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Frobenius and perfect functors

Take an algebra A over a field k.

A is called Frobenius if A ∼= Homk(A,k) as a left A-module.

(Kasch, Nakayama-Tsuzuku) An extension B ⊂ A is called Frobenius if

AB is finitely generated projective and A ∼= HomB(AB, BB) as (B,A)-bimodules.

Given an extension f : B ↪→ A as above, we have the restriction functor

Resf : Rep(A) → Rep(B), M 7→ Mf .

(Morita) A⊗B − and HomB(A,−) are left and right adjoints, respectively to Resf .

Definition: A functor F is called Frobenius if F la ∼= F ra.

The condition AB is f.g. projective ensures that HomB(A,−) ∼= HomB(A,B)⊗B − and thus

it admits a right adjoint.

Definition: A functor F is called perfect if it admits a double right adjoint.
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Tensor functors

Let H be a finite-dimensional Hopf algebra. Then Rep(H) is a finite tensor category.

Moreover, a bialgebra map f : K → H induces Resf : Rep(H) → Rep(K) which is:

a k-linear, exact, faithful strong monoidal functor (tensor functor), and

perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Resf Frobenius?

Let Λ ∈ H be a nonzero left integral (Λh = ε(h)Λ). The modular function αH ∈ H∗ is

determined by hΛ = αH(h) Λ.

Similarly, taking a right cointegral λ, the distinguished grouplike element gH ∈ H is the

unique element satisfying h1 λ(h2) = λ(h) gH .

Theorem: (Fischman-Montgomery-Schneider) The restriction functor Resf is Frobenius if and

only if αH |K = αK .

Set χf = αH |K ∗ (αK)−1. Then, αH |K = αK ⇐⇒ αH |K ∗ (αK)−1 = εK .
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Relative modular object

Q: When is a perfect tensor functor F : C → D between finite tensor categories Frobenius?

The categorical analogue of αH is the distinguished invertible object DC of a finite tensor

category C.
(Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite

tensor category as a natural isomorphism

RX : ∗∗X ⊗DC
∼−→ DC ⊗X∗∗ for every X ∈ C.

The element gH ∈ H encodes the data of the isomorphism RX .

Theorem: (Shimizu)

1 There exists an object χF ∈ D that ‘measures’ the gap between F la and F ra. Namely

F ra ∼= F la(χF ⊗−).

2 χF
∼= F (DC)⊗D∗

D. Moreover, χF
∼= 1D if and only F is Frobenius.
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⊗-Frobenius functors
Given a tensor functor F : C → D:

Denote by FDF the C-bimodule category D with action

X ▷ Y ◁ X ′ := F (X)⊗ Y ⊗ F (X ′) (X,X ′ ∈ C, Y ∈ D).

With this, F : C → FDF is a (strong) C-bimodule functor.

As C is rigid, its adjoints F ra and F la are also (strong) C-bimodule functors.

Definition

A tensor functor F : C → D is called ⊗-Frobenius if F la ∼= F ra as C -bimodule functors.

Moreover, we can define the center of F : C → D

Z(F ) : Z(C) → Z(FDF )

where Z(C) is the center of C and Z(FDF ) is the relative center of the bimodule category

FDF . Z(FDF ) is also a finite tensor category.

Note: The object χF is equipped with a half-braiding making it an object in Z(FDF ).
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Main result

Theorem

For a perfect tensor functor F : C → D, the following are equivalent:

1 F is ⊗-Frobenius.

2 Z(F ) : Z(C) → Z(FDF ) is a Frobenius functor.

3 Z(FDF ) is unimodular finite tensor category.

4 F preserves the Radford isomorphism.

Example

Two classes of examples:

1. A central tensor functor that is Frobenius is ⊗-Frobenius. If C is unimodular, then

Z(C) → C is Frobenius and moreover ⊗-Frobenius.

2. Suppose that C and D are fusion categories of nonzero global dimension. Then every tensor

functor F : C → D is ⊗-Frobenius.
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Hopf algebra case
Suppose that f : K → H is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Resf is ⊗-Frobenius if and only if f(gK) = gH and αH ◦ f = αK .

Example

For a Hopf algebra H, take f to be the unit u : k → H of H. Then, f is a bialgebra map

whose induced functor is just the fiber functor Ff : Rep(H) → Vec.

1 As αH is an algebra map, it satisfies αH(1H) = 1. Therefore, αH |k = αk. This shows

that the fiber functor Ff is always a Frobenius functor.

2 Also, note that gk = 1. Thus, Ff is ⊗-Frobenius if and only if gH = f(gk) = 1H . This

happens if and only if H∗ is unimodular.

For instance, for H = uq(sl2)
∗, its dual H∗ ∼= uq(sl2) is unimodular. Thus, the fiber functor

F : Rep(uq(sl2)
∗) → Vec is ⊗-Frobenius.

On the other hand, the fiber functor F : Rep(uq(sl2)) → Vec is Frobenius, but not

⊗-Frobenius because uq(sl2)
∗ is not unimodular.
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Twisting actions and transfer
Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category D.

Then,

to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is

encoded in an pivotal D-module category M (proposal of Fuchs-Schweigert).

Let C be a pivotal finite tensor category (∃ p : idC
∼−→ (−)∗∗). Every exact left C-module

category M admits a C-module endofunctor SCM (relative Serre functor).

We call M pivotal is SCM is trivializable.

Given F : C → D and a left D-module category M, define the pulled-back C-module FM with
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Questions

We considered Frobenius type properties of a perfect tensor functor F : C → D. What

about the case where C is tensor subcategory of D?

Is there an analogue of ⊗-Frobenius functors for not necessarily monoidal categories?

Generalization to infinite-dimensional Hopf algebras? (see recent work of

Flake-Laugwitz-Posur)
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Converse

Given a tensor functor F : C → D and D-module category M,

we get a functor

F ∗
M : D∗

M → C∗
M

We say that F is Frobenius with respect to M if F ∗
M is Frobenius, i.e., it has a left and right

adjoint that are isomorphic functors.

Theorem

Suppose that F : C → D is a perfect tensor functor and M is a unimodular (or pivotal)

D-module category. Then FM is a unimodular (or pivotal) C-module category if and only if F

is Frobenius with respect to M.

If F is ⊗-Frobenius, then for every C-module category M, F Frobenius with respect to M.
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Definition

Let f : H ′ → H be a perfect bialgebra map and L an exact H ′-comodule algebra. An

f-Frobenius element of L is an invertible element a ∈ L satisfying

a l a−1 = χf(l−1)l0, (∀ l ∈ L)

f(a−1)⊗ a0 = f(gH′) gH ⊗ a.

We say that L is f-Frobenius if it admits an f-Frobenius element.

We prove that:

Theorem

The tensor functor Ff is Frobenius with respect to Rep(L) if and only if L admits an

f-Frobenius element.
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