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Veck: the baseline

Let Veck be the category of finite dimensional k-vector spaces.
Objects: finite-dimensional k-vector spaces; morphisms: k-linear maps.

Can tensor objects: (V,W ) 7→ V ⊗k W .

tensor product is associative and unital up to isomorphism:

(U ⊗ V )⊗W ∼−−−−→
aU,V,W

U ⊗ (V ⊗W ), V ⊗ k ∼−→
lV

V
∼←−
rV

k⊗ V

Rigid: dual V ∗ = Homk(V, k) is also an object in our category.

A monoidal category is a tuple (C,⊗,1, a, l, r) where ⊗ is a way of taking tensor product of
objects and 1 is the unit object which. Moreover, we have associativity isomorphism a and
unit isomorphisms l, r as above, satisfying certain conditions.

A tensor category is a monoidal category that is rigid, k-linear abelian, locally finite with
EndC(1) ∼= k.



Rep(G): a familiar tensor category
Let G be a finite group. The category Rep(G) of finite-dimensional representations of G over
k is a tensor category.

Objects: finite-dimensional k-modules of G.

Monoidal: (V,W ) 7→ V ⊗W with diagonal G-action:

g · (v ⊗k w) := g · v ⊗k g · w.

1 := k is a G-module with trivial action g · x := x.

Rigid: given a G-module V , dual V ∗ with (g · f)(v) := f(g−1 · v) is also a G-module.

A fusion category is a semisimple tensor category with finitely many simple objects (up to
isomorphism). The rank of a fusion category is the number of isomorphism classes of simple
objects.

The tensor category Rep(G) is a fusion category ⇐⇒ char(k) ∤ |G|.

i) For GL2 with standard V : V ⊗ V ∼= S2V ⊕ ∧2V (i.e. 4 = 3 + 1).
ii) The rank of C = Rep(Sn) is the number of partitions of n.



Braided and symmetric tensor categories

Notice that in Veck and Rep(G), we have isomorphisms cX,Y : X ⊗ Y ∼−→ Y ⊗X (called
braidings) that are compatible with tensor product in the sense that

cX⊗Y,Z = (cX,Z ⊗ IdY )(IdX ⊗ cY,Z) and cX,Y⊗Z = (IdY ⊗ cX,Z)(cX,Y ⊗ IdZ).

Tensor categories equipped with braidings are called braided tensor categories. A symmetric
tensor category is a braided tensor category satisfying cY,X ◦ cX,Y = IdX⊗Y .

Let G be an affine group scheme over k. Then Rep(G) is a symmetric tensor category.

Question: Are all symmetric tensor categories of the form Rep(G)?

[Saavedra-Rivano (1972)] [Deligne-Milne (1982)] If a symmetric tensor category C admits a fiber
functor ω : C → Veck, then yes.
[Deligne (1990)] Provided an intrinsic characterization of those symmetric tensor categories that
admit fiber functors in char(k) = 0.
[Deligne (2002)] Constructed symmetric tensor categories Rep(GLt), Rep(St) for t ∈ C that do
not admit fiber functors when t /∈ N.



Why go beyond symmetry? From symmetric to braided

Physics suggests braiding rather than symmetry.

In 1980s, exactly solvable 1D models (Lieb, Baxter, Yang) led to quantum groups
(Drinfeld, Jimbo).

Quantum groups Uq(g) are deformations of universal enveloping algebras U(g) of Lie
algebras g.

Their representation categories are braided but not symmetric.

Braids → knots/links: Every knot is the closure of a braid (Alexander).

For a knot invariant, it suffices to interpret braids algebraically.

A braided rigid tensor category assigns morphisms to braids; closing gives link polynomials.

In particular, the Jones polynomial arises from Rep(Uq(sl2)) (via the standard 2D
module and its R-matrix).



Let us add a twist...

Smooth 3-manifolds via surgery on framed links

Every closed, oriented smooth 3-manifold arises by Dehn surgery on a framed link in S3

(Lickorish-Wallace).

To encode framing algebraically, we must upgrade from braided to ribbon categories by
adding a twist.

A ribbon category is a braided tensor category (C,⊗,1, c) equipped with a natural
isomorphism (twist) θX : X → X satisfying:

θX⊗Y = (θX ⊗ θY ) ◦ cY,X ◦ cX,Y , θX∗ = (θX)∗.



Modular fusion categories

For a braided tensor category C, define

C′ = {X ∈ C | cX,Y ◦ cY,X = IdX⊗Y }.

We call C nondegenerate if C′ ≃ Veck.

A Modular Tensor Category (MTC) is a ribbon tensor category that is nondegenerate and a
finite tensor category. A semisimple MTC is called a Modular Fusion Category (MFC).

i) C = Rep(uq(sl2)) where q = e2πi/n with n odd is a MTC.
ii) Certain quotients of categories of tilting modules of Uq(g) at roots of unity are MFCs
(Andersen, Reshetikhin, et al.).

Why care about modular fusion categories?

Ribbon categories C yields invariants for 3-manifolds. If C is a MFC, we get a
3-dimensional Topological Quantum Field Theory.

