

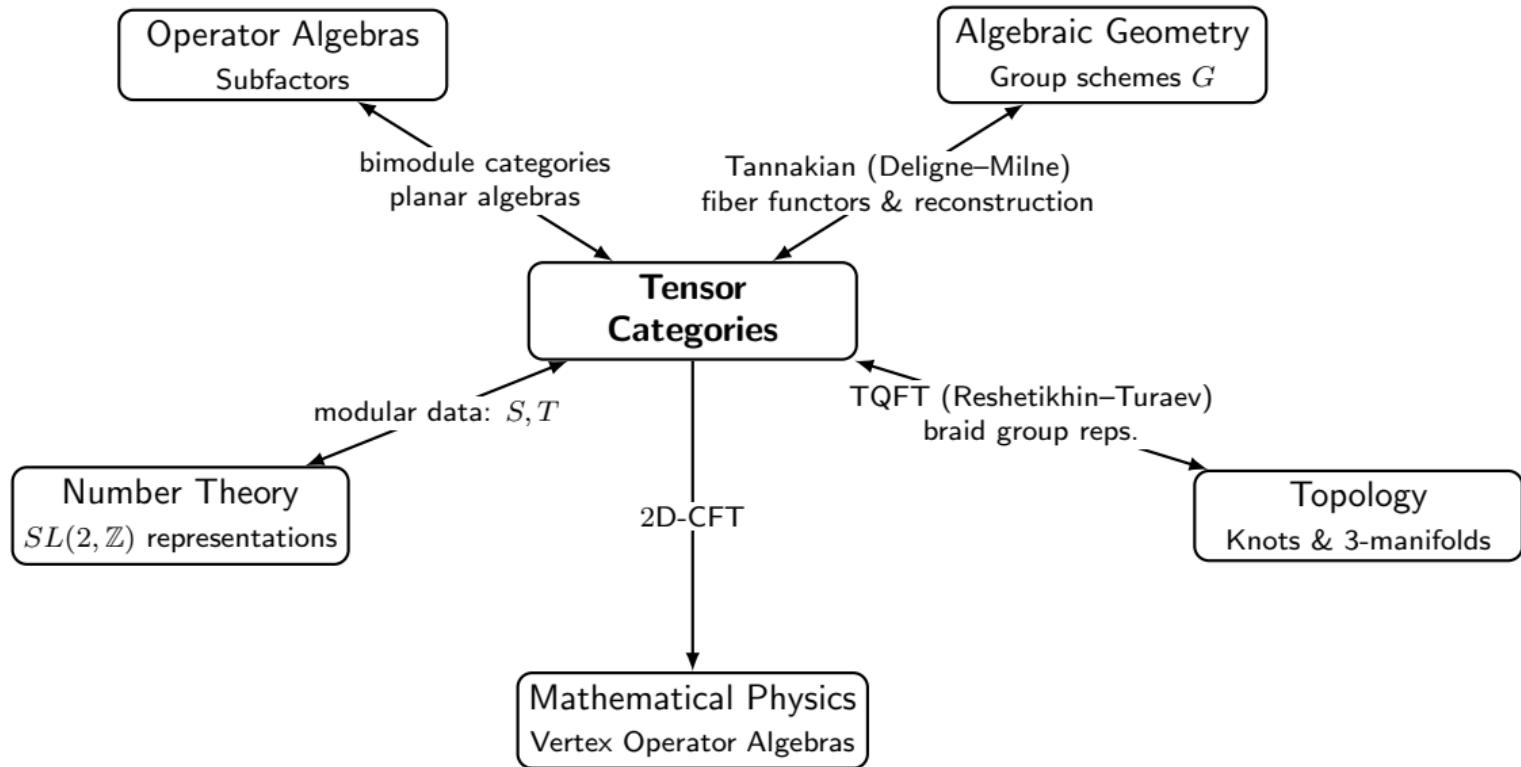
From Finite Groups to Vertex Operator Algebras: A Gentle Tour of Tensor Categories

Harshit Yadav

University of Alberta

October 29, 2025

Part 1: Tensor Categories Across Mathematics



Vec $_{\mathbb{k}}$: the baseline

Let Vec $_{\mathbb{k}}$ be the category of finite dimensional \mathbb{k} -vector spaces.

