costs on generation, electricity prices, and 

emissions, allowing wind and solar investment to respond to storage costs. Each panel reports a 

single outcome, with the vertical axis plotting the percentage relative to zero storage investment 

(i.e., investment costs of $280 per kWh). The solid lines indicate the scenarios with zero wind 

and solar investment for reference, and the dashed lines indicate the scenarios with endogenously 

determined wind and solar investment.  

Panels A and B show that reducing storage costs lowers the natural gas–fired generation 

share and increases the coal share. On the one hand, the wind generation share increases slightly 

as storage costs decrease. The additional wind generation displaces mostly coal and to a lesser 

extent natural gas, which is consistent with the results shown in Figure 7. The displacement of 

coal and natural gas–fired generation by wind generation causes emissions to decrease. On the 

other hand, Panel D shows that lower storage costs reduce the solar generation share, which 

raises emissions. On balance, reducing storage costs causes a net increase in emissions. The 
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increase is slightly less than the increase that occurs when wind and solar investment are zero—

in other words, when wind and solar investment are endogenous, declining storage costs are less 

likely to increase emissions than when wind and solar investment are zero.  

Figure 9 plots the hourly generation by fuel type for the same two storage cost scenarios 

as shown in Figure 6, except allowing for positive wind and solar investment in the low storage 

cost case. The figure indicates a small amount of wind generation from new investment, 

reflecting the modest effect of wind investment on generation levels of coal and natural gas. 

Thus, using the baseline model calibration, we show that allowing for endogenous wind and 

solar investment does not overturn the finding that lower storage costs raise emissions, but it 

does mitigate the increase in emissions.  

4.3  High Wind or Solar Price Responsiveness 

In Section 2 the model suggested that the price responsiveness of wind investment affects 

the relationship between storage costs and emissions. In particular, a reduction in storage costs is 

more likely to reduce emissions the more price responsive is wind investment. We illustrate this 

effect by flattening the wind investment cost curve, which reflects potential innovation in wind 

technology that reduces the variation in capital costs across wind locations. Specifically, for 

illustrative purposes we assume that the wind investment cost curve is half as steep as in the 

baseline parameterization. 

Figure 8 shows that increasing the price responsiveness of wind investment increases the 

wind generation share (Panel C), reducing both natural gas– and coal-fired generation (Panels A 

and B) relative to the baseline wind investment assumptions from Section 4.2. The reduction in 

fossil fuel–fired generation is sufficiently large to change the relationship between storage costs 

and emissions, as Panel G shows. These simulations indicate that if wind investment is 

sufficiently price responsive, a reduction in storage costs reduces rather than raises emissions. 

Turning to solar price responsiveness, because solar generation is negatively correlated 

with storage-induced electricity price changes, we expect that an increase in solar price 

responsiveness reduces the likelihood that a reduction in storage costs lowers emissions. To 

illustrate this effect, we reduce the slope of the solar investment cost curve, which causes an 

increase in the amount of solar investment that occurs when storage investment costs are $280 

per kWh (i.e., when storage investment is zero; see Table 3). Starting from that equilibrium, 

Figure 8 shows that reducing storage costs from $280 to $140 per kWh reduces the solar 

generation share (Panel D) and increases the natural gas–fired generation share (Panel A). These 
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generation changes translate to a slight increase in emissions relative to baseline solar costs 

(Panel G). Thus, the simulation results are consistent with the intuition provided by the model in 

Section 2. 

5.  Interaction between Storage Costs and a Carbon Price 

We extend the model in Section 2 to show that a carbon price has ambiguous effects on 

the relationship between storage costs and carbon dioxide emissions. Without storage, adding a 

carbon price causes a reduction in emissions because of a shift from coal- to gas-fired generation, 

and increases in wind and solar investment.  

With storage, adding a carbon price affects emissions in accordance with the price 

responsiveness of electricity generation. We first show that a carbon price reduces the price 

responsiveness of coal- and natural gas–fired generation. To illustrate this effect, we construct a 

figure similar to Figure 4, except introducing a carbon price equal to $30 per ton of carbon 

dioxide (the carbon price is implemented as a fuel tax). Figure 10 plots the effect of a 2 percent 

demand increase on coal and natural gas-fired generation. The figure, which includes the results 

from Figure 4 for reference, indicates a decrease in responsiveness for both coal- and gas-fired 

generation when demand is below 45,000 MWh. When demand is above 45,000 MWh, the 

carbon price does not affect the responsiveness, and the corresponding dots in the figure lie on 

top of one another. 

