A Compositional Constructional Analysis of ‘Hitting’ Verb Argument Realization Patterns and Their Meanings

Ellen K. Dodge
International Computer Science Institute, Berkeley
June 27, 2013
‘Hitting’ verbs

• ‘Hitting’ verbs:
 • E.g.: hit, slap, kick, punch, pat, tap, whack, etc.
 • semantically similar
 • exhibit a wide range of similar argument realization patterns
 • different patterns describe different situations
Argument Realization Patterns

1. *She slapped/kicked/punched the box off the table*
 – actor *causes motion of another entity*

2. *She slapped her hand on / kicked her foot against the table*
 – actor *moves body part, contacts another entity*

3. *She slapped him on the back / across the face.*
 – actor *affects person via contact at specific body location*
Road Map

• Argument Structure Constructions
 (Goldberg 1995, 2006)

• Embodied Construction Grammar (ECG)
 (Feldman, Dodge, and Bryant, 2010)

• Analysis:
 – Meaning
 – Verb and A-S Constructions
 – Sentence examples
Argument Structure Constructions

She slapped the block into the box

Verb: *Slap*
<slapper> <slapped thing>

A-S: Cause Motion

meaning:
<causer> <patient/theme> <landmark>

syntax:
Subj DirObj PrepObj
Argument Structure Constructions

She slapped the block into the box

Verb: *Slap*
A-S: Cause Motion

- meaning: *<causer> <patient/theme>*
- syntax: Subj, DirObj, PrepObj

She slapped the block into the box
Argument Structure Constructions

She slapped her hand on the block

Verb: *Slap*
A-S: MoveBodyPart

meaning:

syntax:
She slapped him on the arm

Verb: Slap
A-S: PartPossessor

meaning: <causer> <affectedPerson> <bodyPart>
syntax: Subj DirObj PrepObj
Argument Structure Constructions

Need to identify and represent:

– Semantic commonalities that motivate different patterns of integration of verb, A-S construction, and nominal meanings
– Complex meanings that arise from this integration
– Relevant constraints that enable us to distinguish between different patterns
Embodied Construction Grammar

Construction grammar in which embodied semantics are central

Simulation semantics -- understanding a description of an event involves activation of the same/similar neural structure as is active for other experiences of that event
Language Understanding Model

• **Analysis:**
 – Determination of which constructions in a grammar “best-fit” a given utterance
 – Unification of instantiated constructions produces semantic specification (Semspec)

• **Simulation:**
 – Enactment of the situation specified in the Semspec.
 – May allow understander to draw further inferences.
Embodied Construction Grammar

• ECG formalism enables precise, consistent representations of constructions and meanings

• Supports computational implementations:
 – ECG Workbench -- view, write and test grammars
 – Constructional Analyzer (Bryant 2008) – analyzes sentence examples, produces semantic specifications
Meaning

- Represented using schemas
- Consistent with simulation semantics
- Meanings of verb and A-S constructions are represented using some of the same or related schemas
Motor Control Schema

```
schema Process
roles
protagonist
x-net

```

```
schema MotorControl
subcase of Process
roles
  actor: @animate
effector
effort
routine
constraints
  actor ↔ protagonist
  routine ↔ x-net
```
schema MotorControl
 subcase of Process
 roles
 actor: @animate
 effector
 effort
 routine
 constraints
 actor ↔ protagonist
 routine ↔ x-net

schema ForceTransfer
 evokes Contact as c
 roles
 supplier
 recipient
 forceAmount
 constraints
 supplier ↔ c.entity1
 recipient ↔ c.entity2

schema ForceApplication
 subcase of MotorControl
 evokes ForceTransfer as ft
 roles
 actor
 actedUpon
 effector
 constraints
 actor ↔ ft.supplier
 actedUpon ↔ ft.recipient
 effort ↔ ft.forceAmount

 e.g. squeeze, press
schema ForcefulMotionAction

subcase of ForceApplication

evokes SourcePathGoal as spg

roles

actor

actedUpon

effector

constraints

actedUpon ↔ spg.landmark

effector ↔ spg.trajector

schema SourcePathGoal

subcase of TrajectorLandmark

roles

landmark

trajector

source

path

goal

e.g. slap, kick, punch, etc.
CauseEffectAction

schema CauseEffectAction
 subcase of ComplexProcess
 roles
 causalProcess: ForceApplication
 effectProcess: Process
 causer
 affected
 x-net: @causeEffect
 constraints
 process1.actedUpon ↔ affected

schema ForceApplication
 subcase of MotorControl
 evokes ForceTransfer as ft
 roles
 actor
 actedUpon
 constraints
 actor ↔ ft.supplier
 acted Upon ↔ ft.recipient
 effort ↔ ft.forceAmount

schema Process
 roles
 protagonist
 x-net

Many transitive A-S cxns
Cause Motion

e.g. *throwing*, *dragging*

CauseMotion A-S cxn
A given sentence instantiates many constructions

For *She slapped the block into the box*:
- Lexical constructions: *She, slapped, the, block, into, box*
- PastTense cxn
- Phrasal cxns: *the block, into the box*
- Argument Structure Cxn: CauseEffect
- Clause cxn: Declarative
Verb Constructions

construction SlapPast
subcase of Slap, PastTense
form: WordForm
constraints
self.f.orth ← “slapped”
meaning: ForcefulMotionAction
constraints
effector ← @hand
self.m.x-net ← @slap

schema ForcefulMotionAction
subcase of ForceApplication
roles
actor: @animate
actedUpon
effector
x-net: @forcefulMotionAction

