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1 Mathematical toolbox

1.1 Logarithm

The logarithm is the inverse function of the exponential function. If y = ex, then x = log y, or,

y = elog y. (1.1)

Define logp with different base p, then y = px ⇒ x = logp y. However,

logp y =
log y

log p
, (1.2)

and so there really is only one logarithm: the natural one. For this reason, we will write log x instead of lnx,
the base e implied.

y log y approximately log y actually

pN N log p ·N
e100 100 100
2100 100 log(2) · 100 = 69
10100 100 log(10) · 100 = 230

NA = 6.0222 · 1023 23 55
10NA NA 2.3NA

Crucial logarithm property:

log(ab) = log(a) + log(b) (1.3)

⇒ log(ABN ) = N logB + log(A) = N
(
logB +O(N−1)

)
. (1.4)

We write x = A+O(N−1) if x = A+ cN−1+higher powers of N−1. We then also write x ≃ A if N is large.

1.2 Saddle-point integration

We want to compute

IN =

� ∞

−∞
dx eNf(x) (1.5)

for some function f ∈ C2(R) in the limit N → ∞. Assume f(x) has a maximum at x0,

f ′(x0) = 0, f ′′(x0) < 0, (1.6)

and expand

f(x) = f(x0) +
1

2
f ′′(x0)(x− x0)

2 +O((x− x0)
3). (1.7)

Substitute x′ =
√
Nx and find

IN =

� ∞

−∞
dx eN [f(x0)+

1
2 f

′′(x0)(x−x0)
2+O((x−x0)

3)]

= eNf(x0)
1√
N

� ∞

−∞
dx′ e−

1
2 |f

′′(x0)|(x′−x0

√
N)2+O(N−1/2)

≃ eNf(x0)

√
2π

N |f ′′(x0)|
eO(N−1/2), (1.8)
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where we used � ∞

−∞
dt e−a(t−t0)

2

=

√
π

a
, a > 0. (1.9)

Hence,

log IN = Nf(x0)−
1

2
log

N |f ′′(x0)|
2π

+O(N−1/2). (1.10)

1.3 Stirling’s formula

Stirling’s formula gives an approximation for log(N !) for large values of N . A rough estimate yields

logN ! = log
( N∏
a=1

a
)
=

N∑
a=1

log a (1.11)

≈
� N

1

da log(a) =
(
a log(a)− a

)N
a=1

(1.12)

≃ N log(N)−N = N log(N/e), (1.13)

or, N ! ≈ (Ne )
N .

To obtain a better estimate, we first define Euler’s Γ-function through

Γ(t) =

� ∞

0

dx xt−1e−x. (1.14)

Partial integration: Γ(n+ 1) = n! for integers n ≥ 0, with 0! = 1.

For N large we apply saddle-point integration to show that

N ! = Γ(N + 1) =

� ∞

0

dx xNe−x

=

� ∞

0

dx e−x+N log x

≃ e−N+N logN

� ∞

0

dx e−
1

2N (x−N)2

≃ e−N+N logN

� ∞

−∞
dx e−

1
2N (x−N)2 no contribution from negative x

=
(N
e

)N√
2πN. (1.15)

Often we ignore the
√
N term and use

N ! ≈
(N
e

)N
. (1.16)

1.4 Delta function

Consider a function f ∈ C∞
c (R), that is it is infinitely often differentiable and has compact support (i.e.

f(x) = 0 for some |x| > x0). A functional or distribution F is a linear-in-f map

F : C∞
c (R) → R, (1.17)

f 7→ F [f ]. (1.18)
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Often, F is defined by a kernel K(x) such that

F [f ] =

� ∞

−∞
dx K(x)f(x). (1.19)

Consider then the δ-distribution

δx0
[f ] = f(x0) = evaluate f at x0. (1.20)

The delta function is the kernel of δx0 . We have

f(x0) =

� ∞

−∞
dx δ(x− x0)f(x), (1.21)

with defining properties

(1) δ(x) = 0 for x ̸= 0 (1.22)

(2)

� ∞

−∞
dx δ(x) = 1. (1.23)

One representation of δ(x) is

δ(x) = lim
ε→0

δε(x), (1.24)

where

δε(x) = θ′ε(x) (1.25)

and

θε(x) =
1

e−x/ε + 1
= smeared out step function. (1.26)

We have

lim
ε→0

θε(x) = θ(x) =

{
0 (x < 0)

1 (x > 0)
= Heaviside step function. (1.27)

The value of θ(0) is arbitrary; here we have θε(0) = 1/2 for all ε. Another important representation is

δ(x) =

� ∞

−∞

dk

2π
eikx. (1.28)

For several variables x⃗ = (x1, . . . , xd) we have

δ(d)(x⃗) := δ(x1) · · · δ(xd) ⇒ δ(d)(x⃗) =

�
Rd

ddk

(2π)d
ei⃗k·x⃗. (1.29)

For a function f(x) with zeros at xi we have

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi). (1.30)
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2 Equilibrium ensembles

2.1 Macroscopic systems

Typical systems we consider in statistical mechanics are

� a block of iron,

� a bucket of water,

� a balloon filled with Helium gas.

These systems have two important aspects in common. They

(i) occupy a volume much larger than the extension of their constituent particles (atoms and molecules),

(ii) contain a large number of these constituent particles.

Systems with qualities (i) and (ii) are called macroscopic. This is in contrast to microscopic systems, which
are typically tiny and may contain only a few particles.

In each example system, we could try to describe the physics by solving Hamilton’s equations of motions
for each of the N particles in the system. Complete information then requires to determine the position
qi = (xi, yi, zi) and momenta pi = (vx,i, vy,i, vz,i) for each particle, i = 1, . . . , N , at each instance of time.

� Exercise. Estimate the number of atoms N in a 1 cm3 block of iron, with mass density ρ = 7.87g/cm3

and atomic mass of m0 = 55.845 u. (The atomic mass unit is 1u = 1.66× 10−27 kg.)

� Answer. The block has a volume of V = 1cm3. The total mass of the block is M = ρV . One atom
weighs on average m0, so the total number of atoms is

N =
M

m0
=
ρV

m0
= 8.5× 1022. (2.1)

Solving that many Hamiltonian equations, or specifying the initial conditions, or even storing and sensibly
interpreting the final outcome, is practically impossible. However, it is also absolutely unnecessary:

Macroscopic systems consist of a very, very large number of particles N . Experiments performed on macro-
scopic length and time scales are dominated by the collective behavior of particles, not individual particles.
These systems are, therefore, described by a small set of macroscopic variables.

When discussing macroscopic systems, the concept of a mole may occur. Here is a short summary.

A mole consists of

NA = 6.022× 1023 (2.2)

particles (a dimensionless number!). Compare this to other such conventions: a pair consists of 2 entities,
a quartet consists of 4 entities, a dozen consists of 12 entities. In calculations, I recommend to use the
dimensionless unit

1 mol = NA = 6.022× 1023 (2.3)

to keep track of the number of moles.

For instance, the number of iron atoms determined earlier is

N = 8.5× 1022 = 8.5× 1022
1 mol

NA
= 8.5× 1022

1 mol

6.022× 1023
= 0.14 mol. (2.4)
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The number of moles ν, i.e. the number that satisfies N = ν mol = νNA (ν = 0.14 in the example), is given
by

ν =
N

NA
. (2.5)

The quantity ν is sometimes denoted n in other reference, but not in this lecture! Instead, we will use n to
denote the particle number density

n =
N

V
. (2.6)

For physicists, the introduction of moles is not too useful, and I recommend to always work with N instead
of ν. Chemists might find ν more handy for expressing their results. Indeed, the unwieldy atomic mass unit
1 u = 1.66× 10−27 kg corresponds to a mass per mole given by

1 u = 1 u
NA

1 mol
= 1.66× 10−27 kg

6.022× 1023

1 mol
= 1

g

mol
, (2.7)

which is a decent quantity to work with. The hardly intuitive atomic mass of iron, m0 = 55.845 u, becomes

m0 = m0
NA

1 mol
= 55.845

g

mol
, (2.8)

and so on.

2.2 Classical phase space

A classical Hamiltonian system with r degrees of freedom is described by canonical variables Q = (q1, . . . , qr),
conjugate momenta P = (p1, . . . , pr), and Hamiltonian function H(Q,P ). The space of all allowed values of
Q and P is called phase space Γ ⊂ R2r. The equations of motion read

Q̇i(t) =
∂H

∂Pi
(Q(t), P (t)), (2.9)

Ṗi(t) = − ∂H

∂Qi
(Q(t), P (t)). (2.10)

Given initial conditions (Q(0), P (0)), this defines a trajectory or time-evolution (Q(t), P (t)) in phase space.
Distinguish the place-holder variables (Q,P ) from the trajectory (Q(t), P (t)) defined through the equations
of motion. During time-evolution, energy is conserved,

H(Q(t), P (t)) = H(Q(0), P (0)) = E for all t. (2.11)

Example: System of N particles in three dimensions

� coordinates: Q = (x1, . . . ,xN ) with x = (x, y, z)

� momenta: P = (p1, . . . ,pN ) with p = (px, py, pz)

� typical many-body Hamiltonian:

H(Q,P ) =

N∑
i=1

( p2
i

2m
+ Vex(xi)

)
︸ ︷︷ ︸

kinetic energy and external potential

+
1

2!

N∑
i,j=1

V2(xi,xj)︸ ︷︷ ︸
2-body interactions

+
1

3!

N∑
i,j,k=1

V3(xi,xj ,xk)︸ ︷︷ ︸
3-body interactions

+ . . . (2.12)
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Hamiltonian implicitly depends on volume V and particle number N . Volume through the external
potential Vex(x), which includes the walls of the container. For a cube of volume V = L3,

Vwall(x) =

{
0 for 0 ≤ |xα| ≤ L/2

∞ else
(2.13)

with α = 1, 2, 3.

Microstate of a classical system:

� One point (Q,P ) in phase space

� Defined by coordinates and momenta of all particles

� Realizes a certain energy E = H(Q,P ), volume V , particle number N

Macrostate of a classical system:

� Collection of many points in phase space

� Defined by set of macroscopic variables like (E, V,N)

� Number of microstates that realize a given (E, V,N) is

W (E, V,N) ∝
�
Γ

d3Nxd3Np δ(E −H(Q,P )). (2.14)

These states lie in the ”energy shell” E = H(Q,P ). Since H depends on V and N ,W (E, V,N) depends
on all three macroscopic variables.

Observables and averages. Observables are functions A(Q,P ) on phase space. The instantaneous value at
time t is

A(t) = A(Q(t), P (t)). (2.15)

During a realistic observation time τ , the system changes its microstate many times. We measure the
time-averaged observable

Ā :=
1

τ

� τ

0

dt A(t), (2.16)

with τ large compared to microscopic time scales. Ā can be computed from the trajectory (Q(t), P (t)) by
inserting the initial conditions (Q(0), P (0)) of the experiment. The latter are impossible to know. To predict
Ā, we use a statistical approach, where we compute the most probable outcome when measuring A. For this,
choose any suitable probability distribution ρ(Q,P ) on phase space and compute the ρ-ensemble average

⟨A⟩ρ :=
�
Γ

dΓ A(Q,P ) ρ(Q,P ). (2.17)

Different physical settings require different ρ. We have ρ(Q,P ) ≥ 0 and
�
dΓ ρ(Q,P ) = 1, with integration

measure

dΓ =
d3Nxd3Np

h3NN !
=

1

N !

N∏
i=1

d3xid
3pi

h3
. (2.18)

(h: Planck’s constant.) The prefactor 1/(h3NN !) follows from the semi-classical limit of the quantum
mechanical N -particle system. But, if we did not know quantum mechanics:

� We could define dΓ = (d3Nxd3Np)/a with any prefactor a by rescaling ρ→ ρa such that
�
dΓ ρa = 1.

� Choosing a ∝ (position ·momentum)3N makes dΓ dimensionless. Any choice of reference units is fine.

� Choosing a ∝ N ! ensures that ρ has a nice property, namely it avoids an entropy of mixing of identical
gases.
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2.3 Micro-canonical ensemble (classical)

Consider an isolated classical system with energy E, volume V , and particle number N . What does it mean
for this system to be in equilibrium?1

In these lectures, we define equilibrium as the situation where averages of all observables for fixed (E, V,N)
can be computed from ensemble averages of the micro-canonical probability distribution

ρmc(Q,P ) =
1

W (E, V,N)
δ(E −H(Q,P )). (2.19)

The prefactor follows from normalization,
�
Γ
dΓ ρ(Q,P ) = 1, and is given by

W (E, V,N) =

�
Γ

dΓ δ(E −H(Q,P )). (2.20)

This is the number of microstates in the energy shell defined by E = H(Q,P ). We may call W the micro-
canonical partition function.

Boltzmann: The entropy S, known from thermodynamics, is related to W by

S(E, V,N) = kB logW (E,N, V ). (2.21)

This formula is the link between statistical mechanics and thermodynamics, and one of the most important
results in theoretical physics.

Remember: The natural unit of entropy is kB. Using the first law of thermodynamics, dE = TdS − PdV +
µdN , this implies

1

T
=
( ∂S
∂E

)
V,N

= kB

(∂ logW
∂E

)
V,N

, (2.22)

P

T
=
( ∂S
∂V

)
E,N

= kB

(∂ logW
∂V

)
E,N

, (2.23)

µ

T
= −

( ∂S
∂N

)
E,V

= −kB
(∂ logW

∂N

)
E,V

. (2.24)

Comment. W =
�
dΓ δ(E −H(Q,P )) is not a dimensionless number, because�

dE δ(E −H) = 1 ⇒ δ(E −H) ∝ 1

energy
. (2.25)

This could be fixed by re-defining ρmc(Q,P ) with an appropriate prefactor to make W dimensionless, but
the difference when computing S = kB logW is only a subleading correction.

Example: Ideal gas. The ideal (non-interacting) gas of N particles in a volume V corresponds to

H(Q,P ) =

N∑
i=1

p2
i

2m
, (2.26)

where xi is chosen within a volume V . More accurately, write

H(Q,P ) =

N∑
i=1

( p2
i

2m
+ Vwall(xi)

)
(2.27)

1Think about this. You might find it hard to precisely pin down what the defining characteristic of equilibrium is. One may
define equilibrium as a state where ∂tρ = 0. This may lead you to expect ρ(Q,P ) to be a function of H(Q,P ) only. But then
you would still have to postulate the form of the micro-canonical distribution function ρmc that can compute all observables in
equilibrium.
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with

Vwall(x) =

{
0 for 0 ≤ |xα| ≤ L/2

∞ else
. (2.28)

We then have

W0(E,N, V ) =

�
Γ

dΓ δ(E −H(Q,P ))

=
1

N !

( N∏
i=1

�
R3

d3xi

�
d3pi
h3

)
δ
(
E −

N∑
i=1

p2
i

2m
− Vwall(xi)

)
=

1

N !

( N∏
i=1

�
V

d3xi

�
d3pi
h3

)
δ
(
E −

N∑
i=1

p2
i

2m

)
=

V N

N !h3N

( N∏
i=1

�
d3pi

)
δ
(
E − p2

1 + · · ·+ p2
N

2m

)
=

V N

N !h3N
Ω3N

� ∞

0

dp p3N−1δ
(
E − p2

2m

)
. (2.29)

Here Ωd is the area of the unit sphere in d dimensions, Sd−1 = {x ∈ Rd, |x| = 1}, given by

Ωd =
2πd/2

Γ(d/2)
. (2.30)

(Ω1 = 2,Ω2 = 2π,Ω3 = 4π.) Now apply

δ(f(p)) =
∑
α

1

|f ′(pα)|
δ(p− pα) (2.31)

with f(p) = E − p2/(2m) to find

� ∞

0

dp p3N−1δ
(
E − p2

2m

)
=

� ∞

0

dp p3N−1
( 1

|p/m|
δ(p−

√
2mE) +

1

|p/m|
δ(p+

√
2mE)

)
= m

� ∞

0

dp p3N−2δ(p−
√
2mE)

= m(2mE)
3N
2 −1. (2.32)

Now use Stirling’s formula twice, N ! ≈ (Ne )
N and Γ( 3N2 ) = ( 3N2 − 1)! ≈ ( 3N2 )! ≈ ( 3N2e )

3N
2 , to arrive at

W0(E,N, V ) =
V N

N !h3N
2π

3N
2

Γ( 3N2 )
m(2mE)

3N
2 −1

≈ 1

E

V N

h3N

( e
N

)N( 2e

3N

) 3N
2

(2πmE)
3N
2

=
1

E

1

h3N

(V
N

)N(4πmE
3N

) 3N
2

e
5N
2

=
1

E

(V
N

)N( mE

3πℏ2N

) 3N
2

e
5N
2 . (2.33)

(Subleading terms are treated properly in appendix A.) Boltzmann’s formula then implies

S0(E, V,N) = NkB log
[V
N

( mE

3πℏ2N

)3/2
e5/2

]
− kB log(E) +O(N0). (2.34)
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From

1

T
=
( ∂S
∂E

)
N,V

= NkB
3

2

1

E
, (2.35)

P

T
=
( ∂S
∂V

)
E,N

= NkB
1

V
, (2.36)

we obtain

E0 =
3

2
NkBT, (2.37)

P0V = NkBT. (2.38)

The chemical potential follows from

µ

T
= −

( ∂S
∂N

)
E,V

= −kB log
[V
N

( mE

3πℏ2N

)3/2
e5/2

]
+

5

2
kB

= −kB log
[V
N

( mE

3πℏ2N

)3/2]
. (2.39)

Define the thermal de Broglie wavelength

λT =
( 2πℏ2

mkBT

)1/2
, (2.40)

which is the de Broglie wavelength of a quantum particle with momentum p = ℏk = h/λ and kinetic energy
p2

2m

!
= πkBT . (The factor π is purely conventional but standard.) With E = 3

2NkBT and particle number
density n = N/V we then find

µ0 = kBT log(nλ3T ). (2.41)

The fugacity z = eµ/kBT of the ideal gas is

z0 = nλ3T . (2.42)

We also have

S0 = NkB

[5
2
− log(nλ3T )

]
. (2.43)

The quantity

nλ3T =
( wavelength of particles

mean interparticle distance

)3
(2.44)

is tiny at sufficiently high temperatures and/or moderate densities. We have

µ0 = large and negative (2.45)

and z0 ≪ 1. The number nλ3T is also called phase space density. (Roughly because

W0 ∝
( 1

nλ3T

)N
, (2.46)

thus small phase space density ⇒ large occupied volume in phase space.) Divide phase space in cells of size
∆x ·∆p ≃ h, then small nλ3T means that many cells are either empty or occupied by at most one particle.
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No entropy of mixing of identical gases. Without the prefactor 1/N !, the entropy of two identical ideal gases
with parameters E, V,N each, 2S(E, V,N), would be smaller than the entropy of both gases considered as
a whole with doubled energy, volume, and number particles, S(2E, 2N, 2V ). The property 2S(E, V,N) =
S(2E, 2V, 2N) follows from the fact that only with the 1/N ! does the entropy have the form

S(E, V,N) = N σ
(E
N
,
N

V

)
(2.47)

with some function σ(ε, n). We say S is extensive. Two classical ideal gases are non-identical if, for instance,
their particles have different masses.

2.4 Hilbert space

A quantum system is defined by its Hilbert space H and the Hamiltonian operator Ĥ. A microstate of the
system is given by a vector |ψ⟩ ∈ H. For any two vectors |ψ⟩, |ϕ⟩ ∈ H, a scalar product ⟨ψ, ϕ⟩ = ⟨ψ|ϕ⟩ ∈ C

is defined. We have ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗. States are normalized with

||ψ||2 = ⟨ψ|ψ⟩ = 1. (2.48)

The Hamiltonian is self-adjoint, Ĥ† = Ĥ, i.e. ⟨ψ, Ĥϕ⟩ = ⟨Ĥψ, ϕ⟩. All observables are self-adjoint operators
Â. For self-adjoint operators, the order in the scalar product is unimportant and we write ⟨ψ, Ĥϕ⟩ =:
⟨ψ|Ĥ|ϕ⟩. The time-evolution of the system is described by the Schrödinger equation

iℏ∂t|ψ(t)⟩ = Ĥ|ψ(t)⟩ (2.49)

with initial condition |ψ(t = 0)⟩ = |ψ0⟩.

