

Tensor functors with isomorphic left and right adjoints

Harshit Yadav

based on arXiv:2501.16978, joint with David Jaklitsch

University of Alberta

August 13, 2025

Frobenius and perfect functors

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

(Morita) $A \otimes_B -$ and $\text{Hom}_B(A, -)$ are left and right adjoints, respectively to Res_f .

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

(Morita) $A \otimes_B -$ and $\text{Hom}_B(A, -)$ are left and right adjoints, respectively to Res_f .

Definition: A functor F is called *Frobenius* if $F^{\text{la}} \cong F^{\text{ra}}$.

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if

A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

(Morita) $A \otimes_B -$ and $\text{Hom}_B(A, -)$ are left and right adjoints, respectively to Res_f .

Definition: A functor F is called *Frobenius* if $F^{\text{la}} \cong F^{\text{ra}}$.

The condition A_B is f.g. projective ensures that $\text{Hom}_B(A, -) \cong \text{Hom}_B(A, B) \otimes_B -$ and thus it admits a right adjoint.

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if

A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

(Morita) $A \otimes_B -$ and $\text{Hom}_B(A, -)$ are left and right adjoints, respectively to Res_f .

Definition: A functor F is called *Frobenius* if $F^{\text{la}} \cong F^{\text{ra}}$.

The condition A_B is f.g. projective ensures that $\text{Hom}_B(A, -) \cong \text{Hom}_B(A, B) \otimes_B -$ and thus it admits a right adjoint.

Definition: A functor F is called *perfect* if it admits a double right adjoint.

Frobenius and perfect functors

Take an algebra A over a field \mathbb{k} .

- A is called *Frobenius* if $A \cong \text{Hom}_{\mathbb{k}}(A, \mathbb{k})$ as a left A -module.
- (Kasch, Nakayama-Tsuzuku) An extension $B \subset A$ is called *Frobenius* if

A_B is finitely generated projective and $A \cong \text{Hom}_B(A_B, B_B)$ as (B, A) -bimodules.

Given an extension $f : B \hookrightarrow A$ as above, we have the restriction functor

$$\text{Res}_f : \text{Rep}(A) \rightarrow \text{Rep}(B), \quad M \mapsto M_f.$$

(Morita) $A \otimes_B -$ and $\text{Hom}_B(A, -)$ are left and right adjoints, respectively to Res_f .

Definition: A functor F is called *Frobenius* if $F^{\text{la}} \cong F^{\text{ra}}$.

The condition A_B is f.g. projective ensures that $\text{Hom}_B(A, -) \cong \text{Hom}_B(A, B) \otimes_B -$ and thus it admits a right adjoint.

Definition: A functor F is called *perfect* if it admits a double right adjoint.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.
- Similarly, taking a right cointegral λ , the distinguished grouplike element $g_H \in H$ is the unique element satisfying $h_1 \lambda(h_2) = \lambda(h) g_H$.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.
- Similarly, taking a right cointegral λ , the distinguished grouplike element $g_H \in H$ is the unique element satisfying $h_1 \lambda(h_2) = \lambda(h) g_H$.

Theorem: (Fischman-Montgomery-Schneider) The restriction functor Res_f is Frobenius if and only if $\alpha_H|_K = \alpha_K$.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.
- Similarly, taking a right cointegral λ , the distinguished grouplike element $g_H \in H$ is the unique element satisfying $h_1 \lambda(h_2) = \lambda(h) g_H$.

Theorem: (Fischman-Montgomery-Schneider) The restriction functor Res_f is Frobenius if and only if $\alpha_H|_K = \alpha_K$.

Set $\chi_f = \alpha_H|_K * (\alpha_K)^{-1}$.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.
- Similarly, taking a right cointegral λ , the distinguished grouplike element $g_H \in H$ is the unique element satisfying $h_1 \lambda(h_2) = \lambda(h) g_H$.

Theorem: (Fischman-Montgomery-Schneider) The restriction functor Res_f is Frobenius if and only if $\alpha_H|_K = \alpha_K$.