- Objects: finite-dimensional \mathbb{k} -vector spaces; morphisms: \mathbb{k} -linear maps.
- Can tensor objects: $(V, W) \mapsto V \otimes_{\mathbb{k}} W$.
- tensor product is associative and unital up to isomorphism:

$$(U \otimes V) \otimes W \xrightarrow[a_{U,V,W}]{\sim} U \otimes (V \otimes W), \quad V \otimes \mathbb{k} \xrightarrow{l_V}{\sim} V \xleftarrow[r_V]{\sim} \mathbb{k} \otimes V$$

- Rigid: dual $V^* = \text{Hom}_{\mathbb{k}}(V, k)$ is also an object in our category.

A *monoidal category* is a tuple $(\mathcal{C}, \otimes, \mathbb{1}, a, l, r)$ where \otimes is a way of taking tensor product of objects and $\mathbb{1}$ is the unit object which. Moreover, we have associativity isomorphism a and unit isomorphisms l, r as above, satisfying certain conditions.

A *tensor category* is a monoidal category that is rigid, \mathbb{k} -linear abelian, locally finite with $\text{End}_{\mathcal{C}}(\mathbb{1}) \cong \mathbb{k}$.

$\text{Rep}(G)$: a familiar tensor category

Let G be a finite group. The category $\text{Rep}(G)$ of finite-dimensional representations of G over \mathbb{k} is a tensor category.

- Objects: finite-dimensional \mathbb{k} -modules of G .
- Monoidal: $(V, W) \mapsto V \otimes W$ with diagonal G -action:

$$g \cdot (v \otimes_{\mathbb{k}} w) := g \cdot v \otimes_{\mathbb{k}} g \cdot w.$$

- $\mathbb{1} := \mathbb{k}$ is a G -module with trivial action $g \cdot x := x$.
- Rigid: given a G -module V , dual V^* with $(g \cdot f)(v) := f(g^{-1} \cdot v)$ is also a G -module.

A *fusion category* is a semisimple tensor category with finitely many simple objects (up to isomorphism). The *rank* of a fusion category is the number of isomorphism classes of simple objects.

- The tensor category $\text{Rep}(G)$ is a fusion category $\iff \text{char}(\mathbb{k}) \nmid |G|$.
- i) For GL_2 with standard V : $V \otimes V \cong S^2 V \oplus \wedge^2 V$ (i.e. $4 = 3 + 1$).
 - ii) The rank of $\mathcal{C} = \text{Rep}(S_n)$ is the number of partitions of n .

Braided and symmetric tensor categories

Notice that in $\text{Vec}_{\mathbb{k}}$ and $\text{Rep}(G)$, we have isomorphisms $c_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X$ (called *braiding*s) that are compatible with tensor product in the sense that

$$c_{X \otimes Y, Z} = (c_{X, Z} \otimes \text{Id}_Y)(\text{Id}_X \otimes c_{Y, Z}) \text{ and } c_{X, Y \otimes Z} = (\text{Id}_Y \otimes c_{X, Z})(c_{X, Y} \otimes \text{Id}_Z).$$

Tensor categories equipped with braiding are called *braided tensor categories*. A *symmetric tensor category* is a braided tensor category satisfying $c_{Y, X} \circ c_{X, Y} = \text{Id}_{X \otimes Y}$.

Let \mathcal{G} be an affine group scheme over \mathbb{k} . Then $\text{Rep}(\mathcal{G})$ is a symmetric tensor category.

Question: Are all symmetric tensor categories of the form $\text{Rep}(\mathcal{G})$?

[Saavedra-Rivano (1972)] [Deligne-Milne (1982)] If a symmetric tensor category \mathcal{C} admits a fiber functor $\omega : \mathcal{C} \rightarrow \text{Vec}_{\mathbb{k}}$, then yes.