Example 1 (Many-electron system). Consider N electrons moving in one dimension. The Hamiltonian reads

Ĥ = − ℏ2

2m

N∑
i=1

∂2

∂x2i
+

1

2

N∑
i,j=1

e2

|xi − xj |
(2.50)

and the Schrödinger equation is

iℏ
∂

∂t
ψ(x1, . . . , xN , t) = Ĥψ(x1, . . . , xN , t) (2.51)

with initial condition ψ(x1, . . . , xN , t = 0) = ψ0(x1, . . . , xN ). We have

||ψ||2 =

� ∞

−∞
dx1 · · ·

� ∞

−∞
dxN |ψ(x1, . . . , xN , t)|2 = 1. (2.52)

Solving N -particle Schrödinger equations is very difficult, especially in dimensions larger than one.

Example 2 (Quantum harmonic oscillator). Consider a single particle (N = 1) moving in one dimension
with the Hamiltonian

Ĥ = − ℏ2

2m

∂2

∂x2
+
mω2

2
x2. (2.53)

The Hilbert space consists of all wave functions ψ(x) that are normalizeable,

||ψ||2 =

� ∞

−∞
dx |ψ(x)|2 = 1. (2.54)

The scalar product is

⟨ψ|ϕ⟩ =
� ∞

−∞
dx ψ(x)∗ ϕ(x). (2.55)
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The probability to find the particle at position x at time t is

|ψ(x, t)|2, (2.56)

where ψ(x, t) solves

iℏ
∂ψ

∂t
(x, t) = Ĥψ(x, t) (2.57)

with initial condition ψ(x, 0) = ψ0(x). This equation is solved by

ψ(x, t) =

∞∑
n=0

cnϕn(x)e
−iEnt/ℏ, (2.58)

where ϕn(x) and En solve the eigenvalue problem

Ĥϕn(x) = Enϕn(x) (2.59)

and cn = ⟨ϕn|ψ0⟩. We have

En = ℏω
(
n+

1

2

)
, (2.60)

ϕn(x) =
1√
2nn!

(mω
πℏ

)1/4
Hn

(√mω

ℏ
x
)
e−mωx

2/2ℏ, (2.61)

n = 0, 1, 2, . . . , (2.62)

with Hn the Hermite polynomials. We have

⟨ϕn|ϕn′⟩ = δnn′ (orthonormality). (2.63)

Every wave function ψ(x) can be written as a superposition of the ϕn(x) with suitable coefficients:

ψ(x) =

∞∑
n=0

anϕn(x) (completeness), (2.64)

with an = ⟨ϕn|ψ⟩. We say that {ϕn(x), n = 0, 1, 2 . . . } forms an orthonormal basis of H. We introduce the
bra-ket notation |ψ⟩ and |ϕn⟩ so that

ψ(x) = ⟨x|ψ⟩, ϕn(x) = ⟨x|ϕn⟩. (2.65)

The completeness relation becomes

∞∑
n=0

|ϕn⟩⟨ϕn| = 1, (2.66)

where 1 is the identity operator in H, which ”does nothing”. For every |ψ⟩ ∈ H we have

|ψ⟩ = 1|ψ⟩ =
∞∑
n=0

|ϕn⟩⟨ϕn|ψ⟩ =
∞∑
n=0

an|ϕn⟩ (2.67)

with an = ⟨ϕn|ψ⟩, or

ψ(x) = ⟨x|ψ⟩ =
∞∑
n=0

anϕn(x) (2.68)
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as stated above. The Hamiltonian has the spectral decomposition

Ĥ =

∞∑
n=0

En|ϕn⟩⟨ϕn|, (2.69)

which implies

Ĥ|ϕn⟩ =
∞∑
n′=0

En′ |ϕn′⟩ ⟨ϕn′ |ϕn⟩︸ ︷︷ ︸
δnn′

=

∞∑
n′=0

En′ |ϕn′⟩δnn′ = En|ϕn⟩. (2.70)

Example 3 (Two-level system). Consider a single electron (N = 1) in a magnetic field B with Hamiltonian

Ĥ = µBB

(
1 0
0 −1

)
(2.71)

and µB the Bohr magneton. The Hamiltonian is self-adjoint,

Ĥ† = (ĤT )∗ = Ĥ. (2.72)

The Hilbert space is H = C2, states are two-component vectors

|ψ⟩ =
(
ψ1

ψ2

)
∈ C

2 (2.73)

with

||ψ||2 = ⟨ψ|ψ⟩ = |ψ1|2 + |ψ2|2 = 1. (2.74)

The scalar product is

⟨ψ|ϕ⟩ = ψ∗
1ϕ1 + ψ∗

2ϕ2. (2.75)

The eigenvalues of Ĥ are E± = ±µBB with eigenvectors

|ϕ+⟩ =
(
1
0

)
, |ϕ−⟩ =

(
0
1

)
. (2.76)

We have

⟨ϕ+| = (1, 0)∗ = (1, 0), ⟨ϕ−| = (0, 1)∗ = (0, 1). (2.77)

We have orthonormality,

⟨ϕ+|ϕ+⟩ = ⟨ϕ−|ϕ−⟩ = 1, ⟨ϕ+|ϕ−⟩ = 0, (2.78)

and completeness∑
n=±

|ϕn⟩⟨ϕn| =
(
1
0

)
(1, 0) +

(
0
1

)
(0, 1) =

(
1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
= 1. (2.79)

The spectral decomposition reads

Ĥ =
∑
n=±

En|ϕn⟩⟨ϕn| = µBB

(
1 0
0 0

)
− µBB

(
0 0
0 1

)
= µBB

(
1 0
0 −1

)
. (2.80)
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Traces. Every self-adjoint operators Â has real eigenvalues, eigenvectors |n⟩, Â|n⟩ = An|n⟩, and a spectral
decomposition

Â =
∑
n

An|n⟩⟨n|. (2.81)

The trace of Â is the sum of its eigenvalues,

trÂ =
∑
n

An. (2.82)

This can be written as

trÂ =
∑
n

⟨n| Â|n⟩︸︷︷︸
An|n⟩

=
∑
n

An ⟨n|n⟩︸ ︷︷ ︸
1

=
∑
n

An. (2.83)

One can show that

trÂ =
∑
ν

⟨ϕν |Â|ϕν⟩, (2.84)

where any orthonormal basis {|ϕν⟩} can be used — not just {|n⟩}! The trace is cyclic,

tr(Â · · · B̂Ĉ) = tr(ĈÂ · · · B̂). (2.85)

Functions of operators. For a self-adjoint operator Â and a polynomial function f(x) = cMx
M+. . . c1x+c0 =∑M

i=0 cix
i we have

f(Â) = cM Â
M + . . . c1Â+ c0 =

M∑
i=0

ciÂ
i, (2.86)

i.e. replace x 7→ Â. For more general functions f(x), use the spectral decomposition Â =
∑
n an|n⟩⟨n| to

define

f(Â) :=
∑
n

f(an)|n⟩⟨n|. (2.87)

Importantly, this implies

tr f(Â) =
∑
n

f(an). (2.88)

Example: The solution of the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩, |ψ(0)⟩ = |ψ0⟩, (2.89)

with time-independent Hamiltonian Ĥ is given by

|ψ(t)⟩ = e−itĤ/ℏ|ψ0⟩

=
(∑

n

e−itEn/ℏ|n⟩⟨n|
)
|ψ0⟩

=
∑
n

cne
−itEn/ℏ|n⟩ (2.90)

with cn = ⟨n|ψ0⟩, as stated before.
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2.5 Density matrix

For quantum systems, the density matrix ρ̂ plays a role similar to ρ(Q,P ). It may represent a few states or
a whole ensemble. Its defining properties are:

� Hermitian: ρ̂† = ρ̂

� positive semi-definite: ρ̂ ≥ 0, meaning ⟨ψ|ρ̂|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H

� normalized: tr(ρ̂) = 1

Expectation values of observables Â are computed by

⟨Â⟩ = tr(ρ̂Â). (2.91)

The trace can be computed using any orthonormal basis in H. We have the following analogy to classical
mechanics:

classical system quantum mechanical system

set of configurations/states N -particle phase space Γ N -particle Hilbert space H
microstate point (Q,P ) ∈ Γ vector |ψ⟩ ∈ H
macrostate probability distribution ρ(Q,P ) ≥ 0 density matrix ρ̂ ≥ 0

normalization
�
Γ
ρ(Q,P ) = 1 trρ̂ = 1

observables real functions A(Q,P ) self-adjoint operators Â

expectation values ⟨A⟩ =
�
Γ
A(Q,P )ρ(Q,P ) ⟨Â⟩ = tr(ρ̂Â)

Example 1. Assume the system is in a pure state |ϕ⟩. Then ρ̂ϕ = |ϕ⟩⟨ϕ| and

⟨Â⟩ = tr(ρ̂ϕÂ) =
∑
n

⟨n|ϕ⟩⟨ϕ|Â|n⟩ = ⟨ϕ|Â
(∑

n

|n⟩⟨n|
)

︸ ︷︷ ︸
1

|ϕ⟩ = ⟨ϕ|Â|ϕ⟩. (2.92)

We have ρ̂2ϕ = ρ̂ϕ and tr(ρ̂2ϕ) = 1.

ρ̂ describes a pure state if and only if tr(ρ̂2) = 1. A state with tr(ρ̂2) < 1 is called a mixed state. The general
form of a density matrix is

ρ̂ =
∑
i

pi|ϕi⟩⟨ϕi|, (2.93)

with probability to be in state |ϕi⟩ given by pi,

pi ≥ 0,
∑
i

pi = 1, (2.94)

and |ϕ1⟩, |ϕ2⟩, . . . any (!) set of normalized states. They need not be orthogonal or complete. We have

⟨Â⟩ =
∑
i

pi⟨ϕi|Â|ϕi⟩. (2.95)

Since ρ̂ is Hermitean, there exists an orthonormal basis {|ψn⟩} such that

ρ̂ =
∑
n

ρn|ψn⟩⟨ψn|. (2.96)

We have 1 ≥ ρn ≥ 0,
∑
n ρn = 1, and ρ̂ is a pure state if and only if ρn0

= 1 for one n0, and ρn = 0 for
all n ̸= n0. Indeed, only then tr(ρ̂2) =

∑
n ρ

2
n = 1 compatible with

∑
n ρn = 1 for non-negative numbers

ρn ≥ 0.
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Example 2. Consider a two-level system (qubit). Pure states are a superposition of | ↑⟩ = |ϕ+⟩ =
(
1
0

)
and

| ↓⟩ = |ϕ−⟩ =
(
0
1

)
. The most general pure state is

ρ̂pure =
(
α| ↑⟩+ β| ↓⟩

)(
α∗⟨↑ |+ β∗⟨↓ |

)
= |α|2| ↑⟩⟨↑ |+ αβ∗| ↑⟩⟨↓ |+ α∗β| ↓⟩⟨↑ |+ |β|2| ↓⟩⟨↓ |

=

(
|α|2 αβ∗

α∗β |β|2
)
, (2.97)

with |α|2 + |β|2 = 1. The most general density matrix, however, is

ρ̂ =

(
|α|2 γ
γ∗ |β|2

)
(2.98)

with trρ̂ = |α|2 + |β|2 = 1.

Reduced density matrix. Mixed states generically occur in subsystems. For this, consider a quantum system
that consists of two parts, H1 and H2, so that the total system Hilbert space is H = H1 ⊗ H2. Let {|n⟩}
be an orthonormal basis in H1 and {|α⟩} be an orthonormal basis in H2. For an operator Â1 = Â⊗ 1 that
only acts on H1, we have

⟨Â1⟩ = trH(ρ̂Â1)

=
∑
n

∑
α

⟨n|⟨α|(Â⊗ 1)ρ̂|n⟩|α⟩

=
∑
n,n′

∑
α,α′

⟨n|⟨α|(Â⊗ 1)|n′⟩|α′⟩⟨n′|⟨α′|ρ̂|n⟩|α⟩

=
∑
n,n′

∑
α,α′

⟨n|Â|n′⟩δαα′⟨n′|⟨α′|ρ̂|n⟩|α⟩

=
∑
n,n′

⟨n|Â|n′⟩⟨n′|
(∑

α

⟨α|ρ̂|α⟩
)

︸ ︷︷ ︸
=:ρ̂1

|n⟩

=
∑
n,n′

⟨n|Â|n′⟩⟨n′|ρ̂1|n⟩

=
∑
n

⟨n|Âρ̂1|n⟩

= trH1
(Âρ̂1). (2.99)

Here

ρ̂1 = trH2
(ρ̂) (2.100)

is the reduced density matrix of subsystem 1, where subsystem 2 has been integrated out.

Example 3. Even if ρ̂ is pure, ρ̂1 is typically not. Consider two qubits in the pure state (Bell state)

|ϕ⟩ = 1√
2

(
| ↑1⟩| ↑2⟩+ | ↓1⟩| ↓2⟩

)
. (2.101)
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Then ρ̂ = |ϕ⟩⟨ϕ| is pure. An orthonormal basis of H2 is {|α⟩} = {| ↑2⟩, | ↓2⟩}. Thus

ρ̂1 = trH2(ρ̂)

= ⟨↑2 |ρ̂| ↑2⟩+ ⟨↓2 |ρ̂| ↓2⟩

=
1

2
| ↑1⟩⟨↑1 |+ 1

2
| ↓1⟩⟨↓1 |

=
1

2

(
1 0
0 1

)
. (2.102)

This is obviously a mixed state (tr(ρ̂2) < 1). If ρ̂ ∝ 1, then we say that the state is maximally mixed.

von Neumann equation (exercise). Let Ĥ be the Hamiltonian of the system (possibly time-dependent). Then

dρ̂

dt
(t) = − i

ℏ
[Ĥ, ρ̂]. (2.103)

2.6 Micro-canonical ensemble (quantum-mechanical)

Consider an isolated quantum system with Hamiltonian Ĥ, mean energy E = ⟨Ĥ⟩, volume V , and particle
number N . In equilibrium, the micro-canonical density matrix is given by

ρ̂mc =
1

W (E,N, V )
δ(E − Ĥ), (2.104)

where tr(ρ̂mc) = 1, i.e.

W (E,N, V ) = tr δ(E − Ĥ). (2.105)

We have

ρ̂mc =
1

W (E,N, V )

∑
n

δ(E − En)|n⟩⟨n|, (2.106)

where {|n⟩} is the energy eigenbasis defined by Ĥ, i.e. Ĥ|n⟩ = En|n⟩, and

W (E,N, V ) =
∑
n

δ(E − En). (2.107)

Alternative representation 1. We can also consider the modified density matrix, where the energy shell has
thickness ϵ. Define

ρ̂ϵmc =
1

W
δϵ(E − Ĥ), (2.108)

where

δϵ(x) =

{
1
ϵ − ϵ

2 ≤ x ≤ ϵ
2

0 else
. (2.109)

We then have

ρ̂ϵmc =
∑
n

pn|n⟩⟨n|, (2.110)

where

pn =

{
W−1 |E − En| ≤ ϵ/2

0 else
, (2.111)
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and

W (E,N, V ) =
∑
n

δϵ(E − En) =
1

ϵ

∑
n: |E−En|≤ϵ/2

1. (2.112)

Thus pn ̸= 0 only if the eigenvalue En is in an ϵ-interval around E. The value of W counts the number of
such states. In the limit ϵ→ 0, we have

lim
ϵ→0

ρ̂ϵmc = ρ̂mc. (2.113)

Alternative representation 2. Since

W (E) =
∑
n

δ(E − En) ∝ EaN (2.114)

with some exponent a > 0, we may also consider

W̄ (E) =
∑
n

θ(E − En). (2.115)

We have W (E) = W̄ ′(E) and so W̄ (E) ∝ EaN+1. Hence

logW (E) = log W̄ (E) +O(logE), (2.116)

and all thermodynamic quantities are captured by computing W̄ (E) instead of W (E). Some computations
become easier this way. Note that W̄ (E) is a dimensionless number.

Clearly, both alternative representations 1 and 2 also apply to the classical micro-canonical ensemble.

2.7 Extensive and intensive variables

The concept of extensive and intensive variables is very simple, but extremely important and powerful.

Consider a homogeneous thermodynamic system S with thermodynamic variables T, V,N, P = P (T, V,N).
Now imagine we would duplicate the system and consider the doubled system as a new thermodynamic
system S ′ itself. The volume and particle number of this new system will be twice that of S,

V ′ = 2V, (2.117)

N ′ = 2N. (2.118)

The pressure and temperature, however, remain the same regardless of the spatial extent of the system.
Hence

T ′ = T, (2.119)

P ′ = P. (2.120)

Similarly, the particle number density n = N/V remains the same,

n′ = n. (2.121)

A thermodynamic quantity that doubles during an imagined doubling of a homogeneous system is called
extensive. A quantity that remains invariant under an imagined doubling of a homogeneous system is called
intensive.

Examples of extensive quantities are:
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� energy E

� volume V

� particle number N

� entropy S

� free energy F

They are relevant for questions about the whole system. We often use upper-case letters for extensive
quantities.

Examples of intensive quantities are:

� temperature T

� pressure P

� chemical potential µ

� particle number density n = N/V

� energy density E/V

� entropy density s = S/V

� energy per particle ε = E/N

� entropy per particle σ = S/N

They can be measured locally and are what is mostly relevant for thermodynamics. The ratio of two extensive
quantities is intensive. We often use lower-case letters for such densities.

If the left-hand-side of an equation is an extensive (intensive) quantity, then the right-hand side must be
extensive (intensive) quantity. For instance, for an ideal gas,

PV = NkBT (extensive = extensive) (2.122)

P = nkBT (intensive = intensive). (2.123)

If you are uncomfortable with doubling a given system S, you may alternatively divide the system into
two macroscopic pieces, S = S1 ∪ S2, by inserting an additional wall. Extensive quantities X then satisfy
X = X1 +X2, whereas intensive quantities Y satisfy Y = Y1 = Y2.

The micro-canonical ensemble depends on the extensive variables E, V,N . The entropy S is extensive, so
S/N is intensive. Hence

S(E, V,N) = some function of E, V,N (2.124)

= N × some function of
E

N
and

V

N
, (2.125)

or, in formulas

S(E, V,N) = Nσ
(E
N
,
N

V

)
= Nσ(ε, n). (2.126)
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For instance, for the ideal gas we found

S0(E, V,N) = NkB log
[V
N

( mE

3πℏ2N

)3/2
e5/2

]
, (2.127)

thus

σ0(ε, n) = kB log
[( m

3πℏ2
)3/2

e5/2
ε3/2

n

]
. (2.128)

Of course, we can also write

S(E, V,N) = V σ̄(ε, n) = Eσ̃(ε, n) = Nσ̂(E/V, n) = etc. (2.129)

with some other functions σ̄, σ̃, σ̂. For instance,

σ̄(ε, n) = n σ(ε, n). (2.130)

2.8 Systems in contact

Energy exchange. Consider two classical systems, 1 and 2, with fixed volumes and particle numbers, V1, N1

and V2, N2. The Hamiltonian of the total system is

H = H1 +H2 +H12, (2.131)

where H1,2 ≪ H1, H2, so that we can approximate H ≈ H1 + H2. However, the small perturbation H1,2

shall be such that systems 1 and 2 can exchange energy. The number of states of total energy E = E1 +E2

is then given by

W (E) =

�
d3(N1+N2)xd3(N1+N2)p

h3(N1+N2)N1!N2!
δ(E −H1 −H2)

=

� ∞

0

dE1

� ∞

0

dE2 δ(E − E1 − E2)

�
d3(N1+N2)xd3(N1+N2)p

h3(N1+N2)N1!N2!
δ(E1 −H1)δ(E2 −H2)

=

� ∞

0

dE1

� ∞

0

dE2 δ(E − E1 − E2)

(�
d3N1xd3N1p

h3N1N1!
δ(E1 −H1)

)
︸ ︷︷ ︸

W1(E1,V1,N1)

(�
d3N2xd3N2p

h3N2N2!
δ(E2 −H2)

)
︸ ︷︷ ︸

W2(E2,V2,N2)

=

� ∞

0

dE1

� ∞

0

dE2 δ(E − E1 − E2) W1(E1, V1, N1) W2(E2, V2, N2)

=

� ∞

0

dE1 W1(E1, V1, N1) W2(E − E1, V2, N2). (2.132)

This relation also holds in the quantum case. Both of the terms W1 and W2 have the form

W1(E1, V1, N1) = eS1(E1,V1,N1)/kB = eN1σ1(ε1,n1)/kB . (2.133)

For N1, N2 → ∞, we evaluate the E1-integration with a saddle-point approximation. For this, we determine
the most probable energies Ē1 and Ē2 = E − Ē1, which are such that the exponent is maximal as a function
of E1. Thus

0
!
=

∂

∂E1

(
S1(E1, V1, N1) + S2(E − E1, V2, N2)

)
E1=Ē1

(2.134)

=
∂S1

∂E1
(Ē1, V1, N1)−

∂S2

∂E2
(Ē2, V2, N2) (2.135)

=
1

T1(Ē1, V1, N1)
− 1

T2(Ē2, V2, N2)
. (2.136)
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Consequently, for two systems in thermal equilibrium, the most probable energies are such that the temper-
atures of both systems are equal. As an aside, we also obtain

W (E) ≈W1(Ē1, V1, N1) W2(Ē2, V2, N2). (2.137)

General equilibrium conditions. Consider two systems that can exchange energy, volume, and particles, with
fixed total E, V,N . They may change their relative volumes through a movable wall separating them (see
appendix B). Particle exchange could be through holes in this wall. One finds that

W (E,N, V ) =

N∑
N1=0

1

V

� V

0

dV1

� ∞

0

dE1 W1(E1, V1, N1) W2(E − E1, V − V1, N −N1). (2.138)

The most probable values Ē1,2, V̄1,2, N̄1,2 are found as the maxima of the exponent of the integrand such
that

T1 = T2, (2.139)

P1 = P2, (2.140)

µ1 = µ2. (2.141)

Thermometry. These results show how to measure T, P, µ for any given system: Bring the system in contact
with a reference system (”thermometer”) of known T, P, µ. The thermometer must be sufficiently small for
it not to change T, P, µ of the system to be measured.