MFCs also model anyons in topological quantum computation (Kitaev, Freedman, Nayak,
Wang, et al.).



Operator algebraic and Number theoretic connections

The main sources of MFCs are quantum groups, vertex operator algebras, and
factors/operator algebras.

a factor M is a Von Neumann algebra with trivial center.

M ⇝ MBimM is fusion⇝ Z(MBimM ) is a MFC.

Important examples include the Haagerup fusion categories.

To a MFC of rank r, one can associate matrices S, T ∈ GLr(C) (called modular data)
satisfying the relations of SL(2,Z), thereby giving a (projective) representation.

The matrix entries are algebraic integers. Congruence/positivity phenomena force
arithmetic restrictions.

[Bruillard-Ng-Rowell-Zhang (2015)] For each fixed rank r, there are only finitely many MTCs
(up to equivalence) of rank r.
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Part 2: Modular tensor categories and Vertex Operator Algebras

Emphasis in the last 3 decades has been on the semisimple setting (MFCs) but last decade has
seen a surge in interest in non-semisimple MTCs:

manifold invariants obtained using non-semisimple MTCs being better,

connections to topological quantum computation, and

connections to logarithmic 2D-conformal field theories (log-CFTs)

Thus, as for the semisimple case, it is important to:

construct families of MTCs, and

study constructions for obtaining new MTCs from old ones.



Category of local modules

Given a braided tensor category C, a commutative algebra in C is an object A ∈ C equipped
with multiplication µ : A⊗A→ A and unit η : 1→ A satisfying the usual associativity,
unitality and commutativity axioms.

A right A-module in C is a pair (M,ρrM ) where M ∈ C and ρrM :M ⊗A→M satisfying the
usual axioms.

In a similar manner, the category of A-bimodules ACA can be defined.

The category ACA is monoidal with tensor product ⊗A defined via coequalizers.

The category of right A-modules in C (denotes as CA) is a monoidal subcategory of ACA.
To get a braided monoidal category, Pareigis introduced the following:

A right A-module (M,ρrM ) is called local if ρrM ◦ cA,M ◦ cM,A = ρrM .

[Pareigis (1995)] The category ClocA of local A-modules is braided monoidal.



Modularity of the category of local modules

Q: Provide sufficient conditions on C and A to ensure ClocA is rigid, ribbon, modular, etc.

[Kirillov-Ostrik (2003)]: Provided an answer in the semisimple case.

An algebra A in a tensor category C is called exact if for any object X ∈ C, and a projective
right A-module P , the object X ⊗ P is projective right A-module.

[Etingof-Ostrik (2003)]: Introduced exact algebras and proved: A exact =⇒ ACA is rigid.

Theorem (Shimizu-Y.)

If C is a braided finite tensor category and A a commutative algebra in C. Then,
1 If A is exact, then ClocA is a braided finite tensor category.

2 If C is a MTC and A is an exact symmetric Frobenius algebra, then ClocA is a MTC.

We also provided ways to construct examples of commutative exact (symmetric Frobenius)
algebras in MTCs.

This has applications to VOAs as we will see next.



Vertex Operator Algebras (VOAs)

A vertex operator algebra is Z-graded vector space V =
∏

n∈Z V(n) along with

a vector |0⟩ ∈ V(0),
a map Y (·, z) : V → (EndV ){z}, and
a vector ω ∈ V(2). We write Y (ω, z) =

∑
n∈Z L(n)z

−n−2.

satisfying certain conditions like grading restriction, Jacobi identity, etc.

An (ordinary) VOA module is a pair (W, YM ) where

W is a vector space, and

YM (·, z) : V → (EndW ){z} is a map

such that W =
∏

h∈CW[h] is a C-graded vector space and each W[h] is a L(0)-eigenspace of
eigenvalue h. We also require this data to satisfying certain conditions like grading restriction,
Jacobi identity, etc.



VOAs: foundational examples

There are two important classes of VOAs:

A Z≥0-graded, simple, self-contragredient and C2-cofinite VOA is called strongly finite.

A strongly finite and with all modules semisimple is called strongly rational.

There are three foundational families of strongly rational VOAs:
1 Affine (WZW) VOAs [Frenkel-Zhu (1992) Duke Math. J.]

▶ Denoted Vk(g) and constructed using a Lie algebra g and a choice of level k.
▶ Strongly rational for k ∈ Z≥0 (classical result).
▶ [Arakawa (2016) Duke Math. J.] Proved rationality of Lk(g) at admissible fractional levels.

2 Lattice VOAs [Frenkel-Lepowsky-Meurman (1987)]

▶ VL for even lattices L (e.g. E8, Leech).
▶ [Dong (1996) Adv. Math.] Strongly rational.
▶ category of modules is equivalent to VecA (the category of A = L∗/L-graded vector spaces).

3 W -algebras [Feigin-Frenkel (1992) Phys. Lett. B]

▶ Denoted Wk(g, f) for a Lie algebra g, level k ∈ k and a nilpotent element f ∈ g.
▶ Defined as quantum Drinfeld-Sokolov reduction of affine VOAs.
▶ [Arakawa (2015) Annals of Math.] Strongly rational for so called ‘nondegenerate’ levels k and

principal nilpotent f .