[Deligne (1990)] Provided an intrinsic characterization of those symmetric tensor categories that admit fiber functors in $\text{char}(\mathbb{k}) = 0$.

[Deligne (2002)] Constructed symmetric tensor categories $\text{Rep}(GL_t)$, $\text{Rep}(S_t)$ for $t \in \mathbb{C}$ that do not admit fiber functors when $t \notin \mathbb{N}$.

Why go beyond symmetry? From symmetric to braided

Physics suggests *braiding* rather than symmetry.

- In 1980s, exactly solvable 1D models (Lieb, Baxter, Yang) led to quantum groups (Drinfeld, Jimbo).
- Quantum groups $U_q(\mathfrak{g})$ are *deformations* of universal enveloping algebras $U(\mathfrak{g})$ of Lie algebras \mathfrak{g} .
- Their representation categories are *braided* but not symmetric.

Braids → knots/links: Every knot is the closure of a braid (Alexander).

- For a *knot invariant*, it suffices to interpret braids algebraically.
- A braided rigid tensor category assigns morphisms to braids; closing gives *link polynomials*.
- In particular, the **Jones polynomial** arises from $\text{Rep}(U_q(\mathfrak{sl}_2))$ (via the standard 2D module and its R -matrix).

Let us add a twist...

Smooth 3-manifolds via surgery on framed links

- Every closed, oriented smooth 3-manifold arises by *Dehn surgery* on a **framed link** in S^3 (Lickorish-Wallace).
- To encode framing algebraically, we must upgrade from *braided* to **ribbon** categories by adding a twist.

A *ribbon category* is a braided tensor category $(\mathcal{C}, \otimes, \mathbb{1}, c)$ equipped with a natural isomorphism (twist) $\theta_X : X \rightarrow X$ satisfying:

$$\theta_{X \otimes Y} = (\theta_X \otimes \theta_Y) \circ c_{Y,X} \circ c_{X,Y}, \quad \theta_{X^*} = (\theta_X)^*.$$

Modular fusion categories

For a braided tensor category \mathcal{C} , define

$$\mathcal{C}' = \{X \in \mathcal{C} \mid c_{X,Y} \circ c_{Y,X} = \text{Id}_{X \otimes Y}\}.$$

We call \mathcal{C} *nondegenerate* if $\mathcal{C}' \simeq \text{Vec}_{\mathbb{k}}$.

A *Modular Tensor Category* (MTC) is a ribbon tensor category that is nondegenerate and a finite tensor category. A semisimple MTC is called a *Modular Fusion Category* (MFC).

- i) $\mathcal{C} = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.
- ii) Certain quotients of categories of tilting modules of $U_q(\mathfrak{g})$ at roots of unity are MFCs (Andersen, Reshetikhin, et al.).

Why care about modular fusion categories?

- Ribbon categories \mathcal{C} yields invariants for 3-manifolds. If \mathcal{C} is a MFC, we get a 3-dimensional Topological Quantum Field Theory.
- MFCs also model anyons in topological quantum computation (Kitaev, Freedman, Nayak, Wang, et al.).

Operator algebraic and Number theoretic connections

The main sources of MFCs are quantum groups, vertex operator algebras, and *factors/operator algebras*.

- a factor M is a Von Neumann algebra with trivial center.