2.9 Canonical ensemble

Contact with bath. Consider again two systems 1 and 2 (with volume V1, V2, particle number N1, N2, total
energy E) that can exchange energy. Let systems 2 be so much larger than 1 (E2 ≫ E1, V2 ≫ V1, N2 ≫ N1)
that its temperature T2 = T is unaffected by the contact to system 1. System 2 is called a bath. Through
the energy exchange with the bath, system 1 will also acquire temperature T . The number of states of the
whole system is

W (E) =

� ∞

0

dE1 W1(E1, V1, N1) W2(E − E1, V2, N2) (2.142)

as before. Since

E2

E
≈ 1,

E1

E
≪ 1, (2.143)

we can expand (σ = S2/N2)

logW2(E − E1, V2, N2) =
N2

kB
σ
(E − E1

N2
,
N2

V2

)
(2.144)

=
N2

kB

[
σ
( E
N2

,
N2

V2

)
− E1

N2

∂σ

∂ε2

( E
N2

,
N2

V2

)
+O

(
(E1/E)2

)]
(2.145)

= logW2(E, V2, N2)−
E1

kB

∂S2

∂E2
(E, V2, N2) +O(E1/E) (2.146)

≈ logW2(Ē2, V2, N2)−
E1

kB

∂S2

∂E2
(Ē2, V2, N2) +O(E1/E) (2.147)

= logW2(Ē2, V2, N2)−
E1

kBT
+O(E1/E), (2.148)
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so

W (E) ≈W2(Ē2, V2, N2)

� ∞

0

dE1 W1(E1, V1, N1)e
−E1/kBT︸ ︷︷ ︸

Z(T,V1,N1)

. (2.149)

All the physics of system 1 is determined by the second factor. The only ”memory” of the bath is through
the temperature T .

Canonical ensemble. The canonical ensemble describes systems with fixed temperature T , volume V , and
particle number N . The classical distribution function reads

ρc(Q,P ) =
1

Z(T, V,N)
e−βH(Q,P ) (2.150)

with partition function

Z(T, V,N) =

�
Γ

dΓ e−βH(Q,P ) (2.151)

and

β =
1

kBT
. (2.152)

For quantum mechanical systems we have

ρ̂c =
1

Z(T, V,N)
e−βĤ (2.153)

with tr(ρ̂c) = 1 and

Z(T, V,N) = tr e−βĤ =
∑
n

e−βEn . (2.154)

The canonical ensemble is very convenient for calculations as we do not have to determine the energy shell,
but simply sum over all energies (weighted with the Boltzmann factor e−βE). We have seen that

Z(T, V,N) =

� ∞

0

dE W (E, V,N)e−βE . (2.155)

Some properties. We define the free energy

F (T, V,N) = −kBT logZ(T, V,N). (2.156)

We claim that this is the thermodynamic Helmholtz free energy, namely

F (T, V,N) = Ē − T S̄. (2.157)

(Note that Ē(T, V,N) and S̄(T, V,N) are functions of T, V,N in the canonical ensemble.) To show this, we
use

Z(T, V,N) =

� ∞

0

dE W (E, V,N)e−E/kBT ≈W (Ē, V,N)e−Ē/kBT , (2.158)

thus

F (T, V,N) = −kBT logZ(T, V,N) ≈ −kBT logW (Ē, V,N) + Ē = −T S̄ + Ē. (2.159)
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We have

dF = d(E − TS) (2.160)

= dE − TdS − SdT (2.161)

= (TdS − PdV + µdN)− TdS − SdT (2.162)

= −SdT − PdV + µdN, (2.163)

hence

S = −
(∂F
∂T

)
V,N

, P = −
(∂F
∂V

)
T,N

, µ =
( ∂F
∂N

)
T,V

(2.164)

The energy can be determined easily from

Ē = ⟨Ĥ⟩ = 1

Z

∑
n

Ene
−βEn = −∂ logZ

∂β
. (2.165)

Ideal gas. Consider a classical system of N non-interacting particles with Hamiltonian

HN =
N∑
i=1

H1(pi,xi). (2.166)

(H1 is arbitrary!) We then have

Z(N) =

�
d3Nxd3Np

h3NN !
e−βH =

1

N !
Z(1)N , (2.167)

where

Z(1) =

�
d3xd3p

h3
e−βH1 (2.168)

is the partition function of a single particle. The thermodynamic properties of an ideal gas with H1 = p2

2m
follow from this in a few lines:

Z(1) =
V

(2πℏ)3
4π

� ∞

0

dp p2e−βp
2/2m (2.169)

= V
( m

2πℏ2β

)3/2
=

V

λ3T
. (2.170)

Thus

Z0(T, V,N) =
1

N !

( V
λ3T

)N
≈
( eV

Nλ3T

)N
(2.171)

and

F0(T, V,N) = −NkBT log
( eV

Nλ3T

)
. (2.172)

This leads to (Z ∝ (β−3/2)N )

E0 = −∂ logZ
∂β

=
3N

2β
=

3

2
NkBT, (2.173)

P0 = −
(∂F
∂V

)
T,N

=
NkBT

V
(2.174)

and

µ0 =
( ∂F
∂N

)
T,V

= −kBT log
( eV

Nλ3T

)
+ kBT (2.175)

= kBT log(nλ3T ). (2.176)

24



2.10 Grand-canonical ensemble

Consider a classical system 1 of volume V1 in contact with a large bath 2 of temperature T and chemical
potential µ. System 1 may exchange energy and particles with the bath, which sets the temperature and
chemical potential of system 1 to T and µ in equilibrium. The total energy and number of particles in
systems 1 and 2 is E and N . Again, we have

W (E,N) =

∞∑
N1=0

� ∞

0

dE1 W1(E1, N1, V1) W2(E − E1, V2, N −N1). (2.177)

We have E ≈ E2, N ≈ N2, E1 ≪ E, N1 ≪ N . We expand (with s(E2, n2) = S2/V2, E2 = E2/V2)

logW2(E − E1, V2, N −N1) =
1

kB
S2(E − E1, V2, N −N1) (2.178)

=
V2
kB
s
(E − E1

V2
,
N −N1

V2

)
(2.179)

=
V2
kB

[
s
( E
V2
,
N

V2

)
− E1

V2

∂s

∂E2

( E
V2
,
N

V2

)
− N1

V2

∂s

∂n2

( E
V2
,
N

V2

)]
(2.180)

=
1

kB

[
S2(E, V2, N)− E1

∂S2

∂E2
(E, V2, N)−N1

∂S2

∂N2
(E, V2, N)

]
(2.181)

≈ 1

kB

[
S2(Ē2, V2, N̄2)− E1

∂S2

∂E2
(Ē2, V2, N̄2)−N1

∂S2

∂N2
(Ē2, V2, N̄2)

]
(2.182)

= logW2(Ē2, V2, N̄2)−
E1

kBT
+
µN1

kBT
. (2.183)

Consequently,

W (E,N) ≈W2(Ē2, V2, N̄2)

∞∑
N1=0

� ∞

0

dE1W1(E1, N1, V1)e
−β(E1−µN1)

︸ ︷︷ ︸
ZG(T,V µ)

. (2.184)

Grand-canonical ensemble. We define the grand-canonical partition function

ZG(T, V, µ) =

∞∑
N=0

� ∞

0

dE W (E,N, V )e−β(E−µN) (2.185)

=

∞∑
N=0

Zc(T, V,N)eβµN (2.186)

=

∞∑
N=0

Zc(T, V,N)zN (2.187)

with fugacity z = eβµ. The grand potential is given by

Φ(T, V, µ) = −kBT logZG(T, V µ). (2.188)

One can show that

Φ(T, V, µ) = −P (T, µ)V. (2.189)

We have

S = −
(∂Φ
∂T

)
V,µ
, P = −

( ∂Φ
∂V

)
T,µ

= −Φ

V
, N = −

(∂Φ
∂µ

)
T,V

. (2.190)
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Density matrix. The corresponding grand-canonical density matrix is

ρ̂G =
1

ZG(V, T, µ)
e−β(Ĥ−µN̂), (2.191)

with particle number operator N̂ and

ZG(T, V, µ) = tr′ e−β(Ĥ−µN̂). (2.192)

This expression will be very useful for studying quantum many-body systems. ρ̂G is not an operator in the
N -particle Hilbert space H anymore, but an operator in Fock space F , with the trace tr′ taken in Fock
space. We have

tr′ e−β(Ĥ−µN̂) :=

∞∑
N=0

eβµN tr ρ̂c(N), (2.193)

with tr the conventional trace and ρ̂c(N) the canonical density matrix of the N -particle system (see Chapter
4). A similar obstacle occurs when defining the grand-canonical ensemble in classical phase space, because
we have to replace

�
dΓN →

∑
N

�
dΓN .

Example: Ideal gas. Consider again a classical ideal gas with H =
∑N
i=1 p⃗

2
i /2m. We have

ZG(T, V, µ) =

∞∑
N=0

zNZc(T, V,N) (2.194)

=

∞∑
N=0

zN
1

N !

( V
λ3T

)N
(2.195)

=

∞∑
N=0

1

N !

(zV
λ3T

)N
(2.196)

= ezV/λ
3
T (2.197)

and

Φ(T, V, µ) = −kBT logZG(T, V, µ) (2.198)

= − V

λ3T
kBTe

βµ. (2.199)

Hence

N = −
(∂Φ
∂µ

)
T,V

=
V

λ3T
eβµ, (2.200)

P = −
( ∂Φ
∂V

)
T,µ

=
kBTe

βµ

λ3T
=
NkBT

V
, (2.201)

implying

µ = kBT log(nλ3T ). (2.202)

The other thermodynamic functions follow analogously.
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2.11 Summary of ensembles

ensemble micro-canonical canonical grand-canonical

physical situation isolated energy exchange energy and particle exchange

independent variables E, V,N T, V,N T, V, µ

density matrix 1
W (E,V,N)δ(E − Ĥ) 1

Z(T,V,N)e
−βĤ 1

ZG(T,V,µ)e
−β(Ĥ−µN̂)

normalization W (E, V,N) = trδ(E − Ĥ) Z(T, V,N) = tre−βĤ ZG(T, V, µ) = tr′e−β(Ĥ−µN̂)

thermodynamic potential S(E, V,N) F (T, V,N) Φ(T, V, µ) = −V P (µ, T )
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3 Thermodynamics

3.1 Thermodynamic potentials

Thermodynamics potentials describe macroscopic systems in equilibrium. They depend on a few (for us:
three) macroscopic variables.2 Some examples are

S(E, V,N), E(S, V,N), F (T, V,N), Φ(T, V, µ). (3.1)

Different physical situations require different potentials. Their potentials are related through Legendre trans-
formations, basically using

d(ab) = adb+ bda. (3.2)

In thermodynamics, we often do not specify arguments, but write

X =
∂S

∂E
(E, V,N) =

( ∂S
∂E

)
V,N

. (3.3)

This means that X = ∂S/∂E only if S is written as a function of the variables E, V,N . We could write S
as a function of, say, E,P,N , but then X ̸= ∂S/∂E.

As an example consider the ideal gas entropy

S(E, V,N) = NkB log
[V
N

( mE

3πℏ2N

)3/2
e5/2

]
. (3.4)

We have

1

T
=
( ∂S
∂E

)
V,N

=
3

2

NkB
E

. (3.5)

We have PV = 2
3E and

S(E,P,N) = NkB log
[2
3

E

NP

( mE

3πℏ2N

)3/2
e5/2

]
. (3.6)

This is a valid expression for the entropy, but( ∂S
∂E

)
P,N

=
5

2

NkB
E

̸= 1

T
. (3.7)

• Entropy and energy. Describes isolated systems. First law of thermodynamics:

dE = TdS − PdV + µdN (3.8)

Thus

T =
(∂E
∂S

)
V,N

, P = −
(∂E
∂V

)
S,N

, µ =
( ∂E
∂N

)
S,V

(3.9)

and

1

T
=
( ∂S
∂E

)
V,N

,
P

T
=
( ∂S
∂V

)
E,N

,
µ

T
= −

( ∂S
∂N

)
E,V

. (3.10)

2To give an example of a system with four macroscopic variables: just choose a gas of two species of particles. Then we have
two particle numbers N1, N2, or two chemical potentials µ1, µ2.

28



• Free energy F (T, V,N). Describes systems coupled to a bath of temperature T . We have F = E − TS, so

dF = d(E − TS) (3.11)

= dE − TdS − SdT (3.12)

= −SdT − PdV + µdN, (3.13)

thus

S = −
(∂F
∂T

)
V,N

, P = −
(∂F
∂V

)
T,N

, µ =
( ∂F
∂N

)
T,V

. (3.14)

• Enthalpy H(S, P,N) and free enthalpy G(T, P,N). Describes systems that can expand freely while the
pressure is constant. We have H = E + PV and G = F + PV , so

dH = TdS + V dP + µdN, (3.15)

dG = −SdT + V dP + µdN. (3.16)

Applications: chemistry (P =atmospheric pressure), cooling upon expansion (Joule–Thomson process).

• Grand potential Φ(T, V, µ). Describes system with energy and particle exchange. We have Φ = F − µN ,
so

dΦ = −SdT − PdV −Ndµ (3.17)

and

S = −
(∂Φ
∂T

)
V,µ
, P = −

( ∂Φ
∂V

)
T,µ

, N = −
(∂Φ
∂µ

)
T,V

. (3.18)

• Intensive potential. There is no potential K(T, P, µ) that depends on the intensive variables T, P, V only.
It would be impossible to describe any extensive observables such as Ē, S̄, V̄ , N̄ with this potential. Indeed,
if we constructed it using K(T, P, µ) = Φ(T, V, µ) + PV , then we would find that K = 0 (Gibbs–Duhem
relation).

3.2 Legendre transformation

Consider a real interval U = [x1, x2] ⊂ R. A function

f : U → R, (3.19)

x 7→ f(x) (3.20)

is called convex if, for all choices of xa, xb ∈ U , the line connecting f(xa) and f(xb) is above f(x) for all
x ∈ [xa, xb]. Similarly, a function f(x) is concave, if the line connecting f(xa) and f(xa) is below f(x) for
all x ∈ [xa, xb]. We have

f is convex ⇔ −f is concave. (3.21)

A typical convex function is f(x) = x2 for x ∈ R. A typical concave function is f(x) = log(x) for x > 0. In
most cases, a function f(x) will be convex if f ′′(x) ≥ 0.

Idea. Pick a convex function f(x) on R such as f(x) = x2. As we go from x = −∞ to x = ∞, the slope
f ′(x) (tangent to the curve) takes all values from −∞ to ∞. We may then want to parametrize the function
f(x) by y = f ′(x) instead of x. This defines a new function F̄ (y) and a mapping

L̄ : f(x) 7→ F̄ (y) = (L̄f)(y). (3.22)
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In our example, y = 2x and so F̄ (y) = 1
4y

2. Compare this, for instance, to the Fourier transformation

F : f(x) 7→ f̃(k) = (Ff)(k) =
� ∞

−∞
dx e−ikxf(x). (3.23)

Legendre transformation. The Legendre transform L is a slight modification of L̄ with the following additional
features:

� F (y) = (Lf)(y) is again convex.

� L has an inverse, which is again L, i.e. applying L twice gives the original function (L2 = 1).

We have

F (y) = (Lf)(y) = max
x∈U

(
xy − f(x)

)
. (3.24)

If f(x) is continuously differentiable, then the maximum is attained at x0 satisfying

0
!
=

∂

∂x

(
xy − f(x)

)
x=x0(y)

= y − f ′(x0(y)). (3.25)

Hence an equivalent definition is

F (y) = x0(y)y − f(x0(y)) with f
′(x0(y)) = y. (3.26)

For short, we can write

F (y) = xy − f(x) with x such that y =
∂f

∂x
. (3.27)

This already looks like Hamiltonian mechanics or thermodynamics:

H(p) = pv − L(v) with v such that p =
∂L

∂v
, (3.28)

−F (T ) = TS − E(S) with S such that T =
∂E

∂S
. (3.29)

We have

F ′(y) = x′0(y) y + x0(y)− f ′(x0(y))︸ ︷︷ ︸
y

x′0(y) = x0(y), (3.30)

which is just the usual thermodynamics trick

dF = d(xy − f) = ydx+ xdy − df (3.31)

= ydx+ xdy − f ′(x)dx︸ ︷︷ ︸
ydx

= xdy. (3.32)

Thus,

y =
∂f

∂x
⇔ x =

∂F

∂y
. (3.33)

Example 1. Consider again f(x) = x2. We have

(Lf)(y) = F (y) = x0(y)y − f(x0(y)) (3.34)
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with x0(y) such that

y
!
= f ′(x0(y)) = 2x0(y), (3.35)

i.e. x0(y) =
y
2 and

(Lf)(y) = F (y) =
y

2
y −

(y
2

)2
=
y2

4
. (3.36)

(Incidentally this coincides with F̄ (y).) Apply L another time to obtain

(L2f)(x) = y0(x)x− F (y0(x)) (3.37)

with y0(x) such that

x
!
= F ′(y0(x)) =

y0(x)

2
. (3.38)

Hence y0(x) = 2x and

(L2f)(x) = 2x2 − (2x)2

4
= x2 = f(x). (3.39)

Example 2. Consider the convex function

f(x) =


x2 x < 0

x x ∈ [0, 1]

x2 x > 1

. (3.40)

The functions f(x) and (Lf)(y) = F (y) look like this:

-2 -1 0 1 2

0

1

2

3

4

x

f(
x)

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

y

F
(y
)

Figure 3.1: Functions f(x) and F (y) (solid lines). For comparison we show x2 and y2/4 (dashed lines).

The concept of convexity carries over to functions of several variables, f(x1, . . . , xn). In most cases, a function
will be convex over the set of values (x1, . . . , xn) if the Hessian matrix (i.e. Jacobian of second-derivatives)
of f is a positive semidefinite matrix.