Set $\chi_f = \alpha_H|_K * (\alpha_K)^{-1}$. Then, $\alpha_H|_K = \alpha_K \iff \alpha_H|_K * (\alpha_K)^{-1} = \varepsilon_K$.

Tensor functors

Let H be a finite-dimensional Hopf algebra. Then $\text{Rep}(H)$ is a finite tensor category. Moreover, a bialgebra map $f : K \rightarrow H$ induces $\text{Res}_f : \text{Rep}(H) \rightarrow \text{Rep}(K)$ which is:

- a \mathbb{k} -linear, exact, faithful strong monoidal functor (tensor functor), and
- perfect because Hopf algebras are free over their Hopf subalgebras.

Q: When is Res_f Frobenius?

- Let $\Lambda \in H$ be a nonzero left integral ($\Lambda h = \varepsilon(h)\Lambda$). The modular function $\alpha_H \in H^*$ is determined by $h\Lambda = \alpha_H(h)\Lambda$.
- Similarly, taking a right cointegral λ , the distinguished grouplike element $g_H \in H$ is the unique element satisfying $h_1 \lambda(h_2) = \lambda(h) g_H$.

Theorem: (Fischman-Montgomery-Schneider) The restriction functor Res_f is Frobenius if and only if $\alpha_H|_K = \alpha_K$.

Set $\chi_f = \alpha_H|_K * (\alpha_K)^{-1}$. Then, $\alpha_H|_K = \alpha_K \iff \alpha_H|_K * (\alpha_K)^{-1} = \varepsilon_K$.

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .
- (Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite tensor category as a natural isomorphism

$$\mathfrak{R}_X : {}^{**}X \otimes D_{\mathcal{C}} \xrightarrow{\sim} D_{\mathcal{C}} \otimes X^{**} \quad \text{for every } X \in \mathcal{C}.$$

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .
- (Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite tensor category as a natural isomorphism

$$\mathfrak{R}_X : {}^{**}X \otimes D_{\mathcal{C}} \xrightarrow{\sim} D_{\mathcal{C}} \otimes X^{**} \quad \text{for every } X \in \mathcal{C}.$$

- The element $g_H \in H$ encodes the data of the isomorphism \mathfrak{R}_X .

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .
- (Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite tensor category as a natural isomorphism

$$\mathfrak{R}_X : {}^{**}X \otimes D_{\mathcal{C}} \xrightarrow{\sim} D_{\mathcal{C}} \otimes X^{**} \quad \text{for every } X \in \mathcal{C}.$$

- The element $g_H \in H$ encodes the data of the isomorphism \mathfrak{R}_X .

Theorem: (Shimizu)

- ① There exists an object $\chi_F \in \mathcal{D}$ that ‘measures’ the gap between F^{la} and F^{ra} . Namely $F^{\text{ra}} \cong F^{\text{la}}(\chi_F \otimes -)$.

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .
- (Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite tensor category as a natural isomorphism

$$\mathfrak{R}_X : {}^{**}X \otimes D_{\mathcal{C}} \xrightarrow{\sim} D_{\mathcal{C}} \otimes X^{**} \quad \text{for every } X \in \mathcal{C}.$$

- The element $g_H \in H$ encodes the data of the isomorphism \mathfrak{R}_X .

Theorem: (Shimizu)

- ① There exists an object $\chi_F \in \mathcal{D}$ that ‘measures’ the gap between F^{la} and F^{ra} . Namely $F^{\text{ra}} \cong F^{\text{la}}(\chi_F \otimes -)$.
- ② $\chi_F \cong F(D_{\mathcal{C}}) \otimes D_{\mathcal{D}}^*$. Moreover, $\chi_F \cong \mathbf{1}_{\mathcal{D}}$ if and only F is Frobenius.

Relative modular object

Q: When is a perfect tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ between finite tensor categories Frobenius?