Because of this effect, reducing storage costs has two opposing effects on renewables 

investment and emissions. On the one hand, adding a carbon price causes the coal-fired 

generation to become less price responsive. This causes wind investment to increase more given 

a storage cost reduction than in the absence of the carbon price. Consequently, a reduction in 

storage costs causes more wind investment and lower carbon emissions, compared with a 

scenario without a carbon price. 

On the other hand, adding a carbon price also reduces the price responsiveness of natural 

gas–fired generation. Because the carbon price raises the price responsiveness of solar relative to 

natural gas, solar investment is more sensitive to the reduction in daytime electricity prices 

caused by a reduction in storage costs. As a result, a reduction in storage costs raises carbon 

emissions by more than in the absence of a carbon price. 

Figure 11 illustrates the implications for total carbon dioxide emissions of the lower price 

responsiveness for both coal- and natural gas–fired generation. Introducing a price of $30 per ton 

of carbon dioxide affects the relationships among storage costs, generation, prices, and 
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emissions. With a carbon price, reducing storage costs lowers emissions. However, because a 

carbon price has ambiguous effects on the relationship between storage costs and emissions, in 

some realistic model parameterizations that we have considered, a carbon price has the opposite 

effect.  

6.  Conclusions 

The literature has disagreed on the greenhouse gas benefits of storage investment and 

innovation. In the short run, without power plant investment, lower storage costs may raise 

emissions because of a shift from natural gas– to coal-fired generation. In the long run, lower 

storage costs may reduce the cost of integrating renewables. 

We focus on the medium run, or roughly 10–20 years, which is relevant for evaluating 

existing storage policies. Taking the makeup of the existing grid as exogenous, we assess the 

effects of reducing storage costs on emissions, accounting for investment and generation 

changes. In a stylized model, the effect depends on the price responsiveness of renewables and 

fossil fuel-fired generation. For renewables whose generation is positively correlated with 

electricity price changes caused by storage, the more price responsive is renewables investment, 

the more likely that a reduction in storage costs reduces emissions. Wind generation is often 

positively correlated with storage-induced electricity price changes, and higher wind 

responsiveness increases the likelihood that lower storage costs reduce emissions. In contrast, for 

renewables whose generation is negatively correlated with electricity price changes caused by 

storage—which is often true for solar—the more price responsive is renewables investment, the 

less likely that a reduction in storage costs reduces emissions. The contrasting effects arise 

because storage raises generation-weighted average prices in the first case but reduces 

generation-weighted average prices in the second case. 

We use a computational model that relaxes many of the assumptions in the stylized 

model, and that is calibrated to approximate observed fuel consumption and current investment 

projections. Wind generation is positively correlated with electricity price changes caused by 

storage, and solar generation is negatively correlated. Therefore, the stylized model suggests that 

greater price responsiveness of wind investment increases the likelihood that lower storage costs 

reduce emissions, whereas greater price responsiveness of solar investment reduces the 

likelihood that lower storage costs reduce emissions.  

The wind and solar results rest on the fact that in ERCOT solar generation is negatively 

correlated with storage-induced price changes. This may not be the case at particularly high 
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levels of solar generation, such as in California. If solar generation is positively correlated with 

price changes, an increase in price responsiveness for solar increases the likelihood that lower 

storage costs reduce emissions—just as for wind in ERCOT. 

An extension of the stylized model shows that a carbon price has an ambiguous effect on 

the relationship between storage costs and emissions. Simulations of the computational model 

indicate that with a carbon price, a decrease in storage costs typically reduces emissions.  

These results have several policy implications. First, policies incentivizing storage 

investment and R&D subsidies that reduce storage costs have ambiguous effects on emissions in 

the medium run. The policies could be justified by market failures for new technology, but our 

results do not provide strong evidence for supporting storage on the basis of medium-term 

carbon emissions reductions in the US. Second, introducing a carbon price does not necessarily 

imply that lower storage costs reduce emissions. Third, the effect of storage costs on renewables 

investment depends on the correlation between renewables generation and storage-induced 

electricity price changes. Fourth, in the baseline calibration, storage investment is positive when 

storage costs approximately two thirds of what it did in 2010. This suggests that further storage 

innovation will be needed for storage to be economically viable for arbitrage purposes. The level 

of storage costs needed to yield positive investment is sensitive to assumptions, however. 

