0	1	UN	SI M	10 D	UL	AR	M	וקס	ULE		ĊF	AT I	EG	nD	RII	ES	•
· ·	· ·	· · ·	•	H	ars ¹ lice	hit Uni	Yado rensit	یہ۔ ایک	•	· · ·		•	•	•	•	•	•
B	ased	M	the	- V 20	ske	• •	• •	٠	٠	• •	۰	٠	٠	٠	٠	٠	٠
[71]	Frok)enir	re v	nonoi	dal	func	tors	frov	m (icon H (au	off		dju 22'	nc Dg.	tion 15	ري 60	6)
[Y1] [Y2]	Frok	penir un	in inter	nonoi	dal M	func odule	tors cote	frov gori	n (ies	ico)H (a) (in)	off Xiv	ou 1 : epo	dju 22' ar 0	nc: 09.	tion 15 27)	ري 60	6)
[Y1] [Y2]	Frok)enir un	invoc	nonoi	dal M	func	tors cote	frov	т (:еъ	ico)H (a) (in)	off Xiv þr	epa	dju 22' ar o	nc 09 atic	tion 15 m)	<u>رم</u> 60	6) 1
[Y1] [Y2]	Frok)enir un	re v innoc	nonoi	dal M	func	tors cote	frov	т (ico)H (a) (in)	off Xiv þr	or r epo	dju 22' ar 0	nci 09 atic	tion 15 m)	<u>رم</u> 60	6) 6)
[71] [72]	Frok)enir un	LS Y	nonoi	dal M	func	tors cote	frov	т (:es	H (a) (a) (in	off Xiv þr	or eta	dju 22' av 0	nc: 09 xtic	tion 15 m)	<u>رم</u> 60	6)
[Y1] [42]	Frok)enir	LS Y	nonoi	dal M	func	tors cot.	frov	т (ССЪ	to)H (a) (in)	off Xiv þr	or efe	dju 22' av 0	nc: 09 xtia	tion 15 m)	<u>رم</u> 60	6)

MOTIVATION

Consider the following cotegories: Neco ncob Objects : closed (n-1) diml mflds/~ Objects : f. d. C-vector spaces Moghrisms: n dimensional bordisms/~ Morphisms: C - linear make Ø: disjoint Union $\otimes : \times \otimes_{\mathcal{C}} Y$ unit object: empty manifold unit object: C braiding: XOY->YOX 20y->yox braiding: Flip EXAMPLE: 2 COb Objects : disjoint unions of O Morphisms: D, O, 27 ... braiding:

MOTIVATION

DEFINITION: An nD Topological Quantum Field Theory (TQFT) is a symmetric monoridal functor F: nCob -> Vecc

• n-D TOFTS yield invariants of closed n-D manifolds $F\left(\begin{array}{c} & & \\ & &$

A Frobenius algebra is a 5-tuple $(A, m, u, \Delta, \varepsilon)$ such that (A, m, u) is an algebra, (A, Δ, ε) is a coalgebra and m, Δ satisfy $(id \otimes m)(\Delta \otimes id) = \Delta m = (m \otimes id)(id \otimes \Delta)$ $M = \chi = \sqrt{2}$

MODULAR TENSOR CATEGORIES	٠
. The story of TOFTS gets much more interesting in 3D	٠
{Modular tensor categories }> { 3D TQFTs} (not neccesarily semisimple)	0 0
DEFINITION: A Modular Tensor category (MTC) C is a braided finite tensor category that is • ribbon • non-degenerate	l .
· Various classical knot and 3-manifold invariants are obtain	ed
Using 3D 10,F13 e.g. e= Rep(Uq(Blz)) yields the Jones polynomial	٠
	•
• We want more invariants of 3D-manifolds ⇒ want more 3D-TQFTs	•
⇒ want more examples of MTCs	•

MODULAR TENSOR CATEGORIES WAYS OF GETTING NEW LOMMON SOURCES MTC: FROM OLD OF MTCS • Deligne product €\$D • Répresentation contégories of quantum groups · graded extensions · Representation categories · Zesting of VOAs · Take vice Frobenius alg A in e and form the category of local modules ex. · Drinfeld centers of spherical categories Construct nice Frobenius algebras in the PROBLEM : Drinfeld center