- The categorical analogue of α_H is the *distinguished invertible object* $D_{\mathcal{C}}$ of a finite tensor category \mathcal{C} .
- (Etingof-Nikshych-Ostrik) The Radford formula of a f.d. Hopf algebra appears in a finite tensor category as a natural isomorphism

$$\mathfrak{R}_X : {}^{**}X \otimes D_{\mathcal{C}} \xrightarrow{\sim} D_{\mathcal{C}} \otimes X^{**} \quad \text{for every } X \in \mathcal{C}.$$

- The element $g_H \in H$ encodes the data of the isomorphism \mathfrak{R}_X .

Theorem: (Shimizu)

- ① There exists an object $\chi_F \in \mathcal{D}$ that ‘measures’ the gap between F^{la} and F^{ra} . Namely $F^{\text{ra}} \cong F^{\text{la}}(\chi_F \otimes -)$.
- ② $\chi_F \cong F(D_{\mathcal{C}}) \otimes D_{\mathcal{D}}^*$. Moreover, $\chi_F \cong \mathbb{1}_{\mathcal{D}}$ if and only F is Frobenius.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

Moreover, we can define the center of $F: \mathcal{C} \rightarrow \mathcal{D}$

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

Moreover, we can define the center of $F: \mathcal{C} \rightarrow \mathcal{D}$

$$\mathcal{Z}(F): \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$$

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

Moreover, we can define the center of $F: \mathcal{C} \rightarrow \mathcal{D}$

$$\mathcal{Z}(F): \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$$

where $\mathcal{Z}(\mathcal{C})$ is the center of \mathcal{C} and $\mathcal{Z}({}_F\mathcal{D}_F)$ is the relative center of the bimodule category ${}_F\mathcal{D}_F$. $\mathcal{Z}({}_F\mathcal{D}_F)$ is also a finite tensor category.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

Moreover, we can define the center of $F: \mathcal{C} \rightarrow \mathcal{D}$

$$\mathcal{Z}(F): \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$$

where $\mathcal{Z}(\mathcal{C})$ is the center of \mathcal{C} and $\mathcal{Z}({}_F\mathcal{D}_F)$ is the relative center of the bimodule category ${}_F\mathcal{D}_F$. $\mathcal{Z}({}_F\mathcal{D}_F)$ is also a finite tensor category.

Note: The object χ_F is equipped with a half-braiding making it an object in $\mathcal{Z}({}_F\mathcal{D}_F)$.

\otimes -Frobenius functors

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$:

- Denote by ${}_F\mathcal{D}_F$ the \mathcal{C} -bimodule category \mathcal{D} with action

$$X \triangleright Y \triangleleft X' := F(X) \otimes Y \otimes F(X') \quad (X, X' \in \mathcal{C}, Y \in \mathcal{D}).$$

- With this, $F: \mathcal{C} \rightarrow {}_F\mathcal{D}_F$ is a (strong) \mathcal{C} -bimodule functor.
- As \mathcal{C} is rigid, its adjoints F^{ra} and F^{la} are also (strong) \mathcal{C} -bimodule functors.

Definition

A tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is called \otimes -Frobenius if $F^{\text{la}} \cong F^{\text{ra}}$ as \mathcal{C} -bimodule functors.

Moreover, we can define the center of $F: \mathcal{C} \rightarrow \mathcal{D}$

$$\mathcal{Z}(F): \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$$

where $\mathcal{Z}(\mathcal{C})$ is the center of \mathcal{C} and $\mathcal{Z}({}_F\mathcal{D}_F)$ is the relative center of the bimodule category ${}_F\mathcal{D}_F$. $\mathcal{Z}({}_F\mathcal{D}_F)$ is also a finite tensor category.

Note: The object χ_F is equipped with a half-braiding making it an object in $\mathcal{Z}({}_F\mathcal{D}_F)$.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$ is a Frobenius functor.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}({}_F\mathcal{D}_F)$ is unimodular finite tensor category.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}({}_F\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}({}_F\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Example

Two classes of examples:

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}({}_F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}({}_F\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Example

Two classes of examples:

1. A central tensor functor that is Frobenius is \otimes -Frobenius.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}(\mathcal{F}\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}(\mathcal{F}\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Example

Two classes of examples:

1. A central tensor functor that is Frobenius is \otimes -Frobenius. If \mathcal{C} is unimodular, then $\mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{C}$ is Frobenius and moreover \otimes -Frobenius.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}(F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}(F\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Example

Two classes of examples:

1. A central tensor functor that is Frobenius is \otimes -Frobenius. If \mathcal{C} is unimodular, then $\mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{C}$ is Frobenius and moreover \otimes -Frobenius.
2. Suppose that \mathcal{C} and \mathcal{D} are fusion categories of nonzero global dimension. Then every tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is \otimes -Frobenius.