Other similar verbs:
kick effector = foot
punch: effector = fist
tap: force amount = low
whack: force amount = high
Ontology

animate sub of entity
animal sub of animate
person sub of animate

bodyPart sub of entity
foot sub of bodyPart
arm sub of bodyPart
leg sub of bodyPart
CauseMotion A-S cxn

construction ActiveTransCauseMotion2
subcase of ArgumentStructure
constructional
constituents
 v : Verb // inherited
 np: NP
 pp: Path-PP
form
constraints
 v.f before np.f
 np.f before pp.f
meaning: CauseMotion
evokes EventDescriptor as ed
evokes ForcefulMotionAction as fma
constraints
 v.m <-> self.m.causalProcess
 self.m.affected <-> np.m
 self.m.causer <-> ed.profiledParticipant
 self.m.effectProcess.spg <-> pp.m

schema CauseMotion
subcase of ComplexProcess
roles
 causalProcess: ForceApplication
 effectProcess: MotionAlongAPath
 causer
 affected
 x-net: @causeMotion
Cause Motion A-S construction
e.g. *She slapped the block into the box*

<table>
<thead>
<tr>
<th>CAUSE MOTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituents: Verb, NP, PP</td>
</tr>
<tr>
<td>Form: Verb > NP > PP</td>
</tr>
<tr>
<td>A-S cxn meaning: CauseMotion</td>
</tr>
<tr>
<td>Verb meaning: ForcefulMotionAction</td>
</tr>
<tr>
<td>Meaning constraints:</td>
</tr>
<tr>
<td>verb meaning = CauseMotion.causalProcess</td>
</tr>
<tr>
<td>profParticipant = causer <-> actor</td>
</tr>
<tr>
<td>NP meaning = affected <-> actedUpon <-> mover <-> trajector</td>
</tr>
<tr>
<td>PP.np meaning = landmark</td>
</tr>
</tbody>
</table>
She slapped the block into the box
She slapped the block into the box
She slapped the block into the box
She slapped the block into the box.
She slapped the block into the box
EFFECTOR MOTION

Constituents: Verb, NP, PP

Form: Verb > NP > PP

A-S cxn meaning:

ForcefulMotionAction

Verb meaning:

ForcefulMotionAction

Meaning Constraints:

- profParticipant = actor
- NP meaning = effector <-> trajector
- PP.np meaning = actedUpon <-> landmark

She slapped her hand on the block
She slapped her hand on the block.
She slapped her hand on the block
She slapped her hand on the block
She slapped him on the hand

PART POSSESSOR

Constituents: Verb, NP, PP: BodyPartPP (the + BodyPart)

Form: Verb > NP > PP

A-S cxn meaning:

- **CauseEffect**

 evokes: **Possession**

Verb meaning:

- **ForcefulMotionAction**

Meaning Constraints:

- verb meaning = CauseEffect.causalProcess
- profParticipant = causer <-> actor
- NP meaning = affected <-> actedUpon <-> p.posssessor (@person)
- PP.np meaning = <-> p.possessed (@bodyPart)
She slapped him on the hand.
She slapped him on the hand
She slapped him on the hand
<table>
<thead>
<tr>
<th>A-S Cxn</th>
<th>Subject</th>
<th>Direct Object</th>
<th>PP-Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transitive</td>
<td>Causer Actor</td>
<td>Affected ActedUpon</td>
<td>(with Effector)</td>
</tr>
<tr>
<td>CauseMotion</td>
<td>Causer Actor</td>
<td>Affected ActedUpon</td>
<td>Mover Trajector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Landmark</td>
</tr>
<tr>
<td>EffectorMotion</td>
<td>Actor</td>
<td>Effector Trajector</td>
<td>ActedUpon Landmark</td>
</tr>
<tr>
<td>PartPossessor</td>
<td>Causer Actor</td>
<td>Affected ActedUpon</td>
<td>Possessor Possession</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(person)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(body part)</td>
</tr>
</tbody>
</table>
Concluding Remarks

• Important to recognize and represent:
 – Inherent complexity of conceptual structure (and participant roles) utilized by linguistic constructions
 – Importance of inter-related schematic structures for compositional analysis
 – Use of constraints to support best-fit analysis process

• ECG formalism facilitates analysis

SemSpec generated by ECG workbench for analysis of

He cut the bread