3.3 Stability of matter

Legendre transformations appear in thermodynamics, because S(E, V,N) is concave over the set of val-
ues (E, V,N), that is −S(E, V,N) is convex. Thus we can apply Legendre transformations in any of the
arguments of S.
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Fix N for simplicity. Then −S(E, V,N) is convex in E and V , because

Hess(−S) = −

(
( ∂

2S
∂E2 )V,N ( ∂2S

∂E∂V )N
( ∂2S
∂E∂V )N ( ∂

2S
∂V 2 )E,N

)
(3.41)

is positive semidefinite, which is equivalent to( ∂2S
∂E2

)
V,N

≤ 0, (3.42)

det(Hess(S)) = det(Hess(−S)) =
( ∂2S
∂E2

)
V,N

( ∂2S
∂V 2

)
E,N

−
( ∂2S

∂E∂V

)2
N

≥ 0. (3.43)

To prove this, note that ( ∂2S
∂E2

)
V,N

=
(∂ 1

T

∂E

)
V,N

= − 1

T 2

(∂T
∂E

)
V,N

= − 1

T 2CV
(3.44)

with heat capacity at constant volume

CV =
(∂E
∂T

)
V,N

. (3.45)

Furthermore, one can show that

det(Hess(S)) =
1

T 3V κTCV
(3.46)

with isothermal compressibility

κT = − 1

V

(∂V
∂P

)
T,N

. (3.47)

The quantities CV and κT are examples of susceptibilities. They relate the response of an extensive quantity
to changing an intensive one.

Thermodynamic stability. To show that S is concave in E and V we need to show that

CV ≥ 0, (3.48)

κT ≥ 0. (3.49)

These two inequalities are conditions for the stability of matter in thermodynamic equilibrium and, therefore,
generally satisfied. To see this, consider a subsystem 1 inside a system 2 of temperature T and pressure P .
Mechanical stability requires κT ≥ 0. Indeed,

Assume κT < 0 in subsystem 1, whereas κT ≥ 0 as usual in system 2.

⇒ (∂V∂P )T > 0 in subsystem 1.

Assume subsystem 1 spontaneously increases its volume, which increases its pressure.

⇒ System 2 compresses its volume, thereby increasing its pressure.

⇒ This pressure acts on subsystem 1 and lets it expand further.

⇒ A chain reaction is set off, in which subsystem 1 increases its volume indefinitely.

⇒ System 1 is unstable.
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Similarly, one finds that thermal stability requires CV ≥ 0.

Fluctuations. Susceptibilities are intimately related to fluctuations. We have

Ē = ⟨Ĥ⟩ = 1

Zc

∑
n

Ene
−βEn = − 1

Zc

∂Zc

∂β
, (3.50)

and, therefore,

CV =
(∂Ē
∂T

)
V,N

=
−1

kBT 2

(∂Ē
∂β

)
V,N

(3.51)

=
−1

kBT 2

∂

∂β

(
1

Zc

∑
n

Ene
−βEn

)
(3.52)

=
−1

kBT 2

(
−∂Zc/∂β

Z2
c

∑
n

Ene
−βEn − 1

Zc

∑
n

E2
ne

−βEn

)
(3.53)

=
−1

kBT 2

(
⟨Ĥ⟩2 − ⟨Ĥ2⟩

)
=

(∆E)2

kBT 2
≥ 0. (3.54)

Similarly,

N̄ = ⟨N̂⟩ = 1

ZG

∑
n

Nne
−β(En−µNn) = kBT

1

ZG

∂ZG

∂µ
, (3.55)

and (∂N̄
∂µ

)
T,V

=
1

kBT

[
⟨N̂2⟩ − ⟨N̂⟩2

]
=

(∆N)2

kBT
. (3.56)

We then find

κT =
V

N2

(∂N̄
∂µ

)
T,V

=
V

N2kBT
(∆N)2 ≥ 0, (3.57)

where we used a few thermodynamic relations. These results prove CV ≥ 0 and κT ≥ 0 from statistical
mechanics. They imply another important fact: Since CV ∼ N is extensive and κT ∼ N0 is intensive, we
find

∆E

Ē
∼ 1√

N
, (3.58)

∆N

N̄
∼ N√

V N
∼ 1√

N
. (3.59)

Consequently, for very large systems (N ≈ 1023) the relative fluctuations about the most probable values Ē
and N̄ are tiny.

3.4 Thermodynamic relations

Gibbs–Duhem relation. Recall that entropy is extensive,

S(E, V,N) = Nσ
(E
N
,
N

V

)
, (3.60)

so

S(λE, λV, λN) = λS(E, V,N) (3.61)
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for any λ > 0. A function h(x⃗) satisfying

(∗) h(λx⃗) = λkh(x⃗) (3.62)

is called homogeneous of degree k. For such functions we have

x⃗ · ∂h
∂x⃗

(x⃗) = kh(x⃗). (3.63)

(Proof: Differentiate (∗) with respect to λ and set λ = 1.) For the entropy this implies

E
∂S

∂E
+ V

∂S

∂V
+N

∂S

∂N
= S, (3.64)

or

E = TS − PV + µN. (Gibbs–Duhem relation) (3.65)

This equation is very useful in practice, mostly because it is not in differential form. Taking the differential
though, we obtain

dE = TdS − PdV + µdN︸ ︷︷ ︸
dE

+SdT − V dP +Ndµ, (3.66)

so

dP =
S

V
dT +

N

V
dµ. (3.67)

This implies that the intensive variables (P, T, µ) are not independent. No thermodynamic potential can
depend on T, P, µ only. (We have seen that earlier.) We also verify

Φ(T, V, µ) = F − µN = −P (T, µ)V, (3.68)

as claimed earlier.

Maxwell relations. Consider a function Y (x1, x2) with differential

dY = a1(x1, x2)dx1 + a2(x1, x2)dx2. (3.69)

Thus,

a1 =
∂Y

∂x1
(x1, x2) =

( ∂Y
∂x1

)
x2

, a2 =
∂Y

∂x2
(x1, x2) =

( ∂Y
∂x2

)
x1

. (3.70)

Since

(∗∗) ∂2Y

∂x1∂x2
(x1, x2) =

∂2Y

∂x2∂x1
(x1, x2), (3.71)

we have (∂a1
∂x2

)
x1

=
(∂a2
∂x1

)
x2

. (3.72)

Applied to thermodynamic potentials, this implies so-called Maxwell relations, like (keeping N fixed)( ∂T
∂V

)
S,N

= −
(∂P
∂S

)
V,N

,
( ∂S
∂V

)
T,N

=
(∂P
∂T

)
V,N

. (3.73)
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Condition (∗∗) is mathematically equivalent to saying
�

dY = 0, (3.74)

i.e. Y is a state variable. Going from a state with Y1 to a state with Y2 does not depend on the path.
Equation (∗∗) is also called integrability condition.

Jacobian determinant. The Jacobian determinant is very useful to switch the arguments in thermodynamic
derivatives. For two functions f(x, y), g(x, y) define the Jacobian determinant

∂(f, g)

∂(x, y)
:=

∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
. (3.75)

We have

∂(f, y)

∂(x, y)
=
(∂f
∂x

)
y

(3.76)

and

∂(f, g)

∂(x, y)
= −∂(g, f)

∂(x, y)
. (3.77)

Chain rule:

∂(f, g)

∂(x, y)
=
∂(f, g)

∂(u, v)

∂(u, v)

∂(x, y)
. (3.78)

Set x = f , y = g to obtain

1 =
∂(f, g)

∂(u, v)

∂(u, v)

∂(f, g)
. (3.79)

Further set g = v to find (∂f
∂u

)
v
=

1

(∂u∂f )v
. (3.80)

Finally, (∂f
∂u

)
v
=
∂(f, v)

∂(u, v)
=
∂(f, v)

∂(f, u)

∂(f, u)

∂(u, v)
= −

(∂f∂v )u

(∂u∂v )f
. (3.81)

Example 1. Define the heat capacity at constant volume and pressure,

CV = T
(∂S
∂T

)
V,N

, (3.82)

CP = T
(∂S
∂T

)
P,N

, (3.83)

and adiabatic and isothermal compressibility,

κS = − 1

V

(∂V
∂P

)
S,N

, (3.84)

κT = − 1

V

(∂V
∂P

)
T,N

. (3.85)
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Keeping N fixed,

∂(P, S)

∂(V, T )
=
∂(P, S)

∂(V, S)

∂(V, S)

∂(V, T )
=
(∂P
∂V

)
S,N

(∂S
∂T

)
V,N

= − 1

V κS

CV
T
, (3.86)

∂(P, S)

∂(V, T )
=
∂(P, S)

∂(P, T )

∂(P, T )

∂(V, T )
=
(∂S
∂T

)
P,N

(∂P
∂V

)
T,N

= −CP
T

1

V κT
, (3.87)

so that

CV
CP

=
κS
κT

. (3.88)

Example 2. Consider again

det(Hess(S)) =
( ∂2S
∂E2

)
V,N

( ∂2S
∂V 2

)
E,N

−
( ∂2S

∂E∂V

)2
N

(3.89)

from the previous section. Keeping N fixed, we have

det(Hess(S)) =
∂( ∂S∂E ,

∂S
∂V )

∂(E, V )
=
∂( 1

T ,
P
T )

∂(E, V )
(3.90)

=
∂( 1

T ,
P
T )

∂(T, V )

∂(T, V )

∂(E, V )
= − 1

T 3

∂(T, P )

∂(T, V )

∂(T, V )

∂(E, V )
(3.91)

= − 1

T 3

(∂P
∂V

)
T,N

(∂T
∂E

)
V,N

=
1

T 3V κTCV
. (3.92)

3.5 Equation of state

Thermodynamic relations connect macroscopic quantities and are generally applicable, for interacting and
noninteracting, classical and quantum systems. The specific system under consideration enters through the
equation of state. Once the equation of state is specified, the set of thermodynamic relations is closed.

The equation of state needs to have the right variables so that it is possible to compute all remaining
thermodynamic quantities. Typical examples are the free energy density

f(T, n) =
F (T, V,N)

V
= −kBT

V
logZc(T, V,N), (3.93)

or pressure

P (T, µ) = −Φ(T, V, µ)

V
=
kBT

V
logZG(T, V, µ) (3.94)

Computing the equation of state is equivalent to computing the partition function (which is generically
difficult). The equation of state for many substances is measured experimentally and tabulated.

Example. Classical ideal gas. The equation of state reads

P (T, µ) =
kBT

λ3T
eβµ. (3.95)

Derivatives follow from

dP = sdT + ndµ. (3.96)
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with entropy density s = S/V and particle number density n = N/V . We have

n(T, µ) =
(∂P
∂µ

)
T
=

1

λ3T
eβµ (3.97)

and

s(T, µ) =
(∂P
∂T

)
µ
=
kB
λ3T

eβµ
(5
2
− µ

kBT

)
= nkB

(5
2
− log nλ3T

)
. (3.98)

Importantly: While it is true that

P = nkBT (3.99)

for the ideal gas, the equation of state is not of the form P (T, n), because such a function would not allow
to uniquely compute the entropy density s or chemical potential µ. Indeed, determine F (T, V,N) from

N

V
kBT = P

!
= −

(∂F
∂V

)
T,N

, (3.100)

then

F (T, V,N) = −NkBT log V + ϕ(T,N) (3.101)

= −NkBT log V +NkBT logN +NkBTφ(T ) (3.102)

= NkBT
[
log
(N
V

)
+ φ(T )

]
(3.103)

with some unspecified function φ(T ). Thus

S = −
(∂F
∂T

)
V,N

= −NkB
[
log
(N
V

)
+ φ(T )

]
−NkBTφ

′(T ), (3.104)

µ =
( ∂F
∂N

)
T,V

= kBT
[
log
(N
V

)
+ φ(T ) + 1

]
. (3.105)

Since φ(T ) is not determined by P (T, n), the latter is not a suitable equation of state. Instead, for variables
(T, n), the equation of state is given by the free energy density

f(T, n) = nkBT log
(nλ3T

e

)
, (3.106)

and we find

φ(T ) = log
(λ3T
e

)
. (3.107)

Comment. There is only one equation of state for each system, because there is only one partition function
(up to ensemble equivalence). The need to distinguish ”thermal equation of state”, ”caloric equation of
state”, etc. results from a poor choice of variables.

3.6 Virial expansion

The virial expansion allows to incorporate weak two-body interactions in a perturbative expansion. It is a
high-temperature expansion.

Consider the classical N -particle Hamiltonian

H(Q,P ) =

N∑
i=1

p2
i

2m
+

1

2

N∑
i,j=1

W (xi − xj). (3.108)
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Assume eβµ ≪ 1. The grand-canonical partition function is

ZG(T, V, µ) =

∞∑
N=0

ZN (T, V )eβµN = 1 + Z1(T, V )eβµ + Z2(T, V )e2βµ +O(Z3z
3) (3.109)

with N -particle canonical partition function ZN . The equation of state reads

P (T, µ) =
kBT

V
log
[
1 + Z1(T, V )eβµ + Z2(T, V )e2βµ +O(Z3z

3)
]

(3.110)

=
kBT

V

[
Z1(T, V )eβµ +

(
Z2(T, V )− 1

2
Z1(T, V )2

)
e2βµ + . . .

]
. (3.111)

We have

Z1(T, V ) =
V

λ3T
, (3.112)

Z2(T, V ) =
1

2!λ6T

�
d3x1d

3x2 e
−βW (x1−x2) (3.113)

=
V

2!λ6T

�
d3x e−βW (x), (3.114)

Z2(T, V )− 1

2
Z1(T, V )2 =

V

2λ6T

�
d3x
(
e−βW (x) − 1

)
=: − V

λ6T
b(T ). (3.115)

We call

b(T ) =
1

2

�
d3x
(
1− e−βW (x)

)
(3.116)

the second virial coefficient. Note that b(T ) has the dimension of a volume. We have

P (T, µ) =
kBT

λ3T
eβµ
(
1− b(T )

λ3T
eβµ + . . .

)
. (3.117)

Example 1. For a repulsive short-range potential

W (x) =

{
∞ |x| ≤ r0

0 else
(3.118)

we have

b(T ) =
1

2

�
d3x
(
1− e−W (x)

)
(3.119)

=
4π

2

� r0

0

dr r2 (3.120)

=
1

2

4πr30
3

. (3.121)

Because of the repulsion, each particle has an effective volume that cannot be penetrated by other particles.
This is approximately resembled by b(T ) here.

Example 2. A typical effective interaction potential between two gas molecules is

W (r) =

{
∞ r ≤ r0

−C6

r6 r > r0
, (3.122)
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with the attraction coming from dipole-dipole interactions. The virial coefficient is

b(T ) =
4π

2

� ∞

0

dr r2
(
1− e−βW (r)

)
(3.123)

=
4π

2

� r0

0

dr r2 +
4π

2

� ∞

r0

dr r2
(
1− e−βW (r)

)
(3.124)

≃ 1

2

4πr30
3

− 1

kBT

4π

2

� ∞

r0

dr r2
C6

r6
(3.125)

=: b0 −
a0
kBT

, (3.126)

Iterative solution. The virial equation of state P (T, µ) is a series expansion in powers of eβµ ≪ 1. It can be
written as a series expansion in nλ3T ≪ 1. For this, start from

n =
(∂P
∂µ

)
T

(3.127)

=
eβµ

λ3T

(
1− b

λ3T
eβµ
)
+
kBT

λ3T
eβµ
( −beβµ

kBTλ3T

)
+ . . . (3.128)

=
eβµ

λ3T
− 2b

λ6T
e2βµ + . . . (3.129)

We iteratively solve this for µ(T, n) through the ansatz

eβµ = nλ3T + c(nλ3T )
2 + . . . (3.130)

with some coefficient c. We have

n
!
=
nλ3T + c(nλ3T )

2

λ3T
− 2b

λ6T

(
nλ3T + c(nλ3T )

2
)2

+ . . . (3.131)

= n+ cn2λ3T − 2b

λ6T
(nλ3T )

2 + . . . (3.132)

= n+ n2(cλ3T − 2b). (3.133)

Thus, c = 2b/λ3T and

P =
kBT

λ3T
eβµ
[
1− b(T )

λ3T
eβµ + . . .

]
(3.134)

=
kBT

λ3T

(
nλ3T +

2b(T )

λ3T
(nλ3T )

2 + . . .
)[

1− b(T )

λ3T
nλ3T + . . .

]
(3.135)

= nkBT + 2b(T )kBTn
2 − b(T )kBTn

2 + . . . (3.136)

= nkBT
[
1 + b(T )n+ . . .

]
. (3.137)

Real gases. The van-der-Waals equation of state is given by

PvdW =
nkBT

1− b0n
− a0n

2. (3.138)
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It is a good approximation for real gases. The coefficients a0 and b0 represent long-range attraction (reduced
pressure for higher densities) and short-range repulsion (increased pressure for higher densities) and depend
on the substance. For low densities we have

P = nkBT

(
1 +

(
b0 −

a0
kBT

n
)
+ . . .

)
, (3.139)

which agrees with the virial coefficient from example 2.
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4 Quantum many-particle systems

4.1 Composite quantum systems

Example 1. Consider a system consisting of two particles. Particle 1 is described by a wave function ψ1(x1)
from a Hilbert space H1 = L2(R3). Particle 2 is described by a wave function ψ2(x2) from a Hilbert space
H2 = L2(R3). The probability to find particle 1 at position x1 and particle 2 at position x2 is

|ψ1(x1)|2 × |ψ2(x2)|2 = |ψ1(x1)ψ2(x2)|2. (4.1)

The wave function of the composite system of both particles 1 and 2 is thus simply the product

Ψ(x1,x2) = ψ1(x1)ψ2(x2). (4.2)

The composite Hilbert space is H = L2(R6) with scalar product

⟨Ψ, Ψ̃⟩ :=
�

d3x1

�
d3x2 Ψ∗(x1,x2)Ψ̃(x1,x2), (4.3)

and ||Ψ|| =
√
⟨Ψ,Ψ⟩. If {ψn(x1)} is an orthonormal basis of H1 and {ϕm(x2)} is an orthonormal basis of

H2, then

Ψnm(x1,x2) = ψn(x1)ϕm(x2) (4.4)

is an orthonormal basis of H. Indeed,

⟨Ψnm,Ψn′m′⟩ =
�

d3x1

�
d3x2 Ψ∗

nm(x1,x2)Ψn′m′(x1,x2) (4.5)

(4.6)

=
(�

d3x1ψ
∗
n(x1)ψn′(x1)

)
︸ ︷︷ ︸

δnn′

(�
d3x2ϕ

∗
m(x2)ϕm′(x2)

)
︸ ︷︷ ︸

δmm′

(4.7)

= δnn′δmm′ . (4.8)

But what if the second system is not described by a wave function ψ2(x2), but rather a qubit

|ψ2⟩ = a| ↑⟩+ b| ↓⟩ (4.9)

with Hilbert space H2 = C2? How do we take the product then? We need the tensor product.

