Filtered Frobenius algebras in monoidal categories

Harshit Yadav

Rice University

hy39@rice.edu

June 4, 2021

(joint work with Chelsea Walton)

Motivation

Filtered vector spaces

$$F_A(0) \subset F_A(1) \subset \cdots \subset F_A(i) \subset \cdots \subset F_A(n) = A$$

Associated graded vector space gr(A) with

$$\operatorname{gr}(A)_i = F_A(i)/F_A(i-1)$$

Example

Cl(V, B) with associated graded $\Lambda(V)$ $\mathcal{U}(\mathfrak{g}, [,])$ with associated graded $Sym(\mathfrak{g})$

- What properties of the associated graded algebra lift to its filtered deformations?
- Integral domain, Noetherian, prime, etc.

Definition (Frobenius algebra)

It is a tuple $(A, m, u, \varepsilon : A \to \mathbb{k})$ such that $(A, m, u) \in \mathsf{Alg}_{\mathbb{k}}$ and $\mathsf{ker}(\varepsilon)$ does not contain any non-trivial left ideal.

Example

Take a f.d. vector space V with basis $(e_i)_{i=1}^n$, then $\Lambda(V)$ is Frobenius with $\varepsilon(a)$ =coefficient of $e_1 \wedge \cdots \wedge e_n$ in a.

Connection to TQFTs

 $\mathsf{CommFrobAlg}(\mathsf{Vec}_{\Bbbk}) \leftrightarrow 2d\text{-}\mathsf{TQFT}(\mathsf{Vec}_{\Bbbk})$

Theorem (Bongale 1967)

Let A be a finite-dimensional, connected, filtered k-algebra. If the associated graded algebra of A is Frobenius, then so is A.

Definition (Monoidal category)

It is a tuple $(\mathcal{C}, \otimes, \mathbb{1}, \alpha, l, r)$ where \mathcal{C} is a category, $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor, $\mathbb{1} \in \mathsf{Obj}(\mathcal{C})$ ('unit' object) and α, l, r are natural isomorphisms satisfying coherence (pentagon and triangle) axioms.

Example

$$(\mathsf{Vec}_{\Bbbk}, \otimes_{\Bbbk}, \Bbbk), (\mathsf{Set}, \times, \{a\})$$

Why study Frobenius algebras in monoidal categories?

- Conformal Field Theory (work of Fuchs, Runkel, Schweigert, etc.)
- Computer Science (work of Abramsky, Coecke, Vicary, etc.)
- Classification of subfactors (work of Müger, Jones, Snyder etc.)
- TQFTs

GOAL: Generalize Bongale's result to abelian monoidal categories.

Outline

- Associated graded constructions
- Probenius algebras
- Main Result
- Further directions

Filtered and Graded categories

Previous works that have prompted this framework include Ardizzoni-Menini 2012, Galatius-Kupers-Randal-Williams 2018, Haugseng-Miller 2016.

- \mathbb{N}_0 : set of natural numbers including 0.
- $\underline{\mathbb{N}_0}$: category with objects \mathbb{N}_0 and with only identity morphisms id_i for all $i \in \mathbb{N}_0$.
- N_0 : category with objects N_0 and with morphisms $i \to j$ only for $i,j \in N_0$ with $i \le j$.
- ullet From here on ${\mathcal C}$ will always be an abelian category.

Definition $((\mathbb{N}_{0})\text{-})\text{Fil}(\mathcal{C})$

- A filtration on $X \in \text{Ob}(\mathcal{C})$ is a functor $F_X \in \text{Fun}(\underbrace{\mathbb{N}_0}, \mathcal{C})$ such that $\text{colim}_i(F_X(i)) \cong X$.
- A filtered object is a pair (X, F_X) such that $X \in Ob(\mathcal{C})$ and F_X is a filtration on X.
- A filtered morphism (f, F_f) : (X, F_X) and (Y, F_Y) is a tuple (f, F_f) such that $f: X \to Y$ is a morphism in $\mathcal C$ and $F_f = \{F_f(i): F_X(i) \to F_Y(i)\}_{i \in \mathbb N_0}$ is a natural transformation such that $\operatorname{colim}_i(F_f(i)) = f$.
- Filtered objects in $\mathcal C$ and their morphisms form a category, denoted by Fil(C).