Main result

Theorem

For a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:

- ① F is \otimes -Frobenius.
- ② $\mathcal{Z}(F) : \mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{Z}(F\mathcal{D}_F)$ is a Frobenius functor.
- ③ $\mathcal{Z}(F\mathcal{D}_F)$ is unimodular finite tensor category.
- ④ F preserves the Radford isomorphism.

Example

Two classes of examples:

1. A central tensor functor that is Frobenius is \otimes -Frobenius. If \mathcal{C} is unimodular, then $\mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{C}$ is Frobenius and moreover \otimes -Frobenius.
2. Suppose that \mathcal{C} and \mathcal{D} are fusion categories of nonzero global dimension. Then every tensor functor $F : \mathcal{C} \rightarrow \mathcal{D}$ is \otimes -Frobenius.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H .

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f : \text{Rep}(H) \rightarrow \text{Vec}$.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f : \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f : \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$. Therefore, $\alpha_H|_{\mathbb{k}} = \alpha_{\mathbb{k}}$. This shows that the fiber functor F_f is always a Frobenius functor.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f : \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$. Therefore, $\alpha_H|_{\mathbb{k}} = \alpha_{\mathbb{k}}$. This shows that the fiber functor F_f is always a Frobenius functor.
- ② Also, note that $g_{\mathbb{k}} = 1$. Thus, F_f is \otimes -Frobenius if and only if $g_H = f(g_{\mathbb{k}}) = 1_H$. This happens if and only if H^* is unimodular.

Hopf algebra case

Suppose that $f : K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u : \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f : \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$. Therefore, $\alpha_H|_{\mathbb{k}} = \alpha_{\mathbb{k}}$. This shows that the fiber functor F_f is always a Frobenius functor.
- ② Also, note that $g_{\mathbb{k}} = 1$. Thus, F_f is \otimes -Frobenius if and only if $g_H = f(g_{\mathbb{k}}) = 1_H$. This happens if and only if H^* is unimodular.

For instance, for $H = u_q(\mathfrak{sl}_2)^*$, its dual $H^* \cong u_q(\mathfrak{sl}_2)$ is unimodular. Thus, the fiber functor $F : \text{Rep}(u_q(\mathfrak{sl}_2)^*) \rightarrow \text{Vec}$ is \otimes -Frobenius.

Hopf algebra case

Suppose that $f: K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u: \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f: \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$. Therefore, $\alpha_H|_{\mathbb{k}} = \alpha_{\mathbb{k}}$. This shows that the fiber functor F_f is always a Frobenius functor.
- ② Also, note that $g_{\mathbb{k}} = 1$. Thus, F_f is \otimes -Frobenius if and only if $g_H = f(g_{\mathbb{k}}) = 1_H$. This happens if and only if H^* is unimodular.

For instance, for $H = u_q(\mathfrak{sl}_2)^*$, its dual $H^* \cong u_q(\mathfrak{sl}_2)$ is unimodular. Thus, the fiber functor $F: \text{Rep}(u_q(\mathfrak{sl}_2)^*) \rightarrow \text{Vec}$ is \otimes -Frobenius.

On the other hand, the fiber functor $F: \text{Rep}(u_q(\mathfrak{sl}_2)) \rightarrow \text{Vec}$ is Frobenius, but not \otimes -Frobenius because $u_q(\mathfrak{sl}_2)^*$ is not unimodular.

Hopf algebra case

Suppose that $f: K \rightarrow H$ is a bialgebra map between finite-dimensional Hopf algebras.