Composite Hilbert space. Consider two quantum systems described by Hilbert spacesH1 andH2, respectively.
The Hilbert space of the composite system is given by

H = H1 ⊗H2, (4.10)

where ⊗ is the tensor product. (This is an axiom of quantum mechanics.) We need to define ⊗: If |ψ⟩ ∈ H1

and |ϕ⟩ ∈ H2, then |ψ⟩ ⊗ |ϕ⟩ ∈ H. If |ψn⟩ is an orthonormal basis of H1 and |ϕm⟩ is an orthonormal basis
of H2, then

|Ψnm⟩ = |ψn⟩ ⊗ |ϕm⟩ (4.11)
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is an orthonormal basis of H, i.e. every state |Ψ⟩ ∈ H can be written as

|Ψ⟩ =
∑
n,m

cnm|Ψnm⟩. (4.12)

The scalar product of two states |Ψ⟩ = |a⟩ ⊗ |x⟩ and |Ψ̃⟩ = |b⟩ ⊗ |y⟩, with

⟨ψ| := ⟨a| ⊗ ⟨x| (4.13)

is defined as

⟨Ψ|Ψ̃⟩ =
(
⟨a| ⊗ ⟨x|

)(
|b⟩ ⊗ |y⟩

)
:= ⟨a|b⟩ ⟨x|y⟩. (4.14)

Importantly, ⟨a|b⟩ is the scalar product in H1, and ⟨x|y⟩ is the scalar product in H2. Thus ⟨Ψ|Ψ̃⟩ is always
well-defined, even if H1 and H2 are entirely different Hilbert spaces. The basis |Ψnm⟩ is orthonnormal,

⟨Ψnm|Ψn′m′⟩ = ⟨ψn|ψn′⟩⟨ϕm|ϕm′⟩ = δnn′δmm′ . (4.15)

If Â is an operator acting on H1 and B̂ is an operator acting in H2, then Â⊗ B̂ is an operator acting on H
via (

Â⊗ B̂
)
|Ψnm⟩ = (Â|ψn⟩)⊗ (B̂|ϕm⟩). (4.16)

This state is again in H. Indeed, write Â =
∑
n′n′′ An′n′′ |ψn′⟩⟨ψn′′ | and B̂ =

∑
m′m′′ Bm′m′′ |ϕm′⟩⟨ϕm′′ |,

then (
Â⊗ B̂

)
|Ψnm⟩ =

(∑
n′n′′

An′n′′ |ψn′⟩⟨ψn′′ |ψn⟩
)
⊗
( ∑
m′m′′

Bm′m′′ |ϕm′⟩⟨ϕm′′ |ϕm⟩
)

(4.17)

=
∑
n′,m′

An′nBm′m|ψn′⟩ ⊗ |ϕm′⟩ (4.18)

=
∑
n′,m′

An′nBm′m|Ψn′m′⟩. (4.19)

An operator only acting on H1 or H2 is written as Â1 ⊗ 12 or 11 ⊗ B̂2. We often write Â1 + B̂2 in H when
we actually mean

Â1 ⊗ 12 + 11 ⊗ B̂2. (4.20)

If Â and B̂ are N ×N and M ×M matrices, then Â⊗ B̂ is an NM ×NM matrix. The tensor product is
then also sometimes called Kronecker product. For example, we have

(
1 0
0 −1

)
⊗B =

(
B 0
0 −B

)
, σx ⊗ σy =

(
0 1
1 0

)
⊗
(
0 −i
i 0

)
=


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 . (4.21)

At last, the states |Ψnm⟩ are complete because∑
n,m

|Ψnm⟩⟨Ψnm| =
(∑

n

|ψn⟩⟨ψn|
)

︸ ︷︷ ︸
11

⊗
(∑

n

|ϕm⟩⟨ϕm|
)

︸ ︷︷ ︸
12

= 11 ⊗ 12 = 1H. (4.22)
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Example 2. Electron. Consider an electron, which has a spatial degree of freedom, described by H1 = L2(R3),
and a spin degree of freedom, described by H2 = C2. The electron as a whole is a composite object with
Hilbert space H = H1 ⊗H2. A basis of H1 is {|x⟩} and a basis of H2 is {|eσ⟩} with

|e1⟩ = | ↑⟩ =
(
1
0

)
, |e2⟩ = | ↓⟩ =

(
0
1

)
. (4.23)

If

|ψ⟩ =
�

d3x ⟨x|ψ⟩ |x⟩ =
�

d3x ψ(x) |x⟩ ∈ H1 (4.24)

and

|χ⟩ =
2∑

σ=1

⟨eσ|χ⟩ |eσ⟩ =
(
χ1

χ2

)
∈ H2, (4.25)

then

|Ψ⟩ = |ψ⟩ ⊗ |χ⟩ (4.26)

is a state in H. A basis of H is |x⟩ ⊗ |eσ⟩ and we have

Ψσ(x) =
(
⟨x⊗ ⟨eσ|

)
|Ψ⟩ = ⟨x|ψ⟩︸ ︷︷ ︸

ψ(x)

⟨eσ|χ⟩︸ ︷︷ ︸
χσ

= ψ(x)χσ. (4.27)

A commonly encountered operator in H is the total angular momentum operator

L̂z + Ŝz := L̂z ⊗ 12 + 11 ⊗ Ŝz (4.28)

=
ℏ
i

∂

∂ϕ︸ ︷︷ ︸
acts in H1

⊗ 12 + 11 ⊗ ℏ
2

(
1 0
0 −1

)
︸ ︷︷ ︸

acts in H2

. (4.29)

The same procedure holds for any particle with spin s, where the dimension of H2 (over C) is 2s+ 1.

Example 3. N -particle wave function. Consider now a system of N particles, each with Hilbert space
Hi = L2(R3), i = 1, . . . , N . The Hilbert space of the composite system is

H = H1 ⊗ · · · ⊗ HN . (4.30)

A basis of Hi is {|xi⟩}, so a basis of H is

|x1, . . . ,xN ⟩ := |x1⟩ ⊗ · · · ⊗ |xN ⟩. (4.31)

A general state |Ψ⟩ ∈ H is described by the N -particle wave function

Ψ(x1, . . . ,xN ) = ⟨x1, . . . ,xN |Ψ⟩. (4.32)

If |Ψ⟩ = |ϕk1⟩ ⊗ · · · ⊗ |ϕkN ⟩ is a product state, then

Ψ(x1, . . . ,xN ) = ⟨x1|ϕk1⟩ · · · ⟨xN |ϕkN ⟩ = ϕk1(x1) · · ·ϕkN (xN ) (4.33)

is a product of wave functions. If {|ϕk⟩} in the above equation is a basis of L2(R3), then such N -particle
product states are a basis of H. For non-interacting particles, the Hamiltonian in H reads

Ĥ = Ĥ1 + Ĥ2 + · · ·+ ĤN , (4.34)
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which is short for

Ĥ = Ĥ1 ⊗ 12 ⊗ · · · ⊗ 1N (4.35)

+ 11 ⊗ Ĥ2 ⊗ 13 ⊗ · · · ⊗ 1N (4.36)

+ . . . (4.37)

+ 11 ⊗ · · · ⊗ 1N−1 ⊗ ĤN . (4.38)

We have, for example,

Ĥi = − ℏ2

2m
∇2
i + Vex(x̂i). (4.39)

Since the composite Hilbert space is H = L2(R3)⊗ · · · ⊗ L2(R3) ≃ L2(R3N ), we can also write

Ĥ =

N∑
i=1

(
− ℏ2

2m
∇2
i + Vex(xi)

)
. (4.40)

Interaction terms in the Hamiltonian Ĥ would be terms that act on at least two distinct Hi and Hj simul-
taneously.

Exact diagonalization. Consider an N -particle system with Hilbert space

H = H1 ⊗ · · · ⊗ HN (4.41)

and Hamiltonian Ĥ. Typical problem in quantum many-body systems:

� find the ground state energy, i.e. lowest eigenvalue of Ĥ

� solve the Schroedinger equation ĤΨ = EΨ to find the whole spectrum

� compute partition function Zc(T,N) = tr e−βĤ

The dimension of H over C is

D = dimH =

N∏
i=1

dimHi. (4.42)

If dimH <∞, then the Hamiltonian Ĥ is a D×D dimensional matrix.3 Since Ĥ is a known matrix, we can
always determine its eigenvalues and eigenvectors numerically on a classical computer, which is called exact
diagonalization. The problem is that the size of the matrix D ∼ eλN grows exponentially in N , and with it
the runtime of the computer program, typically making systems with N ≳ 10 impossible to solve.

Example 4. Spin chain. Consider a systems of N qubits on a one-dimensional line, with Hi = C2 and
dimHi = 2. We have D = 2N = elog 2·N and a well-studied many-body system is the transverse field Ising

3For systems with dimHi = ∞ for some i, for instance when Hi = L2(R3), we can truncate the Hilbert space of Hi to only
include the first, say, 100 eigenstates {|ϕn⟩}, thus dimHi → 100. This should give a sufficient accuracy for studying the ground

state of Ĥ.
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model with Hamiltonian

Ĥ = − J

N−1∑
i=1

σ(i)
x σ(i+1)

x + h

N∑
i=1

σ(i)
z (4.43)

:= − J

[
σx ⊗ σx ⊗ 13 ⊗ · · · ⊗ 1N + 11 ⊗ σx ⊗ σx ⊗ 14 ⊗ · · · ⊗ 1N + 11 ⊗ . . . 1N−2 ⊗ σx ⊗ σx

]
(4.44)

+ h

[
σz ⊗ 12 ⊗ · · · ⊗ 1N + · · ·+ 11 ⊗ · · · ⊗ 1N−1 ⊗ σz

]
. (4.45)

Recall, for instance

σx ⊗ σx =

(
0 σx
σx 0

)
, σz ⊗ 1 =

(
1 0
0 −1

)
, (4.46)

and so Ĥ is a large 2N × 2N Hermitean matrix with entries ±J , ±h and 0. We could always attempt to
diagonalize it numerically, but it would take too long for large N .

4.2 Bosons and Fermions

Experimental facts:

� Quantum particles that agree in mass, electric charge, and all other quantum numbers (spin, quark
flavor, ...) are identical.

� Particles are either bosons or fermions. The wave function of a system of N identical quantum particles,
Ψ(x1, . . . , xN ), satisfies

Ψ(x1, . . . , xi, . . . , xj , . . . , xN ) =

{
+Ψ(x1, . . . , xj , . . . , xi, . . . , xN )

−Ψ(x1, . . . , xj , . . . , xi, . . . , xN )
(4.47)

for any permutation of particles i↔ j, where the upper (lower) case holds for bosons (fermions). Here
xi = (xi, χi, . . . ) encompasses position, spin, etc. of particle i.

There exists no stringent derivation of this from first principles, but a few comments to the origin of bosons
and fermions can be made.

Consider the group of permutations of N elements, SN , with N ! elements. A transposition πij ∈ SN
exchanges i ↔ j. Every element σ ∈ SN is a product of an even or odd number of transpositions, and we
call (−1)σ = ±1 the sign or parity of the permutation σ. The group SN acts on N -particle wave-functions
via

π̂ijΨ(. . . , xi, . . . , xj , . . . ) = Ψ(. . . , xj , . . . , xi, . . . ), (4.48)

which generalizes to products of transpositions. Assume the Hamiltonian of an N -particle system is invariant
under SN ,

σ̂Ĥ = Ĥσ̂ ⇔ [σ̂, Ĥ] = 0 (4.49)

for every σ ∈ SN . An example is the non-interacting Hamiltonian of identical particles,

Ĥ = Ĥ(1) + Ĥ(2) + · · ·+ Ĥ(N), (4.50)
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where Ĥ(i) = ĥ acts on Hi, with all ĥ the same, but Ĥ could involve interactions. [Ĥ, σ̂] = 0 for every σ ∈ SN
implies that every eigenfunction of Ĥ belongs to an irreducible representation of SN . In analogy, consider

the single-particle Hamiltonian Ĥr =
p2

2m + V (r) in a central potential in 3D, which satisfies [Ĥ, R] = 0 for

every rotation R ∈ SO(3). The latter implies that every eigenfunction of Ĥr has a quantum number ℓ that
cannot change under time-evolution by Ĥ and that every eigenfunction belongs on an invariant subspace of
dimension 2ℓ+ 1, spanned by the spherical harmonics Yℓm. Back to SN , which is a non-Abelian group like
SO(3), there exist one- and higher-dimensional invariant subspaces. Nature, however, only seems to realize
the one-dimensional ones, of which there are exactly two: Every system of N identical particles belongs to
one of the two invariant subspaces

H+ = {Ψ ∈ H, σ̂Ψ = Ψ for all σ ∈ SN}, (4.51)

H− = {Ψ ∈ H, σ̂Ψ = (−1)σΨ for all σ ∈ SN}. (4.52)

Here ”invariant” means that if Ψ ∈ H±, then τ̂Ψ ∈ H± for every τ ∈ SN . Furthermore, belonging to H+

or H− is not changed under time-evolution with Ĥ (superselection rule). The systems belonging to H+ and
H− are, of course, the systems of identical bosons and fermions.

A d-dimensional representation of a group SN is a set of d× d unitary matrices U such that

σ ∈ SN :

Ψ1

...
Ψd

→ U(σ)

Ψ1

...
Ψd

 . (4.53)

One can show that if SN has r representations of dimensions d1, . . . , dr, then

d21 + · · ·+ d2r = |SN | = N !, (4.54)

where |SN | is the number of elements in the group. The trivial representation U(g) = 1 is always possible
with d1 = 1, and so

1 + d22 + · · ·+ d2r = N !. (4.55)

For N = 2, there are only the two one-dimensional representations discussed above, because of 12 + 12 = 2.

As an example of a two-dimensional invariant subspace, considerN = 3 particles with basis |m⟩. S3 has 3! = 6
elements and there is an additional two-dimensional representation with d = 2 because of 12 + 12 + 22 = 6.
For this consider the states

Ψ1 =
1√
3

(
|mns⟩+ ω|nsm⟩+ ω∗|smn⟩

)
, (4.56)

Ψ2 =
1√
3

(
|nms⟩+ ω|snm⟩+ ω∗|msn⟩

)
(4.57)

with ω = e2πi/3. Under a cyclic permutation 1 → 2 → 3 → 1 we have(
Ψ1

Ψ2

)
→
(
ω 0
0 ω∗

)(
Ψ1

Ψ2

)
, (4.58)

under the transposition 1 ↔ 2 we have (
Ψ1

Ψ2

)
→
(
0 1
1 0

)(
Ψ1

Ψ2

)
. (4.59)

This action of S3 on two-component vectors is called the D(1)-representation, the two-dimensional invariant
subspace reads

H2D =
{∑
m,n,s

(amnsΨ1 + bmnsΨ2), |amns|2 + |bmns|2 = 1
}
. (4.60)
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One could imagine that, besides bosons and fermions, there is a third kind of particles that we call D(1)-
particles that live in H2D.

The reason why D(1)-particles or any other of such kind are likely unphysical is because they violate cluster
separability of expectation values. As an example, consider a quantum state of three identical particles, two
close together and the third one on the moon. The third one should not affect any measurement on earth.
On earth, we have only two particles, and the only representations of S2 are H±, hence the two particles need
to behave like bosons or fermions. This is consistent if the three particles are bosons or fermions. However,
if they were D(1)-particles, then we had the paradoxial situation that if we took the particle on the moon
into account, the two particles on earth would transform under D(1) and live in H2D, but if we ignored the
third particle, they would behave like bosons or fermions and live in H±, i.e. not like D(1)-particles. One
concludes from this that identical particles that transform like D(1) or any higher-dimensional representation
of SN are likely not realized in nature.4

Spin-Statistics Theorem. Particles with integer spin are bosons, particles with half-integer spin are fermions.
(Proof: Quantum field theory)

4.3 Second Quantization

Comment: The name ”second quantization” is out-dated, but widely used. It has lost its original meaning
over time and roughly translates to ”using annihilation and creation operators”.5

Product basis. Consider a system of N identical particles. Single-particle states shall be labelled |k⟩, or
ϕk(x) = ⟨x|k⟩, with index k collecting all the quantum numbers describing a single particle. Popular
choices are |k⟩ = |x⟩, |k⟩ = |k⟩, |k⟩ = |n, ℓ,m⟩. Enumerate these indices k in some arbitrary but fixed
order {k} ↔ {k1, k2, . . . }. The wave function of a system where N identical particles occupy the N states
|kν1⟩, . . . , |kνN ⟩ is given by the symmetrized/anti-symmetrized sum of products

Ψν1...νN (x1, . . . ,xN ) ∝

{∑
σ∈SN

ϕkν1 (xσ(1)) · · ·ϕkνN (xσ(N))∑
σ∈SN

(−1)σϕkν1 (xσ(1)) · · ·ϕkνN (xσ(N))
, (4.61)

with SN the permutation group of N elements. The most general Ψ(x1, . . . ,xN ) is a superposition of such
states. For N ≳ 10, working with these states quickly becomes impractical.

Occupation number representation. In order to avoid having to deal with (anti)symmetrized wavefunctions,
we consider the state

|{nk}⟩ = |nk1nk2 . . . ⟩, (4.62)

which describes nk1 particles that are in state |k1⟩, nk2 particles that are in state |k2⟩, etc. We call {nk} the
occupation numbers. The space spanned by the vectors |{nk}⟩ is called Fock space. The allowed values of
nk are

nk =

{
0, 1, 2, . . . (bosons)

0, 1 (fermions)
. (4.63)

4For an excellent and more complete discussion see the chapter on parastatistics in Asher Peres, ”Quantum Theory”.
5An introduction to first and second quantization of many-body systems can be found in Schwabl, ”Advanced Quantum

Mechanics” or Bruus, Flensberg, ”Many-body quantum theory in condensed matter physics”.
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The number of particles in state |{nk}⟩ is

N({nk}) =
∑
k

nk. (4.64)

Example. Consider identical particles that live on a 4 × 4 square lattice. We label the lattice sites as
y1, . . . ,y16. Single particle states are |y1⟩, . . . , |y16⟩. An occupation number state is given by

|{nk}⟩ = |n1, n2, . . . , n16⟩. (4.65)

We write ni := nyi
. A generic state for bosons is

|{nk}⟩ = |0, 12, 0, 3, 4, 5, 1, 1, 0, 0, 3, 7, 0, 1, 1, 9⟩, (4.66)

where no particles occupy site y1 (is in state |y1⟩), 12 particles occupy site y2 (are in state |y2⟩), etc. A
generic state for fermions is

|{nk}⟩ = |0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1⟩. (4.67)

No two identical fermions can occupy the same quantum state |yi⟩ (Pauli principle).

The annihilation and creation operators of a particle in state |k⟩, âk and â†k, are defined through their action

bosons : âk|nk1nk2 . . . nk . . . ⟩ =
√
nk|nk1nk2 . . . nk − 1 . . . ⟩, (4.68)

â†k|nk1nk2 . . . nk . . . ⟩ =
√
nk + 1|nk1nk2 . . . nk + 1 . . . ⟩, (4.69)

fermions : âk|nk1nk2 . . . nk . . . ⟩ = nk(−1)
∑

k′<k nk′ |nk1nk2 . . . nk − 1 . . . ⟩, (4.70)

â†k|nk1nk2 . . . nk . . . ⟩ = (1− nk)(−1)
∑

k′<k nk′ |nk1nk2 . . . nk + 1 . . . ⟩. (4.71)

Thus, in either case,

â†kâk|nk1nk2 . . . ⟩ = nk|nk1nk2 . . . ⟩. (4.72)

The particle number operator is

N̂ =
∑
k

â†kâk, (4.73)

and, indeed,

N̂ |{nk}⟩ =
(∑
k′

nk′
)
|{nk}⟩. (4.74)

The state with nk = 0 for all k is called the vacuum,

|0⟩ = |00 . . . ⟩. (4.75)

It satisfies

âk|0⟩ = 0. (4.76)

We have

bosons : [âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = [â†k, â

†
k′ ] = 0, (4.77)

fermions : {âk, â†k′} = δkk′ , {âk, âk′} = {â†k, â
†
k′} = 0. (4.78)
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For fermions, this implies that double occupancy of state |k⟩ (nk > 1) is forbidden:

(â†k)
2|0⟩ = 1

2
{â†k, â

†
k}|0⟩ = 0. (4.79)

The (anti)symmetrized wave-functions defined above satisfy

Ψν1...νN (x1, . . . ,xN ) ∝ ⟨x1, . . . ,xN |Φν1...νN ⟩ (4.80)

with

|Φν1...νN ⟩ = â†kν1
· · · â†kνN |0⟩. (4.81)

This shows how both formulations are related.

Many-body Hamiltonian. The typical many-body Hamiltonian in “first-quantized” form reads

Ĥ1st(N) =

N∑
i=1

(
− 1

2m
∇2
i + Vex(xi)

)
︸ ︷︷ ︸

kinetic energy and external potential

+
1

2!

N∑
i,j=1

V2(xi,xj)︸ ︷︷ ︸
2-body interactions

+
1

3!

N∑
i,j,k=1

V3(xi,xj ,xk)︸ ︷︷ ︸
3-body interactions

+ . . . (4.82)

The “second-quantized” form of this Hamiltonian is given by

Ĥ2nd =

�
V

d3x â†(x)
(
− 1

2m
∇2 + Vex(x)

)
â(x) (4.83)

+
1

2!

�
V

d3x

�
V

d3x′ V2(x,x
′)n̂(x)n̂(x′) (4.84)

+
1

3!

�
V

d3x

�
V

d3x′
�
V

d3x′′ V3(x,x
′,x′′)n̂(x)n̂(x′)n̂(x′′) + . . . (4.85)

with n̂(x) = â†(x)â(x). Whereas Ĥ1st(N) acts in N -particle Hilbert space, Ĥ2nd acts in Fock space without
fixed particle number.