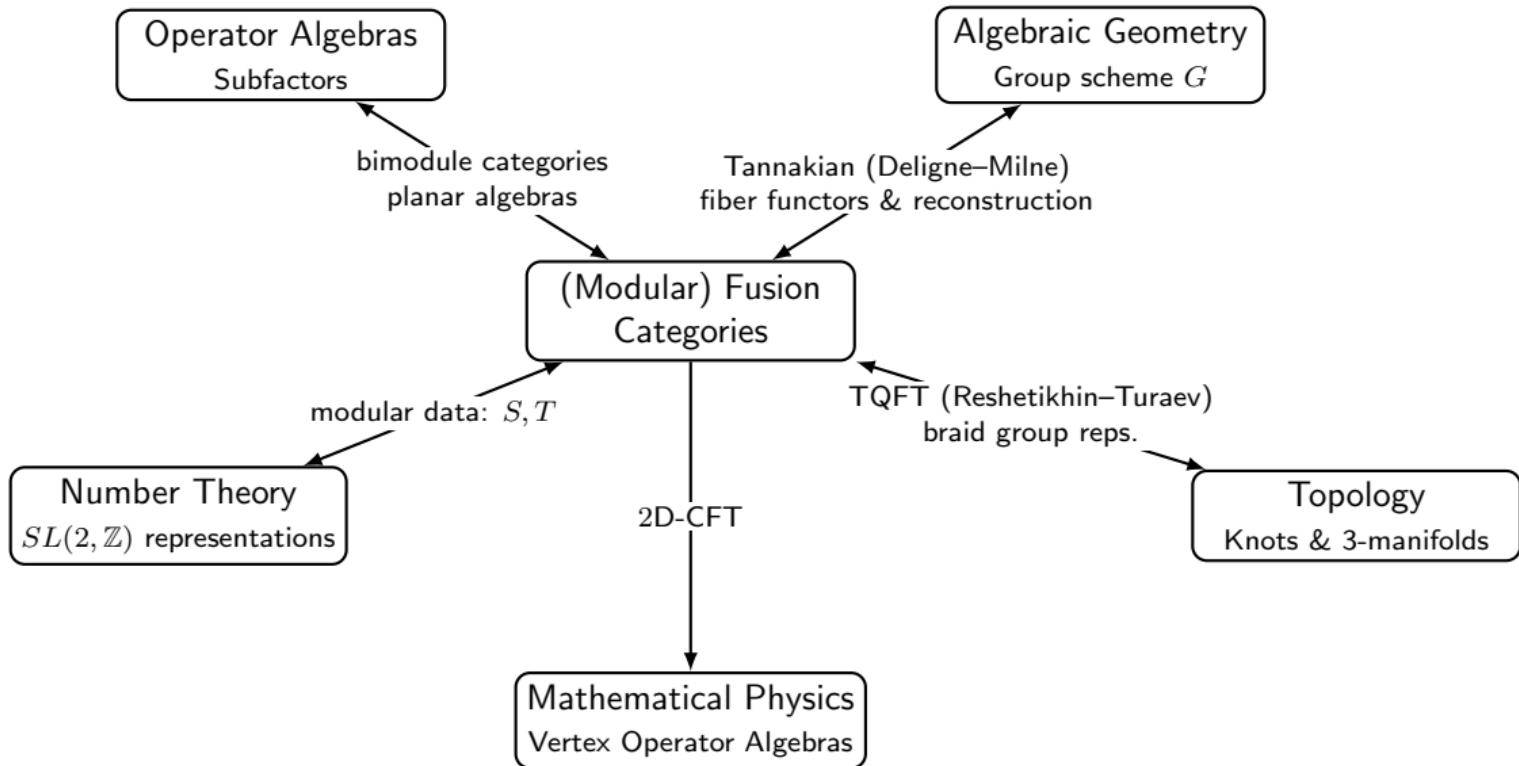
$M \rightsquigarrow {}_M\text{Bim}_M$ is fusion $\rightsquigarrow \mathcal{Z}({}_M\text{Bim}_M)$ is a MFC.

Important examples include the Haagerup fusion categories.

To a MFC of rank r , one can associate matrices $S, T \in GL_r(\mathbb{C})$ (called *modular data*) satisfying the relations of $SL(2, \mathbb{Z})$, thereby giving a (projective) representation.

- The matrix entries are algebraic integers. Congruence/positivity phenomena force arithmetic restrictions.
- [Bruillard-Ng-Rowell-Zhang (2015)] For each fixed rank r , there are only finitely many MTCs (up to equivalence) of rank r .