VOA tensor categories

2d-Conformal Field Theory
(2d-CFT)

Modular tensor categories
(MTC)

Vertex Operator Algebras
(VOAs)

Moore-Seiberg Borcherds, FLM

this talk

Expectation: V a ‘nice enough’ VOA =⇒ C = Rep(V ) is a MTC.

Strategy:

1 First analyze key examples and prove this property.

2 Then use constructions (extensions, orbifolds, cosets, etc.) to get new examples.



History of some key results

[Kazhdan-Lusztig (1993-1994) JAMS]: Constructed braided monoidal categories from
representations of affine VOAs Vk(g) for irrational and certain negative integer levels.

[Huang-Lepowsky (1990s)]: Gave a general theory of tensor product of ordinary VOA-modules.
(. Tensor product of V -modules W1,W2 is not based on vector space tensor product, defined using universal

property and it is a certain subspace of (W ′
1 ⊗W ′

2)
∗ .)

[Huang (2008) CCM]: Proved that for a strongly rational VOA V , its category C = Rep(V ) of
ordinary modules is a finite semisimple MTC.

Beyond strongly rational VOAs

[Huang-Lepowsky-Zhang (2010s)]: Developed logarithmic tensor product theory for non-semisimple
categories of modules of VOAs satisfying certain finiteness and reductivity conditions.

[Huang (2008) CCM]: Proved that for a strongly finite VOA V satisfying certain additional
conditions, C = Rep(V ) is a braided monoidal category.

[McRae (2021)]: Proved that if V is a strongly finite VOA such that Rep(V ) is rigid, then it is a
MTC.



Step 1: HLZ theory has been used to obtain many examples of non-rational VOAs whose
categories of modules are braided monoidal and often modular (cf. works of Creutzig, McRae,
Kanade, Ridout, Yang etc.)

Step 2: Prove properties of C = Rep(V ) like rigidity and modularity are preserved under
constructions like extensions, orbifolds, cosets, of VOAs.

An (conformal) extension is an injective map of VOAs V ⊂W with the same conformal vector.

Given an extension of VOAs V ⊂W we can relate C = Rep(V ) and D = Rep(W ).

Theorem: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae)
If C is a braided monoidal category and W ∈ C, then

A :=W is a commutative algebra object in C.
D ∼=br⊗ ClocA is the category of local A-modules in C.

Upshot: Understanding the category ClocA helps us understand Rep(W ).



Applications to VOA extensions
By applying our earlier theorem on rigidity of category of local modules, we obtain:

Theorem (Creutzig-Mcrae-Shimizu-Y.)

If V is a strongly finite VOA with Rep(V ) rigid and V ⊆ A is a VOA extension with A simple
and Z≥0-graded, then

If A is strongly finite, then, Rep(A) is rigid.

If V is a strongly rational VOA, then A is strongly rational.

W-algebras

Certain hook type W -superalgebras like

A =Wk(so2n+2m+1, fso2m+1)

are extensions of the strongly rational VOAs like Ws(sp2r)⊗ Lℓ(so2n). Also they are simple
and Z≥0-graded. Thus, they are strongly rational.

We also obtain techniques for obtaining rigidity of Rep(V ) by leveraging extensions V ⊂W
where Rep(W ) is known to be rigid.



Thank you!



Other VOA construction

1. Infinite extensions. We considered extensions V ⊂W where W is a commutative algebra
in C = Rep(V ). However, one can consider more general situations where W is an infinite
algebra, that is an algebra in the ind-completion of C. In a work in preparation with Shimizu,
we have generalized parts of the previous theorems to this setting.

2. Orbifolds. Given a VOA V and a finite group G of automorphisms of V , the orbifold VOA
V G is the sub-VOA of G-invariant vectors.
The categories Rep(V ) and Rep(V G) are related by a two step process:

First consider the category D of G-twisted modules of V . This is a G-graded category
with trivial component Rep(V ).

Then the category Rep(V G) is obtained as the G-equivariantization of D.
In a work in preparation with others, we consider problem of existence of G-graded extensions
of tensor categories.

3. Coset construction. Given a VOA V and a sub VOA U ⊂ V , the coset VOA Com(U, V )
is the sub VOA of vectors commuting with U . In an ongoing work with Shimizu, we are
studying the coset construction categorically.



Example details

Consider the W -algebra
A =Wk(so2n+2m+1, fso2m+1)

for

ψ = k + 2m+ 2n− 1 =
2n+ 2m+ 2r + 1

2(m+ 1)

and r a positive integer such that gcd(2n+ 2r − 1,m+ 1) = 1.

In this case, A is a conformal extension of

Ws(sp2r)⊗ Lℓ(so2n)

at the non-degenerate admissible level s = −(r + 1) + 2n+2m+2r+1
2(2r+2n−1) and the admissible level

ℓ = −(2n− 2) + 2n+2r−1
2(m+1) .