Ideal quantum gas. The ideal quantum gas only has the first term,

Ĥ0 =

�
V

d3x â†(x)
(
− 1

2m
∇2 + Vex(x)

)
â(x). (4.86)

Let ψk(x) be the solutions to the single-particle Schrödinger equation,(
− 1

2m
∇2 + Vex(x)

)
ψk(x) = εkψk(x). (4.87)

We then expand

â(x) =
∑
k

âkψk(x) (4.88)

and obtain

Ĥ0 =

�
V

d3x
∑
k,k′

â†k′ψ
∗
k′(x)

(
− 1

2m
∇2 + Vex(x)

)
âkψk(x)

=
∑
k,k′

εkâ
†
k′ âk

�
V

d3x ψ∗
k′(x)ψk(x)︸ ︷︷ ︸
δkk′

=
∑
k

εkâ
†
kâk. (4.89)
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Comment. A general single-particle wave function is given by

ψ(x) =
∑
k

αkψk(x). (4.90)

Replacing the coefficients αk by operators,

αk → âk, (4.91)

to obtain a quantum field is what historically was called ”second quantization”. Of course, there is only one
quantization of a classical system or Hamiltonian.
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5 Ideal quantum gases

5.1 Grand-canonical potential

We consider the ideal quantum gas Hamiltonian

Ĥ =
∑
k

εkâ
†
kâk (5.1)

with arbitrary εk. We denote

|{nk}⟩ = |nk1nk2 . . . ⟩ =: |n1n2 . . . ⟩. (5.2)

We have

Ĥ|{nk}⟩ =
(∑

k

εknk

)
|{nk}⟩, (5.3)

so the energy of the state |{nk}⟩ is

E({nk}) =
∑
k

εknk. (5.4)

Recall

N({nk}) =
∑
k

nk. (5.5)

The grand-canonical partition function is

ZG(T, V, µ) = tr′ e−β(Ĥ−µN̂) (5.6)

=
∑
{nk}

⟨n1n2 . . . |e−β(Ĥ−µN̂)|n1n2 . . . ⟩ (5.7)

=
∑
{nk}

∏
k

⟨n1n2 . . . |e−β(εk−µ)â
†
kâk |n1n2 . . . ⟩ (5.8)

=
∑
{nk}

∏
k

e−β(εk−µ)nk (5.9)

=
(∑
n1

∑
n2

∑
n3

· · ·
)(
e−β(ε1−µ)n1e−β(ε2−µ)n2e−β(ε3−µ)n3 · · ·

)
(5.10)

=
∏
k

(∑
nk

e−β(εk−µ)nk

)
. (5.11)

For bosons, using
∑∞
nk=0 x

nk = (1− x)−1 (geometric series), we obtain

Z
(B)
G (T, V, µ) =

∏
k

1

1− e−β(εk−µ)
. (5.12)

For fermions, since nk = 0, 1, we obtain

Z
(F)
G (T, V, µ) =

∏
k

(
1 + e−β(εk−µ)

)
. (5.13)

We obtain the grand potential

Φ(T, V, µ) = ±kBT
∑
k

log(1∓ e−β(εk−µ)), (5.14)
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where the upper (lower) sign holds for bosons (fermions). The particle number is

N = −
(∂Φ
∂µ

)
T,V

=
∑
k

1

eβ(εk−µ) ∓ 1
=
∑
k

n̄k = N({n̄k}) (5.15)

with6

n̄k =

{
1

eβ(εk−µ)−1
Bose–Einstein distribution

1
eβ(εk−µ)+1

Fermi–Dirac distribution
. (5.16)

For the Bose–Einstein distribution to be well-defined, n̄k ≥ 0, we require

µ < ε0 := min
k
εk. (5.17)

Since µ is a free parameter in the grand-canonical ensemble, we can always ensure this. We have

E =
(∂(βΦ)

∂β

)
V,βµ

=
∑
k

εkn̄k = E({n̄k}). (5.18)

The pressure is

P (T, µ) = −Φ

V
= ∓kBT

V

∑
k

log(1∓ e−β(εk−µ)). (5.19)

For the entropy note that

eβ(εk−µ) =
1± n̄k
n̄k

, (5.20)

β(εk − µ) = log
(1± n̄k

n̄k

)
, (5.21)

1∓ e−β(εk−µ) =
1

1± n̄k
. (5.22)

Thus, using ∂
∂β = −kBT 2 ∂

∂T ,

S = −
(∂Φ
∂T

)
V,µ

(5.23)

= ∓kB
∑
k

log(1∓ e−β(εk−µ)) + kB
∑
k

β(εk − µ)n̄k (5.24)

= kB
∑
k

(
(±1 + n̄k) log(1± n̄k)− n̄k log n̄k

)
. (5.25)

5.2 Translation-invariant systems

Many systems of interest feature translation invariance. (This symmetry is typically only approximate,
because the finite volume breaks the translation symmetry.) Their single-particle states are described by
momenta p = ℏk and

εk = εp. (5.26)

6How to memorize the sign in the denominator? For fermions, the distribution function n̄(ε) is a step function with the
value 1

2
for ε = µ. The easiest way to get 1

2
is 1

1+1
, and so fermions have ”+”. Bosons, accordingly, must have ”−”.
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Examples:

εp =


|p|2/(2m) non-relativistic particles

D|p|2 spin-waves (magnons)

c|p| photons

v|p| acoustic phonons

(5.27)

Eigenfunctions are superpositions of plane waves

ψn(x) =
1√
V
eipn·x/ℏ, (5.28)

which are simultaneously eigenfunctions of the translation operator. Normalization:

�
V

d3x|ψn(x)|2 = 1. (5.29)

The momentum components in a finite volume are quantized (discrete) because of the boundary conditions
on the wave function. For this purpose consider a single particle in a cubic volume

V = {x = (x1, x2, x3)
T ∈ R

3, 0 ≤ xα ≤ L}, (5.30)

with V = L3. We consider two types of boundary conditions:

Boundary condition 1. We impose hard walls and require ψ(x) = 0 on the system boundary. Wave
functions have the form

ψn1,n2,n3
(x) =

√
8

V
sin(kn1

x1) sin(kn2
x2) sin(kn3

x3) (5.31)

with

knα =
π

L
nα, nα = 1, 2, . . . (5.32)

for α = 1, 2, 3. Importantly, nα = 0 is not allowed, and nα → −nα changes only the sign of ψ, thus nα > 0.

Boundary condition 2. We impose periodic boundary conditions (PBC), i.e. ψ(x+ Leα) = ψ(x). Then
eiknαL = 1 leads to

knα =
2π

L
nα, nα ∈ Z (5.33)

for α = 1, 2, 3. Note the different prefactor and range.

As L → ∞, the level spacing between discrete momentum components becomes small and we can replace
the sum over pn by a Riemann integral over p. For this, consider a sum over all states and a fast-decaying,
even function f(p) = f(−p). Note that ∆n := (n+ 1)− n = 1 for two consecutive integers n. For BC 1 we
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obtain

BC 1 :
∑
pn

f(pn) =

∞∑
n1=1

∞∑
n2=1

∞∑
n3=1

f(ℏkn1n2n3
) (5.34)

=

∞∑
n1=1

∆n1

∞∑
n2=1

∆n2

∞∑
n3=1

∆n3 f(ℏkn1n2n3) (5.35)

=
L3

π3

∞∑
kn1=

π
L

∆k1

∞∑
kn2=

π
L

∆k2

∞∑
kn3=

π
L

∆k3 f(ℏkn1n2n3) (5.36)

L→∞−→ V

π3

� ∞

0

dk1

� ∞

0

dk2

� ∞

0

dk3 f(ℏk) (5.37)

=
V

(2π)3

� ∞

−∞
dk1

� ∞

−∞
dk2

� ∞

−∞
dk3 f(ℏk) (5.38)

= V

�
d3p

(2πℏ)3
f(p). (5.39)

For BC 2 we obtain

BC 2 :
∑
pn

f(pn) =

∞∑
n1=−∞

∞∑
n2=−∞

∞∑
n3=−∞

f(ℏkn1n2n3
) (5.40)

=
L3

(2π)3

∞∑
kn1=−∞

∆k1

∞∑
kn2=−∞

∆k2

∞∑
kn3=−∞

∆k3 f(ℏkn1n2n3) (5.41)

L→∞−→ V

(2π)3

� ∞

−∞
dk1

� ∞

−∞
dk2

� ∞

−∞
dk3 f(ℏk) (5.42)

= V

�
d3p

(2πℏ)3
f(p). (5.43)

The result in the large-volume limit is identical for both BC. This is why we often use PBC, because they
are simpler.

In addition to the momentum quantum number, pn, each single-particle state might have quantum numbers
that do not influence the energy εk = εp. We then say εp is g-fold degenerate, with g ≥ 1 an integer. For
instance, g = 2s+ 1 for non-interacting particles with spin s, g = 2 for photons (two polarizations), g = 1, 2
for longitudinal/transversal acoustic phonons. In the large-volume limit we then replace

∑
k

= g
∑
pn

→ gV

�
d3p

(2πℏ)3
. (5.44)

5.3 Dilute ideal gas: classical limit

Consider the ideal gas of non-relativistic particles with

εp =
p2

2m
. (5.45)
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Assume g = 1 for simplicity. We have

P (T, µ) = ∓kBT
V

∑
k

log(1∓ e−β(εk−µ)) (5.46)

= ∓kBT
�

d3p

(2πℏ)3
log(1∓ e−β(

p2

2m−µ)) (5.47)

= ∓kBT
4π

(2πℏ)3

� ∞

0

dp p2 log(1∓ ze−βp
2/2m) (5.48)

= ∓kBT
4π

(2πℏ)3
√
2(mkBT )

3/2

� ∞

0

dx
√
x log(1∓ ze−x) (5.49)

= ∓kBT
4π

(2πℏ)3
√
2(mkBT )

3/2∓2

3

� ∞

0

dx x3/2
1

z−1ex ∓ 1
(5.50)

=
kBT

λ3T
× 4

3
√
π

� ∞

0

dx x3/2
1

z−1ex ∓ 1
, (5.51)

where we integrated by parts. For the energy we obtain

E =
∑
k

εkn̄k (5.52)

= V

�
d3p

(2πℏ)3
p2

2m

1

z−1eβp2/2m ∓ 1
(5.53)

=
3

2
PV. (5.54)

Classical limit. Recall that for a classical gas the chemical potential is large and negative and the fugacity

z0 = eβµ = nλ3T ≪ 1, (5.55)

such that the quantum wavelength of particles is much smaller than the interparticle distance, and so
quantum effects are less relevant. For small z we can expand

4

3
√
π

� ∞

0

dx x3/2
1

z−1ex ∓ 1
=

4

3
√
π

� ∞

0

dx x3/2
ze−x

1∓ ze−x
(5.56)

≃ 4

3
√
π

� ∞

0

dx x3/2ze−x(1± ze−x) (5.57)

=
4

3
√
π

� ∞

0

dx x3/2(ze−x ± z2e−2x) (5.58)

=
4

3
√
π

(
z ± z2

25/2

) � ∞

0

dx x3/2e−x︸ ︷︷ ︸
Γ(5/2)= 3

4

√
π

(5.59)

= z ± z2

25/2
, (5.60)

where we used

Γ(s) =

� ∞

0

dx xs−1e−x. (5.61)

Consequently,

P (T, µ) =
kBT

λ3T

(
z ± z2

25/2
+O(z3)

)
(5.62)
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and ( ∂z∂µ = βz)

n =
(∂P
∂µ

)
T
=

1

λ3T

(
z ± z2

23/2
+O(z3)

)
. (5.63)

We iteratively solve this equation to find

z = nλ3T ∓ 1

23/2
(nλ3T )

2 +O((nλ3T )
3). (5.64)

Finally, we plug that into P (T, µ) and obtain

P = nkBT
(
1∓ nλ3T

25/2
+O((nλ3T )

2)
)
. (5.65)

The quantum correction is proportional to λ3T ∝ ℏ3. The pressure is reduced for bosons (increased for
fermions) due to the clustering tendency of bosons (Pauli exclusion principle for fermions). For interacting
quantum gases, the ”quantum correction” to the equation of state computed here is typically negligible
compared to the interaction (virial) correction.

Higher orders. Integrals of the type

L∓(s, z) =
1

Γ(s)

� ∞

0

dx xs−1 1

z−1ex ∓ 1
(5.66)

can be reduced to the polylogarithm defined by

Lis(z) =

∞∑
k=1

zk

ks
. (5.67)

Note that

Lis(1) =

∞∑
k=1

1

ks
= ζ(s) (5.68)

is the Riemann ζ-function. We have

z
∂Lis
∂z

(z) = Lis−1(z). (5.69)

One can show that

Lis(z) =
1

Γ(s)

� ∞

0

dx xs−1 1

z−1ex − 1
. (5.70)

Furthermore,

Lis(−z) = − 1

Γ(s)

� ∞

0

dx xs−1 1

z−1ex + 1
. (5.71)

Consequently,

L∓(s, z) = ±Lis(±z) = ±
∞∑
k=1

(±z)k

ks
=

∞∑
k=1

(±1)k+1 z
k

ks
. (5.72)
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In our example,

P (T, µ) =
kBT

λ3T
L∓(5/2, z) (5.73)

=
kBT

λ3T

∞∑
k=1

(±1)k+1 zk

k5/2
(5.74)

=
kBT

λ3T

(
z ± z2

25/2
+

z3

35/2
+ . . .

)
(5.75)

and

n(T, µ) =
1

λ3T
Li3/2(±z) =

1

λ3T

(
z ± z2

23/2
+

z3

33/2
+ . . .

)
. (5.76)

5.4 Black-body radiation

What is a black body? When light hits an object, three things can happen: The light gets (i) reflected, (ii)
transmitted, or (iii) absorbed. What happens in each case, depends on the wavelength of the light and the
composition of the object. A black body, is an idealized object that fully absorbs incident electromagnetic
radiation of all wavelengths. The energy gained during this absorption is converted into the temperature T
of the black body. Like any warm object, the black body therefore also emits light, typically in the infrared
λ ≳ 1 µm (ν ∼ 300 THz) range. An example of a black body is a small hole in the walls of a large cavity:
any light that enters the hole is unlikely to come out again. In experiments, the emission spectrum has been
found to be universal for all black bodies. This can be understood from the quantum statistics of light.

In the following, we treat black-body radiation simply as a thermal gas of photons. Photons have a relativistic
dispersion

εp = cp (5.77)

with c the speed of light. They are to an excellent accuracy non-interacting. Although spin-1 particles, they
have only g = 2 degrees of freedom, because their polarization is orthogonal to p. The number of photons
is not conserved ; photons can be absorbed and emitted at any time by the black body. The mean number
of photons is such that the free energy is minimal, and thus

0
!
=
∂F

∂N
(T, V, N̄) = µ. (5.78)

We arrive at

P (T ) = −kBT
V

∑
k

log(1− e−βεk) (5.79)

= −2kBT

�
d3p

(2πℏ)3
log(1− e−βcp) (5.80)

= − (kBT )
4

π2ℏ3c3

� ∞

0

dx x2 log(1− e−x) (5.81)

=
π2(kBT )

4

45ℏ3c3
, (5.82)

where we used
� ∞

0

dx x2 log(1− e−x) = −1

3

� ∞

0

dx x3
1

ex − 1
= −2ζ(4) = −π

4

45
. (5.83)
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It is customary to write

P =
4σ

3c
T 4 (5.84)

with the Stefan–Boltzmann constant

σ =
π2k4B
60ℏ3c2

. (5.85)

The energy is (logZG = βV P ∝ β−3)

E = −
(∂ logZG

∂β

)
V,βµ

= −∂(βPV )

∂β
= 3

βPV

β
= 3PV. (5.86)

Emissivity. No real object is a perfect black body. The emissivity E ≤ 1 of a surface of a material is defined
such that E = 1 for a black body. The power radiated from an object of surface area A is

Power = EσAT 4. (5.87)

Some characteristic value of E are:

object E
black body 1

human (skin) 0.97
water 0.96
asphalt 0.88

aluminum foil 0.03
polished silver 0.02

Planck’s law. We define the spectral distribution of the energy density per frequency ω, u(ω), via

E(T ) =: V

� ∞

0

dω u(ω, T ), (5.88)

where ε = ℏω. The distribution u(ω, T ) was well-measured experimentally for a black body of temperature
T by the end of the 19th century. The observed u(ω, T ) was explained by Planck in 1900 by assuming
that black-body radiation is quantized. Planck’s formula follows from the Bose–Einstein distribution for the
radiation field. We have

Ē =
∑
k

εkn̄k = 2V

�
d3p

(2πℏ)3
εp

eβεp − 1
(5.89)

and

dE =
2V

(2πℏ)3
εp

eβεp − 1
d3p (5.90)

=
2V

(2πℏ)3
εp

eβεp − 1
4π p2 dp︸ ︷︷ ︸

ε2

c3
dε

(5.91)

=
V

π2ℏ3c3
ε

eβε − 1
ε2dε (5.92)

=
V

π2c3
ℏω

eβℏω − 1
ω2dω. (5.93)
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Hence

u(ω, T ) =
1

π2c3
ℏω3

eβℏω − 1
. (Planck’s law) (5.94)

For small ω we have

u(ω, T ) ≃ kBT

π2c3
ω2 (Rayleigh–Jeans law), (5.95)

which follows from classical physics. For large ω we have

u(ω, T ) ∝ ω3 e−ℏω/kBT (Wien’s law), (5.96)

and the maximum of the distribution occurs at ℏωmax = 2.82kBT .

5.5 Bose–Einstein condensation

Consider an ideal quantum gas of non-relativistic bosons with εp = p2/2m and g = 1. The density in the
large-volume limit reads

n(µ, T ) =
1

V

∑
k

n̄k (5.97)

(∗)−→
�

d3p

(2πℏ)3
1

eβ(p2/2m−µ) − 1
(5.98)

=
1

2π2ℏ3

� ∞

0

dp p2
1

eβ(
p2

2m−µ) − 1
. (5.99)

The chemical potential controls the density: Increasing the chemical potential will (generically) increase the
density. We have seen, however, that n̄p ≥ 0 requires

µ < min
p
εp = 0. (5.100)

We might expect a divergence of n for µ↗ 0, but instead

n(µ = 0, T ) =
1

2π2ℏ3

� ∞

0

dp p2
1

eβ
p2

2m − 1
(5.101)

=
1

2π2ℏ3
√
2(mkBT )

3/2

� ∞

0

dx x1/2
1

ex − 1
(5.102)

=
1

2π2ℏ3
√
2(mkBT )

3/2Γ(3/2)ζ(3/2) (5.103)

=
1

λ3T
ζ(3/2) (5.104)

remains finite, with ζ(3/2) = 2.612. However, in experiment we can always increase n = N/V by adding
more particles or decreasing the volume. What went wrong? We did not account for the fact that bosons
are allowed to all be in the same single state. At low temperatures there is a macroscopic occupation of the
lowest energy eigenstate,

np=0 = N0(µ, T ) ∝ N. (5.105)
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This state has to be treated separately in the discrete sum in (∗),

N(µ, T ) =
∑
k

n̄k = n̄k=0 +
∑
k>0

n̄k (5.106)

=
1

z−1 − 1︸ ︷︷ ︸
N0(µ,T )

+
∑
k>0

n̄k (5.107)

(∗)−→ 1

z−1 − 1
+ V

�
d3p

(2πℏ)3
1

eβ(p2/2m−µ) − 1︸ ︷︷ ︸
Nex(µ,T)

. (5.108)

For fixed T , as we increase µ↗ 0, the first term diverges and N(µ, T ) can become arbitrarily large. Problem
solved. We see that we can actually never reach µ = 0 for an ideal Bose gas by increasing N . We call:

N0 : number of condensed particles (5.109)

Nex : number of excited particles (5.110)

Phase transition as a function of (T, V,N). Fix a number of particles N , volume V . Now decrease T . For

large T we have Nex(T, V,N) = N and N0(T, V,N) = 0. The maximal value of Nex(T, V,N) is V λ
−3/2
T ζ(3/2).