We note that the conclusions are based on scenarios that account for the effects on the 

electricity system of recent environmental regulations and declines in natural gas prices, which 

have contributed to the shift from coal to gas-fired generation. As discussed in Section 3, we 

treat natural gas and coal generation capacities as exogenous to focus on the relationship between 

storage and renewables. In practice, the reduction in storage costs that we consider reduces 

revenues for natural gas and coal by about 5 percent. This reduction is much smaller than the 

changes in coal-fired plant profits that occurred in the late 2000s and early 2010s following the 

decline in natural gas prices (Linn and McCormack 2017). This suggests that storage would have 

little effect on retirements of natural gas or coal, implying that the assumed exogeneity of coal 

and natural gas capacity has little effect on the results. Note that retirement of coal capacity 

would cause the coal supply curve to become steeper, increasing the likelihood that lower 

storage costs reduce emissions; natural gas-fired retirements would have analogous implications.  

We suggest several directions for future research. First, the relationship between storage 

costs and emissions depends on the price responsiveness of generation technologies. Whereas 

available data make it possible to estimate this price responsiveness for coal- and natural gas–

fired generation, there is very little research on the price responsiveness of investment for any 
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technology. We report results from a straightforward approach to estimating the price 

responsiveness of wind investment, which is sufficient for the paper’s purpose of demonstrating 

the importance of price responsiveness in determining the relationship between storage costs and 

emissions. Future work could refine this estimation and consider other technologies besides 

wind. 

Second, we have focused on the relationship between storage costs and carbon dioxide 

emissions. Because carbon dioxide is a globally mixed pollutant, the social damages of 

emissions do not vary over time or by location. Natural gas– and coal-fired generation emit other 

pollutants, such as nitrogen oxides, whose external costs vary over time and by location. Future 

work could characterize the societal benefits and costs of storage, accounting for pollutants other 

than carbon dioxide. 

Third, we focus on the ERCOT power system for reasons described above. Future work 

should consider other regions, which have different levels of renewables and correlations 

between demand and renewables generation, compared to ERCOT.  
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Appendix. The Electricity Generation and Storage Model 

In this appendix, we discuss the mathematical programming model to investigate the 

interplay of fossil fuel electricity generation, renewable electricity generation, energy storage, 

carbon price, and greenhouse gas emissions. This model allows simultaneous consideration of 

dispatch of electricity and investment of new generation and storage capacities.  

Appendix Figure 2 provides a schematic representation of the modeling domain. It 

includes a power system and pollution externalities. For simplicity, the power system is 

aggregated such that the electricity generators produce one unit of electricity and marginal costs 

are differentiable functions of generation. The generation technologies are natural gas, coal, 

nuclear, wind, solar, and storage (which includes the power conversion system). The energy 

storage facility can be charged using electricity supplied by any generator. For pollution, we 

focus on carbon dioxide pollution produced by natural gas– and coal-fired generation. 

We formulate the model as a cost minimization problem, which solves the competitive 

equilibrium. At the end of the Appendix we discuss the competitive decentralization. The model 

consists of an investment stage followed by a generation stage. The objective is to minimize the 

cost of investment and generation subject to the constraint that hourly generation equals hourly 

demand, and subject to the initial conditions of the investment stage. The initial conditions of the 

investment stage include positive levels of generation capacity for natural gas, coal, nuclear, 

wind, and solar. During the investment stage, wind, solar, and storage capacity can be added 

according to the cost functions described below. 

For computational reasons, the generation portion of the model consists of the first week 

of January, April, July, and October, to represent typical electricity demand and renewables 

generation levels of each season. The model simulates operations for 672 hours, annualizing all 

generation and investment costs. During the generation stage, we consider two types of 

electricity demand, including electricity consumption by consumers and electricity needed to 

recharging energy storage. For simplicity, we ignore losses in the power grid and energy storage 

systems.   

The model considers hourly dispatch. In each hour, total generation equals total demand. 

Hourly generation for nuclear, wind, and solar is determined by the assumed capacity factors. 

Natural gas– and coal-fired generation have the marginal cost curves described below. Hourly 

carbon dioxide emissions are estimated using emissions factors for coal and natural gas.  