Tensor Categories Across Mathematics (at a glance)



Part 2: Modular tensor categories and Vertex Operator Algebras

Emphasis in the last 3 decades has been on the semisimple setting (MFCs) but last decade has seen a surge in interest in non-semisimple MTCs:

- manifold invariants obtained using non-semisimple MTCs being better,
- connections to topological quantum computation, and
- connections to logarithmic 2D-conformal field theories (log-CFTs)

Thus, as for the semisimple case, it is important to:

- construct families of MTCs, and
- study constructions for obtaining new MTCs from old ones.

Category of local modules

Given a braided tensor category \mathcal{C} , a *commutative algebra* in \mathcal{C} is an object $A \in \mathcal{C}$ equipped with multiplication $\mu : A \otimes A \rightarrow A$ and unit $\eta : \mathbb{1} \rightarrow A$ satisfying the usual associativity, unitality and commutativity axioms.

A *right A -module* in \mathcal{C} is a pair (M, ρ_M^r) where $M \in \mathcal{C}$ and $\rho_M^r : M \otimes A \rightarrow M$ satisfying the usual axioms.

In a similar manner, the category of A -bimodules ${}_A\mathcal{C}_A$ can be defined.

- The category ${}_A\mathcal{C}_A$ is monoidal with tensor product \otimes_A defined via coequalizers.
- The category of right A -modules in \mathcal{C} (denotes as \mathcal{C}_A) is a monoidal subcategory of ${}_A\mathcal{C}_A$.

To get a braided monoidal category, Pareigis introduced the following:

A right A -module (M, ρ_M^r) is called *local* if $\rho_M^r \circ c_{A,M} \circ c_{M,A} = \rho_M^r$.

[Pareigis (1995)] The category $\mathcal{C}_A^{\text{loc}}$ of local A -modules is braided monoidal.

Modularity of the category of local modules

Q: Provide sufficient conditions on \mathcal{C} and A to ensure $\mathcal{C}_A^{\text{loc}}$ is rigid, ribbon, modular, etc.

[Kirillov-Ostrik (2003)]: Provided an answer in the semisimple case.

An algebra A in a tensor category \mathcal{C} is called *exact* if for any object $X \in \mathcal{C}$, and a projective right A -module P , the object $X \otimes P$ is projective right A -module.

[Etingof-Ostrik (2003)]: Introduced exact algebras and proved: A exact $\implies {}_A\mathcal{C}_A$ is rigid.

Theorem (Shimizu-Y.)

If \mathcal{C} is a braided finite tensor category and A a commutative algebra in \mathcal{C} . Then,

- ① If A is exact, then $\mathcal{C}_A^{\text{loc}}$ is a braided finite tensor category.
- ② If \mathcal{C} is a MTC and A is an exact symmetric Frobenius algebra, then $\mathcal{C}_A^{\text{loc}}$ is a MTC.

We also provided ways to construct examples of commutative exact (symmetric Frobenius) algebras in MTCs.

This has applications to VOAs as we will see next.

Vertex Operator Algebras (VOAs)

A *vertex operator algebra* is \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$ along with

- a vector $|0\rangle \in V_{(0)}$,
- a map $Y(\cdot, z) : V \rightarrow (\text{End } V)\{z\}$, and
- a vector $\omega \in V_{(2)}$. We write $Y(\omega, z) = \sum_{n \in \mathbb{Z}} L(n)z^{-n-2}$.

satisfying certain conditions like grading restriction, Jacobi identity, etc.

An (*ordinary*) *VOA module* is a pair (W, Y_M) where

- W is a vector space, and
- $Y_M(\cdot, z) : V \rightarrow (\text{End } W)\{z\}$ is a map

such that $W = \prod_{h \in \mathbb{C}} W_{[h]}$ is a \mathbb{C} -graded vector space and each $W_{[h]}$ is a $L(0)$ -eigenspace of eigenvalue h . We also require this data to satisfy certain conditions like grading restriction, Jacobi identity, etc.