For N larger than that, the remaining particles condense and we have

N0(T, V,N) = N − V

λ3T
ζ(3/2) > 0. (5.111)

The phase transition temperature Tc(n) is determined by

N
!
=

V

λ3Tc

ζ(3/2) = V ζ(3/2)
(mkBTc

2πℏ2
)3/2

, (5.112)

so

Tc(n) =
2πℏ2

mkB

( n

ζ(3/2)

)2/3
. (5.113)

We then find

N0(T, V,N)

N
= 1− 1

nλ3T
ζ(3/2) (5.114)

= 1−
(λTc

λT

)3 1

nλ3Tc

ζ(3/2)︸ ︷︷ ︸
1

(5.115)

= 1−
( T
Tc

)3/2
. (5.116)

The condensate fraction N0/N is the order parameter for the BEC transition. It distinguishes the normal
phase with N0 = 0 for T > Tc from the condensed phase with N0 > 0 for T < Tc. Since N0 vanishes
continuously for T ↗ Tc, this is a second-order phase transition.

Role of dimension. Consider an ideal gas with dispersion εp = cpν in d spatial dimensions (ν > 0). We have

n(µ = 0, T ) = C

� ∞

0

dp pd−1 1

eβcpν − 1︸ ︷︷ ︸
f(p)

. (5.117)

60



(C is some constant.) BEC occurs if this integral finite for all T . The contribution to the integral from large
p is always finite, because

f(p→ ∞) ∼ pd−1e−βcp
ν

→ 0. (5.118)

Choose p0 > 0 some arbitrary momentum and use 1
ex−1 ≤ 1

x for all x > 0 to write

n(µ = 0, T ) = C

� p0

0

dp pd−1 1

eβcpν − 1
+ C

� ∞

p0

dp pd−1 1

eβcpν − 1︸ ︷︷ ︸
ϕ(T ), finite for all p0>0

(5.119)

≤ C

� p0

0

dp pd−1 1

βcpν
+ ϕ(T ) (5.120)

=
C

cβ

� p0

0

dp pd−1−ν + ϕ(T ) (5.121)

=
C

cβ

pd−ν

d− ν

∣∣∣p0
p=0

+ ϕ(T ). (5.122)

The first part is finite for d− ν > 0. Hence BEC occurs when

d− ν > 0. (5.123)

There is no BEC of the ideal Bose gas in one or two dimensions (d ≤ 2, ν = 2). The situation is more
complex for interacting Bose gases.

Comment. A divergence of the type (d = 1, ν = 2)�
dp

1

p2
(5.124)

that results from the region of p → 0 is called an infrared divergence. Recall that Rayleigh–Jeans derived,
using classical physics,

uRJ(ω) =
kBT

π2c3
ω2 (5.125)

for the black-body spectrum. Obviously,

E = V

�
dω uRJ(ω) ∝

�
dω ω2 (5.126)

diverges because of the region of ω → ∞. This is called an ultraviolet divergence. Historically, the deviation
of uRJ(ω) from the observed u(ω) was called the ultraviolet catastrophe, because deviations become visible
at UV frequencies. It hinted at a breakdown of classical physics at high frequencies, i.e. short wavelengths.

5.6 Ideal Fermi gases

Consider a gas of non-interacting fermions. Single-particle states are momentum states |k⟩ = |p, σ⟩, with
energy εpσ = p2/2m and σ an additional quantum number that results in a degeneracy g. For instance,
σ =↑, ↓ for spin-1/2 particles, so g = 2.

Ground state at T = 0. Lowest energy state: All N particles want to minimize their kinetic energy, but
states with equal k cannot be populated due to Pauli’s principle. Hence all momentum eigenstates with
|p| ≤ pF for some pF are filled. The Fermi momentum pF is determined by

N
!
= g × V

(2πℏ)3
× 4π

3
p3F︸ ︷︷ ︸

volume of Fermi sphere in momentum space

=
gV

6π2ℏ3
p3F, (5.127)
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which yields

pF(n) =
(6π2ℏ3

g
n
)1/3

. (5.128)

We also call εF =
p2F
2m the Fermi energy, TF = εF/kB the Fermi temperature, and kF = pF/ℏ the Fermi wave

vector. Using the Fermi–Dirac distribution as T → 0,

n̄p =
1

e(
p2

2m−µ)/kBT + 1

T→0−→ θ(µ− p2/2m), (5.129)

we find

N = gV

�
d3p

(2πℏ)3
n̄p =

gV

2π2ℏ3

� ∞

0

dp p2θ(2mµ− p2) =
gV

6π2ℏ3
(2mµ)3/2θ(µ). (5.130)

Comparing this to the definition of pF, we deduce

εF(n) = µ. (5.131)

All states up to the chemical potential are filled at T = 0. Nonzero density at T = 0 requires µ > 0.

Comment. If the single-particle dispersion is not ε(p) = p2

2m , but some other function ε(p), we can still define
the Fermi energy from εF := ε(pF) and pF given above.

Fermions at T > 0. For very large T and µ < 0, we have

n̄p → e−(εp−µ)/kBT = classical Maxwell–Boltzmann distribution. (5.132)

However, for µ > 0, quantum effects (via the Fermi–Dirac distribution) remain important for T ≪ µ
kB

≃
TF(n) with TF ≈ µ/kB. Some real material values are:7

system typical T (K) TF (K)

electrons in metals 102 105

neutrons in the nucleus 5.3× 1011 × (A−Z
A )2/3

protons in the nucleus 5.3× 1011 × (ZA )
2/3

neutrons in neutrons stars 1011 3× 1012

3He at 0− 30 bar 10−3 1

ultracold 7Li gas 10−7 10−6

Thus, many fermionic systems are in the quantum degenerate limit for their typical values of T . Not all of
these quantum systems are well-approximated as ideal gases, though.

For T ≪ TF, the Fermi sphere picture is still useful. Some states below µ are empty, some states above µ
are occupied. We can expand thermodynamic quantities in T/TF or kBT/µ. The particle number is

N(T, V, µ) =
gV

2π2ℏ3

� ∞

0

dp p2
1

eβ(p2/2m−µ) + 1
(5.133)

=
gV m3/2

√
2π2ℏ3

� ∞

0

dε
√
ε

1

eβ(ε−µ) + 1
. (5.134)

7For nuclei, Z is the number of protons and A is the number of protons and neutrons.
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Integrals of the type

I[f ] =

� ∞

0

dε f(ε)n(ε) (5.135)

with n(ε) = 1
eβ(ε−µ)+1

can be evaluate by the Sommerfeld method. We have

I[f ] =

� µ

0

dε f(ε) +

� ∞

0

dε f(ε)
[
n(ε)− θ(µ− ε)

]
(5.136)

≃
� µ

0

dε f(ε) +

� ∞

−∞
dε f(ε)

[
n(ε)− θ(µ− ε)

]
(5.137)

=

� µ

0

dε f(ε) +

� ∞

−∞
dε
(
f(µ) + f ′(µ)(ε− µ) +

1

2
f ′′(µ)(ε− µ)2 + . . .

) [
n(ε)− θ(µ− ε)

]
︸ ︷︷ ︸
odd function of ε−µ

(5.138)

=

� µ

0

dε f(ε) +

� ∞

−∞
dε
(
f ′(µ)(ε− µ) + . . .

)[
n(ε)− θ(µ− ε)

]
. (5.139)

With x = β(ε− µ) we have
� ∞

−∞
dx x

[ 1

ex + 1
− θ(−x)

]
︸ ︷︷ ︸

even function in x

= 2

� ∞

0

dx x
[ 1

ex + 1
− θ(−x)

]
= 2

� ∞

0

dx
x

ex + 1
=
π2

6
. (5.140)

Thus

I[f ] =

� µ

0

dε f(ε) +
π2

6
f ′(µ)(kBT )

2 +O
(
f (3)(µ)(kBT )

4
)
. (5.141)

This also allows to systematically compute higher order terms. Applied to the density with f(ε) =
√
ε we

have

n(T, µ) =
gm3/2

√
2π2ℏ3

� ∞

0

dε
√
ε

1

eβ(ε−µ) + 1
(5.142)

=
gm3/2

√
2π2ℏ3

[
2

3
µ3/2 +

π2

12

(kBT )
2

√
µ

+O
( (kBT )4

µ5/2

)]
(5.143)

=

√
2gm3/2

3π2ℏ3︸ ︷︷ ︸
n/ε

3/2
F (n)

µ3/2

[
1 +

π2

8

(kBT
µ

)2
+O

((kBT
µ

)4)]
. (5.144)

Hence

1 =
( µ
εF

)3/2[
1 +

π2

8

(kBT
µ

)2
+ . . .

]
. (5.145)

We solve this iteratively for µ(T,N) by an ansatz µ = εF + δµ. We have

1
!
=
(εF + δµ

εF

)3/2[
1 +

π2

8

(kBT
εF

)2
+ . . .

]
(5.146)

=
(
1 +

3

2

δµ

εF

)[
1 +

π2

8

(kBT
εF

)2
+ . . .

]
(5.147)

= 1 +
3

2

δµ

εF
+
π2

8

(kBT
εF

)2
+ . . . , (5.148)

and, therefore,

µ(T, n) = εF(n)

[
1− π2

12

( T
TF

)2
+O

(( T
TF

)4)]
. (5.149)
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5.7 Neutron stars

We consider a compact star that is composed of dense nuclear matter. Although the temperature of such
an object is very high, kBT ∼ 1011K · kB ∼ 10 MeV, we can approximate the system with T ≈ 0, because
T ≪ µ ∼ (300 − 500) MeV due to the high densities inside the star. In the following we use natural units
with ℏ = kB = c = 1.

Equation of state. The compact star is assumed to consist of non-interacting neutrons, protons and electrons
with relativistic single-particle dispersion

εa(p) = c
√
p2 + (mac)2 =

√
p2 +m2

a, (5.150)

with a = n,p,e. Each has spin 1/2 (ga = 2). The grand-canonical variables are (T, V, µn, µp, µe) with
chemical potential µa for each species. The Gibbs–Duhem relation reads

E = TS − PV + µnNn + µpNp + µeNe (5.151)

T=0
= −PV + µnNn + µpNp + µeNe. (5.152)

with

E =
∑

a=n,p,e

Ea, (5.153)

P =
∑

a=n,p,e

Pa, (5.154)

N =
∑

a=n,p,e

Na. (5.155)

We have

Ea = 2V

�
d3p

(2π)3
εa(p)

1

eβ(εa(p)−µa) + 1
(5.156)

T=0
= 2V

�
d3p

(2π)3
εa(p)θ(µa − εa(p)) (5.157)

=
V

π2

� pFa

0

dp p2
√
p2 +m2

a, (5.158)

Na =
V

π2

� pFa

0

dp p2 =
V p3Fa
3π2

, (5.159)

where pFa is such that

µa = εa(pFa) =
√
p2Fa +m2

a. (5.160)

The equation for Na implies

pFa = (3π2na)
1/3, (5.161)

and the equation of state becomes

µa(nn, np, ne) =
√

(3π2na)2/3 +m2
a. (5.162)
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The pressure is given by 8

P =
1

V
(µnNn + µpNp + µeNe − E) (5.163)

=
1

π2

∑
a=n,p,e

� pFa

0

dp p2
(√

p2Fa +m2
a −

√
p2 +m2

a

)
(5.164)

=
1

π2

∑
a=n,p,e

[
p3Fa
3
µa −

1

8
pFa(2p

2
Fa +m2

a)µa +
1

8
m4
a log

(
pFa + µa
ma

)]
. (5.165)

We require the compact star to be electrically neutral, thus Np = Ne and

pFp = pFe. (5.166)

Chemical equilibrium. Due to the weak-interaction processes n → p + e + ν̄e (β-decay) and p + e → n + νe
(electron capture), there can be conversion between the species. Neutrinos leave the star rapidly (µν = 0)
and will be neglected in the following. The reaction changes the particle numbers according to δNn =
−δNp = −δNe. The most probable particle numbers Nn, Np, Ne will be such that P is maximal (Φ = −PV
is minimal) and stationary, i.e.

0
!
= δP =

1

V

(
µn(Nn + δNn) + µp(Np + δNp) + µe(Ne + δNe)− E

)
− P (5.167)

= (µn − µp − µe)δNn. (5.168)

This implies

µn = µp + µe (5.169)

and √
p2Fn +m2

n =
√
p2Fp +m2

p +
√
p2Fp +m2

e . (5.170)

In the ultra-relativistic limit, where all masses are neglected, we then arrive at

pFn = 2pFp, (5.171)

or

Nn = 8Np. (5.172)

We are thus dealing with neutron-rich matter, which justifies the name neutron star.

Comment. Generally, a chemical reaction

N1∑
a=1

caXa →
N2∑
b=1

cbXb (5.173)

implies

N1∑
a=1

caµa =

N2∑
b=1

cbµb (5.174)

8The integral follows from
�
dp p2

√
p2 +m2 = 1

8
{p(2p2 +m2)

√
p2 +m2 −m4 log[2(

√
p2 +m2 + p)]}+ const.
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in chemical equilibrium.

Non-relativistic limit. We approximate the star by pure neutron matter. In the non-relativistic limit,
mn ≫ pFn, we have

ε =
E

V
≃ En

V
(5.175)

=
1

π2

� pFn

0

dp p2
√
p2 +m2

n (5.176)

≃ 1

π2
mn

� pFn

0

dp p2 (5.177)

=
mn

3π2
p3Fn (5.178)

and

P ≃ Pn (5.179)

=
1

π2

� pFn

0

dp p2
(√

p2Fn +m2
n −

√
p2 +m2

n

)
(5.180)

=
1

π2

� pFn

0

dp p2
(
mn

(
1 +

p2Fn
2m2

n

)
−mn

(
1 +

p2

2m2
n

))
(5.181)

≃ 1

π2

1

2mn

� pFn

0

dp p2(p2Fn − p2) (5.182)

=
1

15π2mn
p5Fn. (5.183)

This leads to

P (ε) = c ε5/3 (5.184)

with c = 33/2π3

5m
7/2
n

. This is called a polytropic equation of state.
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6 Classical phase transitions

6.1 Order parameter and phase diagram

In this section, we want to answer the following two questions:

(1) What is a phase transition?

(2) Why do they occur in nature?

Start with (2). The equilibrium state of a many-particle system is such that the free energy

F = E − TS (6.1)

is minimal. (Note that typically F < 0.) How does this work? At low temperatures, T → 0, the system
chooses a configuration (microstate) of minimal energy, E0. This ground state configuration is usually very
particular and unique and the number of states W (E0) ∼ 1. Hence

S(E0) = kB logW (E0) ≈ 0. (6.2)

In fact, the 3rd law of thermodynamics states that

lim
N→∞

lim
T→0

S

N
= 0. (6.3)

Hence

F ≈ E0 (6.4)

at low temperatures. At high temperatures, T → ∞, the system will choose a macroscopic state with large
entropy such that

F ≈ −TS (6.5)

becomes minimal. Large S = kB logW (E) means that the macrostate is realized by many configurations
(microstates) and thus must be more ”generic”.

A classical phase transition occurs at T > 0, typically through the mechanism just described. A quantum
phase transition occurs at T = 0 and thus must occur because the ground state energy E0(g) is changed
through some external parameter g.

Now (1). We have just seen that equilibrium systems will typically be in qualitatively different macrostates
at low and high temperatures. We call these macrostates phases, defined as the homogeneous parts of a
system, which corresponds to the states of matter that are uniquely characterized by sets of macroscopic
observables. To distinguish two phases, we define an order parameter ∆ which is such that ∆ = 0 in one
phase and ∆ > 0 in the other. The binary yes/no character of the order parameter is usually tied to the
presence or absence of a symmetry. The typical scenario for classical phase transitions is

high-temperature phase T > Tc :


∆ = 0

disordered phase

symmetric phase (= has more symmetry)

”normal phase”

(6.6)

low-temperature phase T < Tc :


∆ > 0

ordered phase

some symmetry is spontaneously broken

(6.7)
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We call Tc the critical temperature. If the order parameter ”jumps” at Tc, we say that the phase transition
is of first order. If the order parameter vanishes continuously at Tc, we say that it is of second order.
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Figure 6.1: Schematic order parameter at a first-order (left) and second-order (right) phase transition.

Latent heat. At a first-order transition, the entropy S(T ) jumps at Tc by an amount ∆S. The latent heat
∆QL = Tc ·∆S is not used to increase T , but rather leads to internal or structural changes inside the system.
At a second-order transition, S(T ) remains continuous at Tc and no latent heat occurs. However, some
derivative of the entropy S(T ) is still discontinuous at Tc. Phase transitions always manifest themselves as
non-analytic points in the thermodynamic functions (jumps, kinks, etc.).

  

T

heat supplied Q

ice

liquid

vapor

latent heat
of melting

latent heat
of vaporization

Phase diagram. Systems usually depend on additional parameters beside T , like P or µ, thus Tc = Tc(P ) or
Tc = Tc(µ), and there can be several phases labelled A, B, C, etc. Assume the system is fully specified by
T and P . Then we call them the control parameters. We divide the (P, T )-plane into the regions of phases
A, B, ... to obtain the phase diagram of the system. The order parameters ∆A(T, P ), ∆B(T, P ), . . . are
nonzero in their respective ordered phases.
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Example: Iron. The phase diagram of iron in the (P, T )-plane shows several phase transitions.

Figure 6.2: Phase diagram of iron at low pressures. At high pressures, a fourth solid form exists (ε-Fe with
hexagonal close-packed structure). [Source: Wikipedia, ”Allotropes of Iron”]

• Structural transitions. Solid iron changes its crystal structure from body-centered cubic (BCC, α-Fe) to
face-centered cubic (FCC, γ-Fe) to, again, BCC (δ-Fe) as T is increased. The order parameter to distin-
guish BCC and FCC could be the crystallographic distance between nearest-neighbor atoms, or the discrete
rotation symmetries of the crystal.

• Magnetic transitions. α-Fe is a ferromagnet below its Curie temperature of 771C and a paramagnet at
higher temperatures. A ferromagnet exhibits spontaneous magnetization M⃗ ̸= 0, a paramagnet does not, so
M⃗ is the order parameter.
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• Melting and vaporization transition. Iron can be a solid, a liquid, or a gas. We all know intuitively what
that means. Solid crystals, in contrast to liquids or gases, feature long-range order in the positions of atoms
and discrete rotation symmetries. Liquids, in contrast to gases, have short-range order of where to expect
the next nearby atom, which makes them (almost) incompressible and fluid. These properties can be used
to define suitable order parameters.

6.2 Ising model

The Ising model is a simple model for magnets. It is the most important system in statistical mechanics.
The name is pronounced ”Easing”, not as in ”island”.