The model is formulated as a nonlinear mathematical programming model and is solved 

using CONOPT nonlinear solver in GAMS (GAMS 2013).   
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The Model 

Nomenclature 

i  EGU index, 

{coal, NG, nuclear, wind_exist, solar_exist, 

      wind_inv, solar_inv, storage}

i

 

j  Pollutant index, 2{CO }j  

t  Time index 

Dt  Electricity demand at time t, known 

GCi  Electricity generation of EGU, i, {coal, NG, nuclear, wind_exist, solar_exist}i , 

known 

MGFi  Minimum generation factor for EGU i, {coal}i , known 

CFit  Capacity factor of renewable power generation at time t, 

{wind_exist, solar_exist, wind_inv, solar_inv, nuclear} i , known 

amor  Amortization ratio, known 

1 2,    Natural gas marginal cost curve parameters, calibrated and known 

,i ia b   Capital cost function parameters for EGU i, { , _ , _ }i storage wind inv solar inv , 

calibrated and known 

Pc  Price of coal, known 

Pg  Price of natural gas, known 

EFij  Emission factor for pollutant j from source i, known 

Git  Electricity generation from EGU i, at time t, unknown 

Rt  Storage recharge at the end of the time period t, unknown 

St  Level of electricity storage at the end of the time period t, unknown 

Qi  Design capacity of i, { , _ , _ }i storage wind inv solar inv , unknown 

CAPi  Amortized capital cost for EGU i, { , _ , _ }i storage wind inv solar inv , unknown 

MCcoalt Marginal generation cost for coal, unknown 

MCngt  Marginal generation cost for natural gas, unknown 

TCcoalt  Generation cost for coal at time t, unknown 
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TCngt  Generation cost for natural gas at time t, unknown 

Pt  Hourly electricity price, unknown 

Eijt  Net emission for pollutant j from source i at time t, unknown 

Constraints 

Electricity Generation from Fossil Fuels 

Electricity generation from fossil fuel energy sources, coal and NG, at any time, t, are 

constrained by their generation capacities. That is,  

it iG GC  {coal, NG},i t  (1) 

Electricity Generation from Renewables 

For wind and solar (both existing and new investment), the electricity generation for any 

specific time, t, is set equal to the capacity multiplied by the hourly capacity factor. Capacity 

factors are estimated as described in Section 3:   

, ,i t i i tG GC CF   { _ , _ , },i wind exist solar exist nuclear t   (2) 

, ,i t i ti
QG CF   { _ , _ },i wind inv solar inv t   (3) 

Electricity Generation from Energy Storage 

Electricity generation from energy storage is constrained by the energy storage capacity: 

,i t i
QG   { },i storage t   (4) 

Minimum Generation Requirements 

Coal and nuclear generators have minimum generation requirements. For coal, we 

assume a minimum of 0.2 percent of capacity. Nuclear has a minimum generation requirement of 

0.9, and we assume that the costs of varying nuclear generation across hours is sufficiently high 

that nuclear operates at this required level for each hour. 

it i iG GC MGF   { },  i coal t   (5) 
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Balancing of Electricity Demand and Supply 

For any hour, t, the total electricity generation across all sources (including storage) 

equals the sum of consumers’ demand and charging from storage.  

it t t

i

G D R   {coal, NG, nuclear, wind_exist, solar_exist, 

      wind_inv, solar_inv, storage}, 

i

t




 

(6) 

Energy Balance for Bulk Storage  

The level of electricity storage at the end of hour t is equal to the level at the end of 

previous time period, t–1, plus recharge, minus electricity discharge from the storage during hour 

t.  

1 ,t t i ttRS S G    { },   i storage t   (7) 

Bulk Storage and Bulk Storage Design Capacity 

At any hour, t, the level of storage cannot exceed the storage design capacity. 

     t i
QS   { },   i storage t   (8) 

Cost Functions  

Capital Costs for Energy Storage, Wind Generation, and Solar Generation  

The model includes investment in energy storage (including the power conversion 

system), wind, and solar. We annualize investment costs using a 10 percent interest rate and 20-

year lifetime (amor).   

For the power conversion system, we estimate the relationship between maximum 

electricity discharge and energy storage capacity using a linear function. We use unit capital cost 

for power conversion systems (Kintner-Meyer et al. 2010). New wind and solar generators 

receive a 30 percent investment tax credit, itc.   

The following equations provide the annualized capital cost for the power conversion 

system, energy storage, and new wind and new solar investments. We estimate the relationship 

between maximum discharge and storage capacity by simulating the model at various levels of 

storage capacity and observing maximum discharge in each simulation. The total storage 

investment cost is the sum of the cost of the power conversion system and the energy storage. 