In a similar manner, we can define the category $Gr(\mathcal{C})$ of graded objects by replacing $\mathbb{N}_{\mathbb{Q}}$ by $\underline{\mathbb{N}_{\mathbb{Q}}}$ in the definition of $Fil(\mathcal{C})$.

Monoidal structure

Let $\mathcal C$ be a monoidal category with \otimes biexact.

\otimes structure on Fil(\mathcal{C})

For $(X, F_X), (Y, F_Y) \in \mathsf{Ob}(\mathsf{Fil}(\mathcal{C}))$, define

$$(X, F_X) \otimes (Y, F_Y) = (X \otimes Y, F_{X \otimes Y}),$$

where $F_{X \otimes Y}(k) := \operatorname{colim}_{i+j \leq k} F_X(i) \otimes F_Y(j)$.

The unit object is $(\mathbb{1}, F_{\mathbb{1}})$ with the associated filtration $F_{\mathbb{1}}: \underline{\mathbb{N}}_0 \to \mathcal{C}$ given by $F_{\mathbb{1}}(i) = \mathbb{1}$ for all $i \in \mathbb{N}_0$.

Example

 $F_{X \otimes Y}(2)$ is the colimit of the following diagram in C.

In a similar manner, we define a monoidal structure on the category Gr(C).

Associated graded functor gr

Definition (gr)

- For $(X, F_X) \in Fil(\mathcal{C})$, let $\overline{F_X(i)} = \operatorname{coker}(F_X(i) \to F_X(i-1))$. Define $\operatorname{gr}(X, F_X) = \coprod_{i \in \mathbb{N}_0} \overline{F_A(i)}$.
- Given $f:(X,F_X)\to (Y,F_Y)$ in $Fil(\mathcal{C})$, define

$$\operatorname{gr}(f):\operatorname{gr}(X,F_X)\to\operatorname{gr}(Y,F_Y)$$

with components coming from the universal property of cokernels:

$$F_{X}(i-1) \xrightarrow{\iota_{i-1}^{X}} F_{X}(i) \xrightarrow{\pi_{i}^{X}} \overline{F_{X}(i)} \longrightarrow 0$$

$$F_{f}(i-1) \downarrow \qquad \qquad \downarrow gr(f)_{i}$$

$$F_{Y}(i-1) \xrightarrow{\iota_{i-1}^{Y}} F_{Y}(i) \xrightarrow{\pi_{i}^{Y}} \overline{F_{Y}(i)} \longrightarrow 0$$

gr is monoidal

Theorem 1 (Walton-Y. 2021)

Let $\mathcal C$ be an abelian monoidal category with \otimes biexact, then $\operatorname{\sf gr}:\operatorname{\sf Fil}(\mathcal C)\to\operatorname{\sf Gr}(\mathcal C)$

is a monoidal functor.

Thus, we can define associated graded algebras (modules, ideals) in a monoidal category.

Characterizations of Frobenius algebras in (\mathcal{C}, \otimes)

Theorem (folklore)

Let C be a monoidal category and (A, m, u) be an algebra in C. Then the following are equivalent definitions of a Frobenius algebra:

• There exist morphisms $\Delta: A \to A \otimes A$ and $\varepsilon: A \to \mathbb{1}$ in \mathcal{C} such that (A, Δ, ε) is a coalgebra in \mathcal{C} and

$$(id_A \otimes m)(\Delta \otimes id_A) = \Delta m = (m \otimes id_A)(id_A \otimes \Delta).$$

• There exist morphisms $p:A\otimes A\to \mathbb{1}$ and $q:\mathbb{1}\to A\otimes A$ in $\mathcal C$ such that

$$p(m \otimes id_A) = p(id_A \otimes m),$$

 $(p \otimes id_A)(id_A \otimes q) = id_A = (id_A \otimes p)(q \otimes id_A).$

Another characterization

Theorem (Fuchs-Stigner 2008)

Consider an algebra (A, m, u) in a rigid monoidal category C. The following are equivalent:

- A is a Frobenius algebra.
- There exists an isomorphism $\Phi_I:A\to {}^*\!A$ of left A-modules in $\mathcal C$, with left A-action maps $\lambda_A=m$ and

$$\lambda_{*\!A} = (\mathsf{id}_{*\!A} \otimes \mathsf{ev}_A')(\mathsf{id}_{*\!A} \otimes m \otimes \mathsf{id}_{*\!A})(\mathsf{coev}_A' \otimes \mathsf{id}_{A \otimes *\!A}).$$