Hamiltonian. We consider a one-dimensional chain of N lattice sites, labeled by an index i = 1, . . . , N . On
each site i, we define a spin variable si ∈ {−1,+1}. A configuration (microstate) of the system is given by
N numbers

{si} = (s1, s2, . . . , sN ). (6.8)

There are 2N microstates. This mimics magnetic dipoles in an external magnetic field: At each site i, the
magnetic moment is proportional to the spin vector,

µ⃗i = γs⃗i, (6.9)

with γ the gyromagnetic ratio. The magnetic dipole may either be parallel to the magnetic field (si = +1)

or antiparallel (si = −1). The energy of one dipole µ⃗i in a constant magnetic field H⃗ is Ei = −µ⃗i · H⃗, the
energy of all magnets is

Emag =
∑
i

Ei = −
∑
i

µ⃗i · H⃗. (6.10)

In the Ising model, this translates to a term

Emag = −
N∑
i=1

hsi. (6.11)

The exchange interaction between two spins is of the form E
(ij)
ex = −Jij s⃗i · s⃗j , where Jij > 0 favors the spins

to be aligned (as in a ferromagnet) and Jij < 0 favors them to be anti-aligned (as in an antiferromagnet).
This gives a contribution

Eex = −1

2

∑
i,j

Jij s⃗i · s⃗j . (6.12)

Typically, Jij decays with the distance rij = |r⃗i − r⃗j | and we can assume

Jij =

{
J i, j are nearest neighbors

0 else
. (6.13)

We write this as

Eex = −
∑
⟨i,j⟩

Js⃗i · s⃗j . (6.14)

In the Ising model, this becomes

Eex = −J
∑
⟨i,j⟩

sisj = −J
N−1∑
i=1

sisi+1. (6.15)
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The Ising model Hamiltonian is the sum of Eex and Emag. It reads

H = H(s1, . . . , sN ) = −J
∑
⟨i,j⟩

sisj − h

N∑
i=1

si. (6.16)

Note that this is a classical Hamiltonian, giving an energy to a configuration {si}. Clearly, H is well-defined
for any type of lattice with N sites, in any dimension, despite our initial assumption. In one dimension, we
impose periodic boundary conditions via

sN+1 := s1 (6.17)

and obtain

H1D = −J
N∑
i=1

sisi+1 − h

N∑
i=1

si. (6.18)

Transfer matrix method. We compute the canonical partition function of the one-dimensional Ising model.
We have

Z = Z(T,N, h) =
∑
{si}

e−βH1D({si}) (6.19)

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

eβ(J
∑N

i=1 sisi+1+h
∑N

i=1 si) (6.20)

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

N∏
i=1

eβ(Jsisi+1+hsi) (6.21)

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

eβ(Js1s2+hs1)eβ(Js2s3+hs2) · · · eβ(JsNs1+hsN ) (6.22)

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

eβ(Js1s2+
h
2 [s1+s2])eβ(Js2s3+

h
2 [s2+s3]) · · · eβ(JsNs1+h

2 [sN+s1]). (6.23)

Recall some facts about matrix multiplication. Consider two matrices A and B, with matrix elements Aab
and Bab. Then

(AB)ab =
∑
c

AacBcb. (6.24)

Similarly,

(ABC)ab =
∑
c

∑
d

AacBcdCdb, (6.25)

and so on. For the traces we have

tr(AB) =
∑
a

(AB)aa =
∑
a

∑
c

AacBca, (6.26)

tr(ABC) =
∑
a

(ABC)aa =
∑
a

∑
c

∑
d

AacBcdBca, (6.27)

and so on. Replace (a, b) → (s, s′) with s, s′ = ±1. Define the transfer matrix with matrix elements

Tss′ = eβ(Js
′s+h

2 [s+s
′]) (6.28)
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so that

T =

(
T+1,+1 T+1,−1

T−1,+1 T−1,−1

)
=

(
eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
. (6.29)

The partition function then reads

Z =
∑
s1

∑
s2

· · ·
∑
sN

Ts1s2Ts2s3 · · ·TsNs1 = tr(TN ) = λN+ + λN− (6.30)

with

λ± =
1

2

(
eβ(J+h) + eβ(J−h)

)
± e−βJ

√
1 + e4βJ sinh2(βh) (6.31)

the eigenvalues of T . We have λ+ > λ−. Thus we can neglect λ− for large N . Indeed, the free energy reads

F = − 1

β
logZ (6.32)

= − 1

β
log(λN+ + λN− ) (6.33)

= − 1

β
log

(
λN+

[
1 +

(λ−
λ+

)N])
(6.34)

= − 1

β
N log λ+ − 1

β
log
[
1 +

(λ−
λ+

)N]
︸ ︷︷ ︸
→log(1)=0 for N→∞

(6.35)

≃ − 1

β
N log λ+. (6.36)

Denote the free energy per particle as

f =
F

N
. (6.37)

Our final result in the infinite system limit (N → ∞) is

βf1D = − log
[1
2

(
eβ(J+h) + eβ(J−h)

)
+ e−βJ

√
1 + e4βJ sinh2(βh)

]
. (6.38)

For h = 0 we obtain

βf1D = − log(eβJ + e−βJ) (6.39)

= − log 2− log cosh(βJ). (6.40)

Magnetization. We define the average magnetization per particle as

m(T, h) =
M

N
=

1

N

N∑
i=1

⟨si⟩ (6.41)
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that is

m(T, h) =
1

Z

∑
{sk}

( 1

N

N∑
i=1

si

)
e−βH({sk}) (6.42)

=
1

Z

1

Nβ

∂

∂h

∑
{sk}

e−βH({sk}) (6.43)

=
1

Nβ

∂ logZ

∂h
(6.44)

= −∂f
∂h
. (6.45)

For h ̸= 0, the spins will align with the magnetic field for every T > 0 and

h > 0 ⇒ m(h) > 0, (6.46)

h < 0 ⇒ m(h) < 0. (6.47)

Indeed,

m(T, h) =
e2βJ sinh(βh)√

1 + e4βJ sinh2(βh)
, (6.48)

which has the same sign as h. However, the order parameter of the Ising model is the average spontaneous
magnetization at vanishing external field, i.e.

∆(T ) = m(T, J, 0) = −∂f
∂h

∣∣∣
h=0

. (6.49)

We find

m(T, 0) = lim
h→0

m(T, h) = 0. (6.50)

Consequently, there is no phase transition in the one-dimensional Ising model at nonzero temperature.

Role of system size. Consider a system of N Ising spins and the partition function

Z(T,N, h) =
∑
s1

· · ·
∑
sN

e−βH(s1,...,sN ). (6.51)

Each term e−βH(s1,...,sN ) is an analytic exponential function in T, J, h, i.e. infinitely often differentiable.
Hence Z(T,N, h), which is a finite sum of such terms, is also analytic, and so is the free energy

F (T,N, h) = − 1

β
logZ(T,N, h). (6.52)

Furthermore, the system has a Z2-symmetry, namely

H(J, h, {si}) = H(J,−h, {−si}). (6.53)

This implies that

F (T,N,−h) = F (T,N, h) (6.54)
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is an even and analytic function in h, because the sum in Z(h) contains for every configuration {si} the
reversed configuration {−si}. Consequently,

M(T,N, J, h) = −∂F
∂h

(6.55)

is an odd and infinitely often differentiable function in h, which implies that

M(T,N, 0) = 0 for all N <∞. (6.56)

How can we possibly have m(T, 0) ̸= 0 then? It is a matter of exchanging limits. In the limit N → ∞ of the
free energy per particle,

f(T, h) = lim
N→∞

F (T,N, h)

N
(6.57)

we include infinitely many terms in the partition function, and the sum of infinitely many analytic functions
is not necessarily analytic. Hence we can have

m(T, 0) = −∂f
∂h

∣∣∣
h=0

= − lim
h→0

lim
N→∞

1

N

∂F

∂h
̸= 0 (6.58)

despite the fact that

lim
h→0

1

N

∂F

∂h
= 0 for all N <∞. (6.59)

Two-dimensional Ising model. Consider the Ising model on a two-dimensional square lattice, with exchange
constants J1 and J2 in the x- and y-directions. The free energy per particle

f2D = lim
N→∞

F2D

N
(6.60)

has been computed by Onsager in 1944 for vanishing magnetic field. (Ising solved the 1D case in 1925.) On-
sager’s solution relies on the transfer matrix method. The calculation is rather involved. The final result reads

βf2D = − log 2− 1

2

� 2π

0

dν1
2π

� 2π

0

dν2
2π

log
[
cosh(2βJ1) cosh(2βJ2)− sinh(2βJ1) cos ν1 − sinh(2βJ2) cos ν2

]
.

(6.61)

Note that the 1D solution can be written as

βf1D = − log 2− 1

2

� 2π

0

dν

2π
log
[
cosh(2βJ)− sinh(2βJ) cos ν

]
. (6.62)

We use the expression for f2D to derive the energy per particle, e, entropy per particle s, and heat capacity
per particle cV, see Figure 6.3. For J1 = J2 = J , these thermodynamic functions have a non-analytic point
at around T/J ≃ 2.3 that signals a second-order phase transition. Indeed, the argument of the logarithm in
f2D needs to be positive, thus (with cos ν1 = cos ν2 = 1)

cosh(2βJ1) cosh(2βJ2)− sinh(2βJ1)− sinh(2βJ2)
!
> 0 (6.63)

for all T . This expression vanishes at Tc(J1, J2), so that f and its derivatives become non-analytic at Tc.
The condition

cosh(2βcJ1) cosh(2βcJ2)− sinh(2βcJ1)− sinh(2βcJ2) = 0 (6.64)
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is solved by

sinh(2βcJ1) sinh(2βcJ2) = 1. (6.65)

Hence for J1 = J2 = J we have

sinh(2βcJ) = 1 ⇒ Tc/J =
2

log(1 +
√
2)

= 2.26919. (6.66)

This result for Tc was known from Kramers–Wannier duality (1941). (The same analysis of the logarithm
for f1D yields Tc = 0.) Close to Tc we have

cV ∼ − log |Tc − T |. (6.67)

Later, Onsager and Yang computed the order parameter

m(T, 0) =
(
1− 1

sinh4(2βJ)

)1/8
∼
(8√2

T 2
c

)1/8
(Tc − T )1/8 (6.68)

for T < Tc. An explicit formula for m(T, h) for the 2D Ising model is still unknown.

Figure 6.3: Thermodynamic functions for the Onsager solution of the 2D Ising model for J1 = J2 = J

Correlation length. Fluctuations of spins are captured by the correlation function

Gij = ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩. (6.69)

This observable depends on T, J , etc. For large separation r = |r⃗i − r⃗j | this can be parametrized in d
dimensions as

Gij ∼
e−r/ξ

rd−2+η
(6.70)

75



and we call

ξ : correlation length (6.71)

η : anomalous dimension. (6.72)

The correlation length ξ gives the typical length scale over which fluctuations occur (are correlated). At a
second-order phase transition the correlation length diverges according to

ξ ∼ |T − Tc|−ν (6.73)

i.e. fluctuations occur on all length scales, see 6.4. We say that ν is a critical exponent. In the 2D Ising
model we have

ν = 1, η =
1

4
. (6.74)

Figure 6.4: Correlation function Gij for fixed i = 1 across the 2D Ising phase transition

Three dimensions. The Ising model on a 3D cubic lattice has not been solved analytically so far, but is
well-studied numerically. For J1 = J2 = J3 = J it has a phase transition at Tc/J ≃ 4.5.

6.3 Critical exponents and universality

Critical exponents. Close to a second-order phase transition, ξ → ∞, and the system becomes scale invariant.
All thermodynamic functions have power-law singularities. This defines six critical exponents via

cV ∼ |T − Tc|−α, (6.75)

m ∼ |T − Tc|β , (6.76)

χ =
∂m

∂h
∼ |T − Tc|−γ , (6.77)

m(Tc, h) ∼ |h− hc|1/δ, (6.78)

Gij ∼ r−(d−2+η), (6.79)

ξ ∼ |T − Tc|−ν . (6.80)
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For the Ising model we have:

Universality. Experimental and numerical finding: All systems (with short-ranged interactions) whose order
parameter breaks a global O(n) symmetry at a classical second-order phase transition have the same critical
exponents. The exponents only depend on n and the dimension d, which divides systems into distinct
universality classes. (Here Z2 = O(1) for the Ising case.)
Theoretical explanation: Renormalization Group

Scaling relations. The critical exponents satisfy the relations

α+ 2β + γ = 2, (6.81)

α+ β(δ + 1) = 2, (6.82)

γ = ν(2− η), (6.83)

α = 2− νd (∗). (6.84)

These relations follow from scale invariance. The so-called hyperscaling relation (∗) is violated in some
universality classes, such as the random field Ising model (not discussed here).

6.4 Landau theory

Spin models. A representative model for each universality class (d, n) is given by the classical spin models

H({S⃗i}, h⃗) = −J
∑
⟨i,j⟩

S⃗i · S⃗j −
N∑
i=1

h⃗ · S⃗i, (6.85)

where i ∈ Zd labels sites on a cubic lattice in d dimensions. The spins S⃗ have n components

S⃗ =

S1

...
Sn

 (6.86)

with S⃗2 = 1. Most important cases:

� Z2 = O(1): Ising model

S2
i = 1 ⇒ Si = ±1

� O(2): XY model

S⃗2
i = 1 ⇒ S⃗i =

(
Si,x
Si,y

)
=

(
cosφi
sinφi

)
with continuous variable φi ∈ [0, 2π) on each site
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Figure 6.5: Experimental critical exponents for several magnets in the 3D O(3) universality class (taken
from 10.1103/PhysRevB.65.144520)

� O(3): Heisenberg model

S⃗2
i = 1 ⇒ S⃗i =

Si,xSi,y
Si,z

 =

cosφi sin θi
sinφi sin θi

cos θi


with continuous variables φi ∈ [0, 2π) and θi ∈ [0, π) on each site

The spin models have a second-order phase transition for d ≥ 2 (if n = 1) or d ≥ 3 (if n > 1).

Spontaneous symmetry breaking. The Hamiltonian has a global O(n) symmetry for h⃗ = 0: Rotate

S⃗i → S⃗′
i = RS⃗i (6.87)

with R ∈ O(n), where global means that R is the same for all i, then

H({S⃗′
i}, 0⃗) = −J

∑
⟨i,j⟩

S⃗′
i · S⃗′

j (6.88)

= −J
∑
⟨i,j⟩

S⃗Ti R
TR︸ ︷︷ ︸
1

S⃗j (6.89)

= −J
∑
⟨i,j⟩

S⃗i · S⃗j (6.90)

= H({S⃗i}, 0⃗). (6.91)

No direction of the S⃗i ”in spin-space” is distinguished. Note that this is not a spatial symmetry. The average
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magnetization reads

m⃗(T, h) = −∂f
∂h⃗

=
1

N

N∑
i=1

⟨S⃗i⟩. (6.92)

For every finite system (N <∞) we then have m⃗ = 0 because of the O(n) symmetry. For N = ∞, the order
parameter is

∆⃗(T ) = m⃗(T, 0). (6.93)

If ∆⃗ ̸= 0, then the symmetry is broken spontaneously: an arbitrary direction in spin space is distinguished.

Spontaneous symmetry breaking. The equilibrium or ground state of a system has less symmetry than the
Hamiltonian encoding the underlying microscopic physics.

Landau free energy. Consider the free energy

F (T, h⃗) = −kBT logZ(T, h⃗). (6.94)

We have

−∂F
∂h⃗

= M⃗(T, h⃗) (6.95)

which tells us the global magnetization induced by a given external field h⃗. Define the Landau free energy
G(T, M⃗), which is a function of M⃗ instead of h⃗, via Legendre transformation

G(T, M⃗) = max
h⃗

(
h⃗ · M⃗ − F (T, h⃗)

)
. (6.96)

Then

− ∂G

∂M⃗
= h⃗ (6.97)

tells us the required external field to achieve a given magnetization m⃗. Importantly, G(M⃗) is invariant under
the global O(n) symmetry, namely

G(T,RM⃗) = G(T, M⃗) (6.98)

for all R ∈ O(n). This means that G(T, M⃗) is a function of |M⃗ |2 only,

G(T, M⃗) = g(T, |M⃗ |2). (6.99)

Often it is useful to think of this function as

G(T, M⃗) = G0(T ) + a(T )|M⃗ |2 + b(T )|M⃗ |4 + . . . (6.100)

The equilibrium or ground state, M⃗0(T ), will be such that

G(T, M⃗0(T )) = g(T, |M⃗0|2)
!
= min. (6.101)

Importantly, this only determines the magnitude |M⃗0|. For every M⃗0, also RM⃗0 minimizes G, and so the

actual ground state choice M⃗0 spontaneously breaks the O(n) symmetry.
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First- and second-order transition. The Landau free energy explains how discontinuous behavior arises from
continuous variations of a control parameter such as T and J . Fix the value of J and decrease temperature
T . The minimum M0(T, J) = |M⃗0| of the Landau free energy behaves as shown in Fig. 6.6.

The concept of the Landau free energy applies to any many-body system with an order parameter ∆⃗ that
breaks a symmetry group G, not just spin models. Computing the Landau free energy from a given Hamil-
tonian is as complicated as computing the partition function in an external field. However, all properties
such as Tc, phase diagram, equation of state, or critical exponents follow from it.
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Figure 6.6: Landau free energy at a first- and second-order phase transition.
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A Ideal gas (micro-canonical)

We derive the expression for S0(E, V,N) of the the classical ideal gas in the micro-canonical ensemble keeping
also the subleading corrections. We start from

W0(E, V,N) =
V N

N !h3N
1

Γ( 3N2 )
(2πmE)

3N
2

1

E
. (A.1)

The entropy reads

S0(E, V,N)

kB
= logW0(E, V,N) (A.2)

= N log
V

h3
− logN !− log Γ(3N/2) +

3N

2
log(2πmE)− logE. (A.3)

Now use Stirling’s formula

logN ! ≃ log
[(N

e

)N√
2πN

]
= N log

(N
e

)
+ log

√
N +O(N0), (A.4)

log Γ(3N/2) = log
(3N

2
− 1
)
!

≃ log
[( 3N

2 − 1

e

) 3N
2 −1

√
2π
(3N

2
− 1
)]

=
(3N

2
− 1
)
log
( 3N

2 − 1

e

)
+ log

√
N +O(N0)

=
(3N

2

)
log
(3N
2e

)
− logN + log

√
N +O(N0)

=
(3N

2

)
log
(3N
2e

)
− log

√
N +O(N0) (A.5)

In the last two lines we applied

(x− 1) log
(x− 1

e

)
= (x− 1)

[
log
(x
e

)
+ log

(
1− 1

x

)]
= (x− 1)

[
log
(x
e

)
− 1

x
+O(x−2)

]
= x log

(x
e

)
− log x+O(x0) (A.6)

for x≫ 1. We then arrive at

S0(E, V,N)

kB
= N log

V

h3
−N log

(N
e

)
+ log

√
N −

(3N
2

)
log
(3N
2e

)
− log

√
N +

3N

2
log(2πmE)− logE +O(N0)

= N log

[
V

h3
e

N

( 2e

3N

)3/2
(2πmE)3/2

]
− log(E) +O(N0)

= N log
[V
N

( mE

3πℏ2N

)3/2
e5/2

]
− log(E) +O(N0). (A.7)
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B Systems in contact: Pressure

Consider two classical systems with fixedN1 andN2 but variable E1, E2, V1, V2. They are allowed to exchange
energy and to ”exchange volume” through a movable wall separating them. Recall that a fixed volume for
a single system is realized through a wall potential

H1 =

N1∑
i=1

( p2
i

2m
+ Vwall(xi) + . . .

)
= H

(0)
1 +

N1∑
i=1

Vwall(xi) (B.1)

with (V1 = L3)

Vwall(x) =

{
0 0 ≤ |xα| ≤ L/2

∞ else
. (B.2)

If V1 ⊂ R3 is the spatial region occupied by particles of system 1, with |V1| = V1, then

W1(E1, V1, N1) =

�
d3N1xd3N1p

h3N1N1!
δ(E −H1) (B.3)

=

�
d3N1xd3N1p

h3N1N1!
δ(E −H

(0)
1 )

N1∏
i=1

χV1
(xi) (B.4)

with indicator function

χA(x) =

{
1 x ∈ A

0 x /∈ A
. (B.5)

Back to the two systems. Choose a spatial region V with volume |V| = V = V1 + V2. Place a movable
wall into V that divides V = V1 ∪ V2 (disjoint) into two connected regions of variable volume |V1| = V1 and
|V2| = V2. The position of the movable wall is determined by a parameter b ∈ [0, 1] such that V1 = bV and
V2 = (1− b)V . The number of all configurations of the system that realize V = V1 +V2 (taking into account
that the particles push the wall) is

W (E, V ) =

� 1

0

db

�
d3(N1+N2)xd3(N1+N2)p

h3(N1+N2)N1!N2!
δ(E −H

(0)
1 −H

(0)
2 )
(N1∏
i=1

χV1
(xi)

)(N2∏
j=1

χV2
(xj)

)
(B.6)

=

� 1

0

db

� ∞

0

dE1 W1(E1, bV,N1) W2(E − E1, (1− b)V,N2) (B.7)

=
1

V

� V

0

dV1

� ∞

0

dE1 W1(E1, V1, N1) W2(E − E1, V − V1, N2). (B.8)

The crucial point is: Although this sum of all microscopic realizations of V = V1 + V2 will contain con-
tributions from very special configurations (where V1 ≈ ∅ and V2 ≈ V), the absolute vast majority of
contributions comes from those configurations V = V1∪V2 with the ”right” (most probable) volumes V1 and
V2. We use again that W1(E1, V1, N1) = eN1σ1(ε1,n1)/kB , so that the most probable energies and volumes V̄1
and V̄2 = V − V̄1 follow from

0 =
∂S1

∂E1
(Ē1, V̄1, N1)−

∂S2

∂E2
(Ē2, V̄2, N2), (B.9)

0 =
∂S1

∂V1
(Ē1, V̄1, N1)−

∂S2

∂V2
(Ē2, V̄2, N2), (B.10)

thus

T1(Ē1, V̄1, N1) = T2(Ē2, V̄2, N2), (B.11)

P1(Ē1, V̄1, N1) = P2(Ē2, V̄2, N2). (B.12)

Hence temperatures and pressures of both systems must coincide.
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