Theorem

Res_f is \otimes -Frobenius if and only if $f(g_K) = g_H$ and $\alpha_H \circ f = \alpha_K$.

Example

For a Hopf algebra H , take f to be the unit $u: \mathbb{k} \rightarrow H$ of H . Then, f is a bialgebra map whose induced functor is just the fiber functor $F_f: \text{Rep}(H) \rightarrow \text{Vec}$.

- ① As α_H is an algebra map, it satisfies $\alpha_H(1_H) = 1$. Therefore, $\alpha_H|_{\mathbb{k}} = \alpha_{\mathbb{k}}$. This shows that the fiber functor F_f is always a Frobenius functor.
- ② Also, note that $g_{\mathbb{k}} = 1$. Thus, F_f is \otimes -Frobenius if and only if $g_H = f(g_{\mathbb{k}}) = 1_H$. This happens if and only if H^* is unimodular.

For instance, for $H = u_q(\mathfrak{sl}_2)^*$, its dual $H^* \cong u_q(\mathfrak{sl}_2)$ is unimodular. Thus, the fiber functor $F: \text{Rep}(u_q(\mathfrak{sl}_2)^*) \rightarrow \text{Vec}$ is \otimes -Frobenius.

On the other hand, the fiber functor $F: \text{Rep}(u_q(\mathfrak{sl}_2)) \rightarrow \text{Vec}$ is Frobenius, but not \otimes -Frobenius because $u_q(\mathfrak{sl}_2)^*$ is not unimodular.

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} .

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M}

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category $(\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**})$.

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Given $F: \mathcal{C} \rightarrow \mathcal{D}$ and a left \mathcal{D} -module category \mathcal{M} , define the pulled-back \mathcal{C} -module ${}_F\mathcal{M}$ with action $X \triangleright_F M := F(X) \triangleright M$ for $X \in \mathcal{C}$ and $M \in \mathcal{M}$. We show that

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Given $F: \mathcal{C} \rightarrow \mathcal{D}$ and a left \mathcal{D} -module category \mathcal{M} , define the pulled-back \mathcal{C} -module ${}_F\mathcal{M}$ with action $X \triangleright_F M := F(X) \triangleright M$ for $X \in \mathcal{C}$ and $M \in \mathcal{M}$. We show that

$$\mathbb{S}_{{}_F\mathcal{M}}^{\mathcal{C}} \cong \chi_F \triangleright \mathbb{S}_{\mathcal{M}}^{\mathcal{D}} = (\chi_F \triangleright -) \circ \mathbb{S}_{\mathcal{M}}^{\mathcal{C}}.$$

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Given $F: \mathcal{C} \rightarrow \mathcal{D}$ and a left \mathcal{D} -module category \mathcal{M} , define the pulled-back \mathcal{C} -module ${}_F\mathcal{M}$ with action $X \triangleright_F M := F(X) \triangleright M$ for $X \in \mathcal{C}$ and $M \in \mathcal{M}$. We show that

$$\mathbb{S}_{{}_F\mathcal{M}}^{\mathcal{C}} \cong \chi_F \triangleright \mathbb{S}_{\mathcal{M}}^{\mathcal{D}} = (\chi_F \triangleright -) \circ \mathbb{S}_{\mathcal{M}}^{\mathcal{C}}.$$

Theorem

Suppose that F is \otimes -Frobenius. If \mathcal{M} is pivotal as a \mathcal{D} -module category, then ${}_F\mathcal{M}$ is pivotal as a \mathcal{C} -module category.

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Given $F: \mathcal{C} \rightarrow \mathcal{D}$ and a left \mathcal{D} -module category \mathcal{M} , define the pulled-back \mathcal{C} -module ${}_F\mathcal{M}$ with action $X \triangleright_F M := F(X) \triangleright M$ for $X \in \mathcal{C}$ and $M \in \mathcal{M}$. We show that

$$\mathbb{S}_{{}_F\mathcal{M}}^{\mathcal{C}} \cong \chi_F \triangleright \mathbb{S}_{\mathcal{M}}^{\mathcal{D}} = (\chi_F \triangleright -) \circ \mathbb{S}_{\mathcal{M}}^{\mathcal{C}}.$$

Theorem

Suppose that F is \otimes -Frobenius. If \mathcal{M} is pivotal as a \mathcal{D} -module category, then ${}_F\mathcal{M}$ is pivotal as a \mathcal{C} -module category.

