Man Meets Machine

Dagmar Divjak
Antti Arppe
Ewa Dąbrowska
Coding options

☐ near synonyms (e.g., walk, march, stride, strut...)

☐ past tense (simple past, past progressive, past perfect, past perfect progressive...)

☐ causatives (cause, make, have, get; lexical causatives)
Distinguishing near-synonyms

- Languages abhor (complete) synonymy: in the vast majority of cases, different options preferred in different contexts
- The criteria governing the selection of the appropriate form are far from obvious
- The most promising approach:
 - extract a large number of examples from a corpus,
 - code for as many possibly relevant features as possible
 - use statistical techniques to develop a model
 - test the model on new set of corpus examples
Problem: How do we evaluate such models?

- How good is e.g. 65%
- It depends:
 - how many options there are to choose from
 - the degree to which the phenomenon is predictable

- Language is never ever random, but it’s also rarely, if ever, fully predictable.
Solution: compare the model to native speakers of the language

Possible outcomes:

- model performs less well than humans
- model performs as well as humans
- model performs better than humans
Russian verbs of trying

- probovat’, silit’sja, pytat’sja, norovit’, starat’sja, poryvat’sja

- can all be translated with the English verb try,

- similar but not identical in meaning
Divjak 2010: 1351 examples, 14 categories, 85 tags

- **Try verb**: aspect, mode, tense
- **Subject**: animate (human being vs animal) vs inanimate (abstract vs concrete, man-made vs non-man made etc.)
- **Infinitive**: aspect, degree of control (low, medium, high), type of action (physical action, perception, communication, intellectual activity, emotions etc.)
- **Optional elements**: adverbs, particles and connectors, negation
- **Clause type**: main vs subclause, declarative vs imperative vs interrogative vs exclamative
Divjak and Arppe 2013

Polytomous logistic regression model which predicts the choice of verb → 51% prediction

Lexeme ~ CLAUSE.MAIN + FINITE.ASPECT_PERFECTIVE + FINITE.MOOD_GERUND + FINITE.MOOD_INDICATIVE + FINITE.TENSE_PAST + INFINITIVE.ASPECT_IMPERFECTIVE + INFINITIVE.CONTROL_HIGH + INFINITIVE.SEM_COMMUNICATION + INFINITIVE.SEM_EXCHANGE + INFINITIVE.SEM_METAPHORICAL_MOTION + INFINITIVE.SEM_METAPHORICAL_PHYSICAL_EXCHANGE + INFINITIVE.SEM_METAPHORICAL_PHYSICAL_OTHER + INFINITIVE.SEM_MOTION + INFINITIVE.SEM_MOTION_OTHER + INFINITIVE.SEM_PHYSICAL + INFINITIVE.SEM_PHYSICAL_OTHER + SENTENCE.DECLARATIVE + SUBJECT.SEM_ANIMATE_HUMAN
Method 1: Humans

- Extracted 60 sentences from the Divjak 2010 dataset representing the whole spectrum of probability distribution.
- TRY verb replaced with a blank.
- Each item consisted of a sentence with the blank for the TRY verb, followed by the six options.
- 4 experimental lists, each with a different random order.
- Participants: 159 adult native speakers of Russian.
- Asked to choose the most appropriate verb for each sentence.
- Completed the experiment online, took about 15 minutes.
Probability distributions
Method 2: Machine

- Excluded the 60 test sentences from the Divjak 2010 dataset
- Trained the model on the remaining sentences
- Used the model to compute the probability of each of the six verbs in all the test sentences
Results

- Chance: 10 (60 items)
- Model: 23
- Participants
 - mean 25.8 (SD 7.5)
 - median 27
 - range 0-38
 - “first past the post”: 35
Why is the “plurality vote” more accurate?

- 159 speakers have more experience
- Different speakers pick up on different regularities?
Agreement between corpus, model and participants
Probability distributions
Near-categorical choice (ex. 495)

<table>
<thead>
<tr>
<th>Verb</th>
<th>Model</th>
<th>Humans</th>
<th>Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>norovit’</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ponyvat’sja</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>probobat’</td>
<td>0.93</td>
<td>0.92</td>
<td>0.70</td>
</tr>
<tr>
<td>pytatsja</td>
<td>0.04</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>silit’sja</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>staratsja</td>
<td>0.02</td>
<td>0.03</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Equiprobable choice (ex. 929)

<table>
<thead>
<tr>
<th>Verb</th>
<th>Model</th>
<th>Humans</th>
<th>Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>norovit’</td>
<td>0.26</td>
<td>0.00</td>
<td>0.080</td>
</tr>
<tr>
<td>poryvat’sja</td>
<td>0.13</td>
<td>0.08</td>
<td>0.195</td>
</tr>
<tr>
<td>probobat’</td>
<td>0.06</td>
<td>0.11</td>
<td>0.195</td>
</tr>
<tr>
<td>pytat’sja</td>
<td>0.15</td>
<td>0.54</td>
<td>0.204</td>
</tr>
<tr>
<td>silit’sja</td>
<td>0.16</td>
<td>0.12</td>
<td>0.177</td>
</tr>
<tr>
<td>starat’sja</td>
<td>0.23</td>
<td>0.16</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Performance by verb

<table>
<thead>
<tr>
<th>Verb</th>
<th>Model</th>
<th>Humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>norovit’</td>
<td>7/12</td>
<td>10/12</td>
</tr>
<tr>
<td>poryvat’sja</td>
<td>2/4</td>
<td>4/4</td>
</tr>
<tr>
<td>probovat’</td>
<td>6/8</td>
<td>4/8</td>
</tr>
<tr>
<td>pytat’sja</td>
<td>1/10</td>
<td>8/10</td>
</tr>
<tr>
<td>silit’</td>
<td>3/6</td>
<td>0/6</td>
</tr>
<tr>
<td>starat’</td>
<td>4/20</td>
<td>11/20</td>
</tr>
</tbody>
</table>
The verbs differ in frequency

<table>
<thead>
<tr>
<th>Verb</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>pytatl’sja (pf+imp)</td>
<td>32550</td>
</tr>
<tr>
<td>staratl’sja (pf+imp)</td>
<td>20011</td>
</tr>
<tr>
<td>probovatl’ (pf+imp)</td>
<td>4023</td>
</tr>
<tr>
<td>norovit’ (imp)</td>
<td>1266</td>
</tr>
<tr>
<td>silit’sja (imp)</td>
<td>492</td>
</tr>
<tr>
<td>poryvat’sja (imp)</td>
<td>241</td>
</tr>
</tbody>
</table>
Model v. participants

- But model and participants don’t necessarily get the same sentences right.
- Participants tended to use the most frequent verb (pytat’sja) as default.
- Model that combines information about context with overall frequency = 27/60
Conclusions

☐ The model performed at about the same level as the average participant, but not as well as participants as a group

☐ Once predictions were adjusted for frequency, it performed better than the average participant, but not as well as participants as a group
Conclusions

- 38% correct can be pretty good – not everything can be predicted
- Possible that different speakers pick up on different predictors – need further research