• There exists an isomorphism $\Phi_r: A \to A^*$ of right A-modules in C, with right A-action maps $\rho_A = m$ and

$$\rho_{A^*} = (\mathsf{ev}_A \otimes \mathsf{id}_{A^*})(\mathsf{id}_{A^*} \otimes m \otimes \mathsf{id}_{A^*})(\mathsf{id}_{A^* \otimes A} \otimes \mathsf{coev}_A).$$

A new equivalent characterization

Definition

Consider an algebra (A, m, u) in monoidal category \mathcal{C} . A weak left ideal is a tuple $(I, \phi_I : I \to A, \lambda_I : A \otimes I \to I)$ satisfying:

$$\lambda_I (m \otimes id_I) = \lambda (id_A \otimes \lambda)$$
 , $\lambda_I (u \otimes id_I) = id_I$, $\phi_I \lambda_I = m (id_A \otimes \phi_I)$.

Theorem 2 (Walton-Y. 2021)

Let $\mathcal C$ be an abelian, rigid, monoidal category. An algebra (A,m,u) in $\mathcal C$ is Frobenius if and only if there exists a morphism $\nu:A\to\mathbb I$ in $\mathcal C$ so that, if a left or a right weak ideal (I,ϕ_I) of A factors through $\ker(\nu)$, then ϕ_I is a zero morphism in $\mathcal C$.

Main result

Theorem 3 (Walton-Y. 2021)

Let \mathcal{C} be an abelian rigid monoidal category, and let A be a connected filtered algebra in \mathcal{C} with finite monic filtration. If the associated graded algebra gr(A) is a Frobenius algebra in \mathcal{C} , then so is A.

Proof sketch: Since A has finite filtration $\exists n \in \mathbb{N}$ such $F_A(n) = F_A(n+k)$ for all k > 0. Then $A = F_A(n)$.

- A connected \Rightarrow gr(A) connected \Rightarrow gr(A)_n = $\overline{F_A(n)} = 1$.
- Consider $\nu: A \to F_A(n) = 1$. By Theorem 2, it suffices to show that no ideal of A factors through $\ker(\nu) = F_A(n-1)$.
- Suppose not, get an I. By Theorem 1, gr(I) is a weak left ideal of gr(A) that factors through the kernel of a Frobenius form on it.
- Obtain contradiction by Theorem 2.

Theorem (Bongale 1967)

Let A be a finite-dimensional, connected, filtered k-algebra. If the associated graded algebra of A is Frobenius, then so is A.

Theorem 3 (Walton-Y. 2021)

Let $\mathcal C$ be an abelian, rigid monoidal category , and let A be a connected filtered algebra in $\mathcal C$ with finite monic filtration. If the associated graded algebra $\operatorname{gr}(A)$ is a Frobenius algebra in $\mathcal C$, then so is A.

Further directions

- **①** Can Theorem 3 be obtained via the means of a Frobenius monoidal functor $Gr(\mathcal{C}) \to Fil(\mathcal{C})$?
- Can we get rid of the connectedness assumption?
- **3** Let H be a filtered bialgebra in a braided tensor category $\mathcal C$ such that its associated graded algebra is a Hopf algebras. When is then H a Hopf algebra?

References

- P. R. Bongale (1967) Filtered Frobenius Algebras Mathematische Zeitschrift 97(4), pp.320-325.
- A. Ardizzoni, C. Menini (2012) Associated graded algebras and coalgebras *Communications in Algebra* 40(3), pp.862-896.
- R. Haugseng, H. Miller (2016) On a spectral sequence for the cohomology of infinite loop spaces *Algebraic Geometric Topology* 16(5), pp.2911-2947.
- S. Galatius, A. Kupers, O. Randal-Williams (2018) Cellular E_k-algebras arXiv preprint arXiv:1805.07184.
- J. Fuchs, C. Stigner (2008) On Frobenius algebras in rigid monoidal categories The Arabian Journal for Science and Engineering ISSN 1319-8025, Vol. 33, no 2C, p. 175-192