We obtain similar results for unimodular and spherical \mathcal{D} -module categories.

Twisting actions and transfer

Motivation: The chiral data of a 2D CFT is modelled by a modular tensor category \mathcal{D} . Then, to get the full CFT, one needs the data of gluing chiral and anti-chiral halves and this is encoded in an pivotal \mathcal{D} -module category \mathcal{M} (proposal of Fuchs-Schweigert).

Let \mathcal{C} be a pivotal finite tensor category ($\exists \mathfrak{p} : \text{id}_{\mathcal{C}} \xrightarrow{\sim} (-)^{**}$). Every exact left \mathcal{C} -module category \mathcal{M} admits a \mathcal{C} -module endofunctor $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ (relative Serre functor).

We call \mathcal{M} *pivotal* if $\mathbb{S}_{\mathcal{M}}^{\mathcal{C}}$ is trivializable.

Given $F: \mathcal{C} \rightarrow \mathcal{D}$ and a left \mathcal{D} -module category \mathcal{M} , define the pulled-back \mathcal{C} -module ${}_F\mathcal{M}$ with action $X \triangleright_F M := F(X) \triangleright M$ for $X \in \mathcal{C}$ and $M \in \mathcal{M}$. We show that

$$\mathbb{S}_{{}_F\mathcal{M}}^{\mathcal{C}} \cong \chi_F \triangleright \mathbb{S}_{\mathcal{M}}^{\mathcal{D}} = (\chi_F \triangleright -) \circ \mathbb{S}_{\mathcal{M}}^{\mathcal{C}}.$$

Theorem

Suppose that F is \otimes -Frobenius. If \mathcal{M} is pivotal as a \mathcal{D} -module category, then ${}_F\mathcal{M}$ is pivotal as a \mathcal{C} -module category.

We obtain similar results for unimodular and spherical \mathcal{D} -module categories.

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?
- Is there an analogue of \otimes -Frobenius functors for not necessarily monoidal categories?

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?
- Is there an analogue of \otimes -Frobenius functors for not necessarily monoidal categories?
- Generalization to infinite-dimensional Hopf algebras? (see recent work of Flake-Laugwitz-Posur)

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?
- Is there an analogue of \otimes -Frobenius functors for not necessarily monoidal categories?
- Generalization to infinite-dimensional Hopf algebras? (see recent work of Flake-Laugwitz-Posur)

Thank you!

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?
- Is there an analogue of \otimes -Frobenius functors for not necessarily monoidal categories?
- Generalization to infinite-dimensional Hopf algebras? (see recent work of Flake-Laugwitz-Posur)

Thank you!

Questions

- We considered Frobenius type properties of a perfect tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$. What about the case where \mathcal{C} is tensor subcategory of \mathcal{D} ?
- Is there an analogue of \otimes -Frobenius functors for not necessarily monoidal categories?
- Generalization to infinite-dimensional Hopf algebras? (see recent work of Flake-Laugwitz-Posur)

Thank you!

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} ,

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} , we get a functor

$$F_{\mathcal{M}}^*: \mathcal{D}_{\mathcal{M}}^* \rightarrow \mathcal{C}_{\mathcal{M}}^*$$

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} , we get a functor

$$F_{\mathcal{M}}^*: \mathcal{D}_{\mathcal{M}}^* \rightarrow \mathcal{C}_{\mathcal{M}}^*$$

We say that F is *Frobenius with respect to \mathcal{M}* if $F_{\mathcal{M}}^*$ is Frobenius, i.e., it has a left and right adjoint that are isomorphic functors.

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} , we get a functor

$$F_{\mathcal{M}}^*: \mathcal{D}_{\mathcal{M}}^* \rightarrow \mathcal{C}_{\mathcal{M}}^*$$

We say that F is *Frobenius with respect to \mathcal{M}* if $F_{\mathcal{M}}^*$ is Frobenius, i.e., it has a left and right adjoint that are isomorphic functors.