VOAs: foundational examples

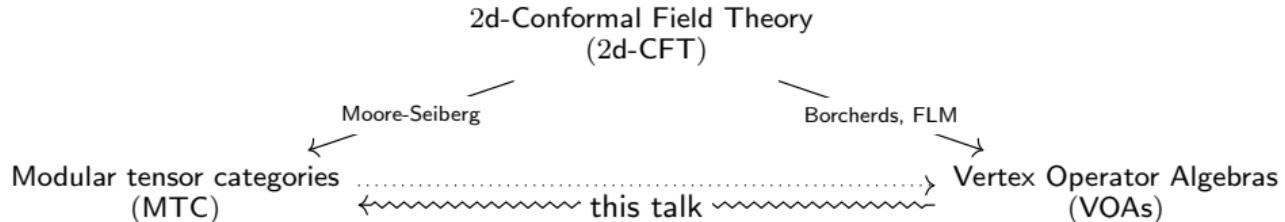
There are two important classes of VOAs:

- A $\mathbb{Z}_{\geq 0}$ -graded, simple, self-contragredient and C_2 -cofinite VOA is called *strongly finite*.
- A strongly finite and with all modules semisimple is called *strongly rational*.

There are three foundational families of strongly rational VOAs:

- ① **Affine (WZW) VOAs** [Frenkel-Zhu (1992) Duke Math. J.]
 - ▶ Denoted $V_k(\mathfrak{g})$ and constructed using a Lie algebra \mathfrak{g} and a choice of level k .
 - ▶ Strongly rational for $k \in \mathbb{Z}_{\geq 0}$ (classical result).
 - ▶ [Arakawa (2016) Duke Math. J.] Proved rationality of $L_k(\mathfrak{g})$ at admissible fractional levels.
- ② **Lattice VOAs** [Frenkel-Lepowsky-Meurman (1987)]
 - ▶ V_L for even lattices L (e.g. E_8 , Leech).
 - ▶ [Dong (1996) Adv. Math.] Strongly rational.
 - ▶ category of modules is equivalent to Vec_A (the category of $A = L^*/L$ -graded vector spaces).
- ③ **W -algebras** [Feigin-Frenkel (1992) Phys. Lett. B]
 - ▶ Denoted $W_k(\mathfrak{g}, f)$ for a Lie algebra \mathfrak{g} , level $k \in \mathbb{k}$ and a nilpotent element $f \in \mathfrak{g}$.
 - ▶ Defined as quantum Drinfeld-Sokolov reduction of affine VOAs.
 - ▶ [Arakawa (2015) Annals of Math.] Strongly rational for so called ‘nondegenerate’ levels k and principal nilpotent f .

VOA tensor categories



Expectation: V a 'nice enough' VOA $\implies \mathcal{C} = \text{Rep}(V)$ is a MTC.

Strategy:

- ① First analyze key examples and prove this property.
- ② Then use constructions (extensions, orbifolds, cosets, etc.) to get new examples.

History of some key results

[Kazhdan-Lusztig (1993-1994) JAMS]: Constructed braided monoidal categories from representations of affine VOAs $V_k(\mathfrak{g})$ for irrational and certain negative integer levels.

[Huang-Lepowsky (1990s)]: Gave a general theory of tensor product of ordinary VOA-modules.

(⚠ Tensor product of V -modules W_1, W_2 is not based on vector space tensor product, defined using universal property and it is a certain subspace of $(W'_1 \otimes W'_2)^*$.)

[Huang (2008) CCM]: Proved that for a strongly rational VOA V , its category $\mathcal{C} = \text{Rep}(V)$ of ordinary modules is a finite semisimple MTC.

Beyond strongly rational VOAs

[Huang-Lepowsky-Zhang (2010s)]: Developed logarithmic tensor product theory for non-semisimple categories of modules of VOAs satisfying certain finiteness and reductivity conditions.

[Huang (2008) CCM]: Proved that for a strongly finite VOA V satisfying certain additional conditions, $\mathcal{C} = \text{Rep}(V)$ is a braided monoidal category.

[McRae (2021)]: Proved that if V is a strongly finite VOA such that $\text{Rep}(V)$ is rigid, then it is a MTC.