_     pcs iCAP pcs power storage Q amor     { }i storage  (9) 
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   i i iCAP a Q amor    { }i storage  (10) 

(1 ) ( + )    i i i i iCAP itc a b Q Q amor       { _ , _ }i wind inv solar inv  (11) 

Generation Costs for Fossil Fuel Generators  

As discussed in Section 3, the functional forms for the marginal cost curves for natural 

gas and coal are based on the observed variation in heat rates across existing generators. Total 

costs for each technology are the integral of marginal costs. 

 ,20 9.731502 0.0001068t c c coal tMCcoal P P G       t  (12) 

𝑀𝐶𝑛𝑔𝑡 = 𝛼1 + 𝛼2 × 𝐺𝑛𝑔,𝑡
2 + 4.331101 × 𝑃𝑔 + 0.0003511 × 𝑃𝑔 × 𝐺𝑛𝑔,𝑡 

  −(1.09372𝑒 − 8) × 𝑃𝑔 × 𝐺𝑛𝑔,𝑡
2 + (1.578355𝑒 − 13) × 𝑃𝑔 × 𝐺𝑛𝑔,𝑡

3  

 

t  (13) 

2

, , ,20 9.731502 (1/ 2) 0.0001068t coal t c coal t c coal tTCcoal G P G P G          t  (14) 

3

1 , 2 , ,

2

,

3

,

4

,

(1/ 3) 4.331101

            (1/ 2) 0.0003511

            (1/ 3) (1.09372 8)

            (1/ 4) (1.578355 13)

t ng t ng t g ng t

g ng t

g ng t

g ng t

TCng G G P G

P G

e P G

e P G

        

   

    

    

 t  (15) 

Electricity Price 

As noted in the main text, we formulate the model as a constrained cost minimization. 

The solution to the problem could be decentralized by assuming that all generator and electricity 

storage owners are price takers and operate as long as price exceeds marginal costs. In 

equilibrium, when coal-fired generation lies between its minimum generation level and total 

capacity, the electricity price equals the marginal costs of both natural gas and coal. When either 

coal generation constraint binds, the marginal cost of natural gas differs from that of coal. In all 

hours, because the natural gas level of generation is never constrained, the electricity price equals 

the marginal cost of natural gas.  

 

t t
p MCng  t  (16) 
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Carbon Dioxide Emissions 

Emissions of coal and natural gas account for variation across generators in heat rates and 

for variation in carbon content across fuels. 

  

2 2

2
, , , , ,(9.731502 (1/ 2) 0.0001068 )coal co t coal co coal t coal tG GE EF       

 

t  (17) 

2 2

2
, , , , ,

3

,

4

,

(4.331101 (1/ 2) 0.0003511

           (1/ 3) (1.09372 08)

            + (1/4) (1.578355e-13)

ng co t ng co ng t ng t

ng t

ng t

G GE EF

e G

G

     

   

 

 

t  (18) 

Objective Function 

The objective function is the annual cost, which includes annual operating costs for fossil 

fuel generators and annualized capital costs for power control system, energy storage, new wind 

and new solar investments. The number 13 is a scaling factor because we consider four 

representative weeks for fossil fuel generator operations in the model. 

  

_ _

( ) 13

( )

t t

t

pcs storage wind inv solar inv

TCcoal TCng

CAP CAP CAP CAP

 

   


 

 (19) 

Expression (19) is minimized subject to conditions (1) through (8), and with total costs 

and capital costs given by (9) through (11), (14), and (15). The decision variables are capacities 

of wind, solar, and storage, and hourly generation of each technology and of storage. 

 

Table A1. Model Inputs 
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Parameter Unit Value 

_wind inva  $/MW 1,685,000 

_solar inva  $/MW 1,400,000 

_wind invb   141.8 

_solar invb   149.0 

1   -22 

2   1.2e-07 

power_storage MW/MWh 0.0926 

power_control_sy
stem 

$/MW 75,000 

Pc $/mmBtu 2.589 

Pg $/mmBtu 6.007 

amor % 12 

itc % 30 

MGFcoal % 20 

MGFnuclear % 90 

EFcoal,CO2  0.11 

EFng,CO2  0.056 

GCcoal MW 16,700 

GCng MW 58,900 

GCnuclear MW 4,927 

GCwind_exist MW 16,700 

GCsolar_exist MW 2,800 
 

 

 