Theorem

Suppose that $F: \mathcal{C} \rightarrow \mathcal{D}$ is a perfect tensor functor and \mathcal{M} is a unimodular (or pivotal) \mathcal{D} -module category. Then ${}_F\mathcal{M}$ is a unimodular (or pivotal) \mathcal{C} -module category if and only if F is Frobenius with respect to \mathcal{M} .

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} , we get a functor

$$F_{\mathcal{M}}^*: \mathcal{D}_{\mathcal{M}}^* \rightarrow \mathcal{C}_{\mathcal{M}}^*$$

We say that F is *Frobenius with respect to \mathcal{M}* if $F_{\mathcal{M}}^*$ is Frobenius, i.e., it has a left and right adjoint that are isomorphic functors.

Theorem

Suppose that $F: \mathcal{C} \rightarrow \mathcal{D}$ is a perfect tensor functor and \mathcal{M} is a unimodular (or pivotal) \mathcal{D} -module category. Then ${}_F\mathcal{M}$ is a unimodular (or pivotal) \mathcal{C} -module category if and only if F is Frobenius with respect to \mathcal{M} .

If F is \otimes -Frobenius, then for every \mathcal{C} -module category \mathcal{M} , F Frobenius with respect to \mathcal{M} .

Converse

Given a tensor functor $F: \mathcal{C} \rightarrow \mathcal{D}$ and \mathcal{D} -module category \mathcal{M} , we get a functor

$$F_{\mathcal{M}}^*: \mathcal{D}_{\mathcal{M}}^* \rightarrow \mathcal{C}_{\mathcal{M}}^*$$

We say that F is *Frobenius with respect to \mathcal{M}* if $F_{\mathcal{M}}^*$ is Frobenius, i.e., it has a left and right adjoint that are isomorphic functors.

Theorem

Suppose that $F: \mathcal{C} \rightarrow \mathcal{D}$ is a perfect tensor functor and \mathcal{M} is a unimodular (or pivotal) \mathcal{D} -module category. Then ${}_F\mathcal{M}$ is a unimodular (or pivotal) \mathcal{C} -module category if and only if F is Frobenius with respect to \mathcal{M} .

If F is \otimes -Frobenius, then for every \mathcal{C} -module category \mathcal{M} , F Frobenius with respect to \mathcal{M} .

Definition

Let $f: H' \rightarrow H$ be a perfect bialgebra map and L an exact H' -comodule algebra. An f -Frobenius element of L is an invertible element $a \in L$ satisfying

$$a l a^{-1} = \chi_f(l_{-1})l_0, \quad (\forall l \in L)$$

$$f(a_{-1}) \otimes a_0 = f(g_{H'}) \overline{g_H} \otimes a.$$

We say that L is f -Frobenius if it admits an f -Frobenius element.

Definition

Let $f: H' \rightarrow H$ be a perfect bialgebra map and L an exact H' -comodule algebra. An f -Frobenius element of L is an invertible element $a \in L$ satisfying

$$a l a^{-1} = \chi_f(l_{-1})l_0, \quad (\forall l \in L)$$

$$f(a_{-1}) \otimes a_0 = f(g_{H'}) \overline{g_H} \otimes a.$$

We say that L is f -Frobenius if it admits an f -Frobenius element.

We prove that:

Definition

Let $f: H' \rightarrow H$ be a perfect bialgebra map and L an exact H' -comodule algebra. An f -Frobenius element of L is an invertible element $a \in L$ satisfying

$$a l a^{-1} = \chi_f(l_{-1})l_0, \quad (\forall l \in L)$$

$$f(a_{-1}) \otimes a_0 = f(g_{H'}) \overline{g_H} \otimes a.$$

We say that L is f -Frobenius if it admits an f -Frobenius element.

We prove that:

Theorem

The tensor functor F_f is Frobenius with respect to $\text{Rep}(L)$ if and only if L admits an f -Frobenius element.