Step 1: HLZ theory has been used to obtain many examples of non-rational VOAs whose categories of modules are braided monoidal and often modular (cf. works of Creutzig, McRae, Kanade, Ridout, Yang etc.)

Step 2: Prove properties of $\mathcal{C} = \text{Rep}(V)$ like rigidity and modularity are preserved under constructions like extensions, orbifolds, cosets, of VOAs.

An (*conformal*) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \text{Rep}(V)$ and $\mathcal{D} = \text{Rep}(W)$.

Theorem: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae)

If \mathcal{C} is a braided monoidal category and $W \in \mathcal{C}$, then

- $A := W$ is a commutative algebra object in \mathcal{C} .
- $\mathcal{D} \cong_{\text{br}} \otimes \mathcal{C}_A^{\text{loc}}$ is the category of local A -modules in \mathcal{C} .

Upshot: Understanding the category $\mathcal{C}_A^{\text{loc}}$ helps us understand $\text{Rep}(W)$.

Applications to VOA extensions

By applying our earlier theorem on rigidity of category of local modules, we obtain:

Theorem (Creutzig-McRae-Shimizu-Y.)

If V is a strongly finite VOA with $\text{Rep}(V)$ rigid and $V \subseteq A$ is a VOA extension with A simple and $\mathbb{Z}_{\geq 0}$ -graded, then

- If A is strongly finite, then, $\text{Rep}(A)$ is rigid.
- If V is a strongly rational VOA, then A is strongly rational.

W-algebras

Certain hook type W -superalgebras like

$$A = W_k(\mathfrak{so}_{2n+2m+1}, f_{\mathfrak{so}_{2m+1}})$$

are extensions of the strongly rational VOAs like $W_s(\mathfrak{sp}_{2r}) \otimes L_\ell(\mathfrak{so}_{2n})$. Also they are simple and $\mathbb{Z}_{\geq 0}$ -graded. Thus, they are strongly rational.

We also obtain techniques for obtaining rigidity of $\text{Rep}(V)$ by leveraging extensions $V \subset W$ where $\text{Rep}(W)$ is known to be rigid.

Thank you!

Other VOA construction

1. **Infinite extensions.** We considered extensions $V \subset W$ where W is a commutative algebra in $\mathcal{C} = \text{Rep}(V)$. However, one can consider more general situations where W is an infinite algebra, that is an algebra in the ind-completion of \mathcal{C} . In a work in preparation with Shimizu, we have generalized parts of the previous theorems to this setting.
2. **Orbifolds.** Given a VOA V and a finite group G of automorphisms of V , the orbifold VOA V^G is the sub-VOA of G -invariant vectors.

The categories $\text{Rep}(V)$ and $\text{Rep}(V^G)$ are related by a two step process:

- First consider the category \mathcal{D} of G -twisted modules of V . This is a G -graded category with trivial component $\text{Rep}(V)$.
- Then the category $\text{Rep}(V^G)$ is obtained as the G -equivariantization of \mathcal{D} .

In a work in preparation with others, we consider problem of existence of G -graded extensions of tensor categories.

3. **Coset construction.** Given a VOA V and a sub VOA $U \subset V$, the coset VOA $\text{Com}(U, V)$ is the sub VOA of vectors commuting with U . In an ongoing work with Shimizu, we are studying the coset construction categorically.

Example details

Consider the W -algebra

$$A = W_k(\mathfrak{so}_{2n+2m+1}, f_{\mathfrak{so}_{2m+1}})$$

for

$$\psi = k + 2m + 2n - 1 = \frac{2n + 2m + 2r + 1}{2(m + 1)}$$

and r a positive integer such that $\gcd(2n + 2r - 1, m + 1) = 1$.

In this case, A is a conformal extension of

$$W_s(\mathfrak{sp}_{2r}) \otimes L_\ell(\mathfrak{so}_{2n})$$

at the non-degenerate admissible level $s = -(r + 1) + \frac{2n + 2m + 2r + 1}{2(2r + 2n - 1)}$ and the admissible level $\ell = -(2n - 2) + \frac{2n + 2r - 1}{2(m + 1)}$.