Figure 1. Effect of storage on market equilibrium
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Figure 2. Correlations among demand, wind capacity factor, and solar capacity factor
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coal and natural gas
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Figure 6. Hourly generation by fuel type, without wind or solar investment
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Figure 8. Effects of storage costs with wind and solar investment
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Figure 9. Hourly generation by fuel type, with wind and solar investment
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Figure 11. Effects of storage costs on equilibrium outcomes, with 
carbon tax

Natural gas generation Coal generation Electricity price mean

Electricity price std dev Carbon dioxide emissions



(1) (2) (3) (4) (5)

253.56 144.04 250.92 111.91 1521.34

(135.48) (239.69) (140.62) (191.79) (692.09)

564.96 498.66 530.97 28.15 3389.74

(272.85) (207.68) (418.41) (463.88) (1575.41)

6.81 15.47 15.97 -9.06 40.87

(117.38) (103.23) (142.32) (110.73) (650.85)

-123.90 -120.88 -118.66 -129.60 -743.42

(51.63) (50.57) (69.86) (51.98) (287.34)

-40.42

(304.67)

Number of 

observations
120 120 120 120 20

R squared 0.29 0.30 0.29 0.31 0.49

Forecasted prices 

and demand?
No Yes No No No

Time trend? No No No Yes No

Aggregate across 

ERCOT?
No No No No Yes

Table 1. Effects of fuel prices and demand on wind investment

Notes : The table reports coefficient estimates with standard errors in parentheses, which are robust to 

heteroskedasticity. The dependent variable is wind investment in megawatts (MW). Observations are by PCA 

and year in columns 1-4 and by year in column 5. PTC expiration year is a dummy variable equal to one if the 

PTC expired in the corresponding year. Column 2 includes forecasted fuel prices and demand in place of current 

fuel prices and demand. Column 3 includes the log of the ratio of the estimated capital costs for a new 

combined cycle plant to the capital costs for a new wind plant, from EIA. Column 4 includes a linear time trend.

Log natural gas 

price

Log coal price

Log ERCOT 

generation

PTC unavailable

Log (natural gas / 

wind capital costs)

Dependent variable: wind investment (MW)



(1) (2) (3) (4) (5) (6)

Nuclear

Coal

Natural gas

Wind

Coal

Natural gas

Observed Simulated Observed Simulated Observed Simulated

Nuclear 12.9 13.6 12.2 13.2 12.2 13.0

Coal 37.5 41.9 35.1 43.3 35.6 33.2

Natural gas 48.7 43.4 48.3 37.4 45.0 45.6

Wind 0.9 1.1 4.5 6.1 7.1 8.1

Mean 45 52 72 70 54

Standard 

deviation
24 33 69 41 27

Emissions 

intensity
0.69 0.71 0.68 0.72 0.68 0.67

1.3 2.0

5.1

16.4

60.1

6.8

1.6

8.8

5.1

18.9

57.3

9.2

Table 2. ERCOT summary statistics and simulation outcomes

Notes : Panel A reports capacity levels from EIA and Panel B reports fuel prices from EIA. Panel C reports the 

observed and simulated generation shares, with observed levels from EIA. Panel D compares observed and 

simulated electricity prices, with observed prices from ERCOT. Panel E compares observed and simulated rates 

of carbon dioxide emissions per coal and gas-fired generation, with observed values from EIA and using EIA 

emissions factors.

Panel A. Capacity (GW)

Panel C. Percentage generation

Panel B. Fuel prices ($/mmBtu)

Panel D. Electricity prices ($/MWh)

Panel E. Carbon dioxide emissions intensity of coal and gas generation (tons/MWh)

2004 2008 2010

5.1

16.5

59.0

1.2

4.65.8



(1) (2) (3) (4) (5)

No wind or 

solar 

investment

Wind and 

solar 

investment

Low wind 

costs

Low solar 

costs
Carbon tax

Natural gas generation 0.45 0.45 0.43 0.45 0.49

Coal generation share 0.31 0.31 0.28 0.31 0.24

Wind generation share 0.12 0.12 0.18 0.12 0.14

Solar generation share 0.014 0.014 0.012 0.019 0.020

Mean electricity price 

($/MWh)
78 78 73 77 98

Standard deviation 

electricity price ($/MWh)
57 57 57 56 52

Carbon dioxide emissions 

rate (tons/MWh)
0.48 0.48 0.44 0.47 0.42

Table 3. Simulation results by scenario, without storage investment

Notes : The table reports outcomes for the scenarios indicated in the column headings with zero storage 

investment.
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Appendix Figure 1. Storage capacity vs. storage costs
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Appendix Figure 2. Conceptual Study Domain