•	PROBLEM :	Construct	nice	Frobenius	algebras	ŝ	the	•	٠
•		Drinfeld	cente	, r r r		٠	• •	٠	٠
•				• • • •	· · · · ·	•	¢ ¢		٠

STRATEGY:	Construct	Frobenius	monoidal	functors
• • • •		F:	$\longrightarrow \mathbb{Z}[\mathbb{C}]$) · · · · ·

DEFINITION;	A Frobenius monoidal functor between monoidal categories
	C,D is a 5-fuple (F, F2, Fo, F ² , F ⁰) where
	· F: C→D is a functor · · · · · · · · · · · · · · · · · · ·
	· (F, F2, Fo) is a lox monoidal functor
	• (F, F ² , F ^o) is an oplax monoridal functor
	· F2, F2 satisfy a compatibility relation
	$F(X \otimes Y) \otimes F(Z)$ $F(X \otimes Y) \otimes F(Z)$ $F(X \otimes Y) \otimes F(Z)$
	$\int F_2 = F(X) \otimes F(Y) \otimes F(Z) + \dots$
	F(X&X&Z) IF ² diagrams
• • • •	$F(X) \otimes F(Y \otimes Z)$ $F(X) \otimes F(Y \otimes Z)$

Strong monoidal functors (F2,Fo are iso) are Frobenius monoidal.
If A E FrobAlg(e), then F(A) E FrobAlg(D).

How to get Frobenius monoidal functors with target Z(C)? ≥ Use right adjoints of strong monoidal functors $(e \cdot g \cdot \mathcal{U} : \mathcal{Z}(\mathcal{C}) \to \mathcal{C})$ THEOREM 1[Y1] let U: C D be a strong monoridal functor between abelian monoidal categories such that (i) 21 admits a right adjoint R. (iii) UTR is a cottopp adjunction (true if e, 2 ave rigid) (ii) R is exact, faithful Then, a) R is a Frobenius monoidal $\iff R(1)$ is a Frobenius functor algebra in D. b) Further if e, D are pivotal and F: e→D is a pivotal functor then R is a pivotal Frobenius (2) is a symmetric monoidal functor Frobenius algebra in D Part (a) follows from earlier work of Balan.
The notion of pivotal Frobenius monoidal functor' above is a generalization of 'pivotal functors' introduced by Ng-Schauenburg.

How to get Frobenius monoidal functors with target Z(E)?
· Let (M, D) be an indecomposable exact left e-module category.
· set rex _e (M) = cotegory of E-module endofunctors of M.
Shimizu studied the following functor U: Z(C)> Rexe(M)
$(c, \overline{c}) \longmapsto (c_{D-}, 8^{\overline{c}})$
~ y is a strong monoidal functor
\rightarrow y satisfies the conditions (i)-(iii) of Theorem 1.
THEOREM 2[Y1] a) yra is a Frobenius $\iff y^{m}(id_{m})$ is a Frobenius
monoidal functor algebra in Z(e)
b) Let e be pivotal and M a pivotal left e-module cotegory. Then
yra is a pivotal (idn) is a symmetric
Frobenius functor Frobenius alg. in Z(C).
When is yralida is Frobenius monoidal?
first some background

1kG with 1kG with char(1k) / 1G1 char(1k) / 1G1

UNIMODULAR TENSOR CATEGORIES	•
• For H Hopf, define the object $D \in \text{Rep}(H)$ $D = \text{lk}$ as vector space, $h \cdot c = \lambda(-h)c$ $\forall c \in D, h \in D$ • Then $D \cong 1_{\text{Rep}(H)} \iff d = \varepsilon$	H
Etingof-Ostrik defined an analogue of the object D in any finite tensor cotegory C. • A finite tensor cotegory C is called unimodular if D = Ie.	•

FUSION UNIMODULAR FINITE CATEGORIES CATEGORIES TENSOR CATEGORIES CATEGORIES

PROBLEM: Construct nice Frobenius algebras in Z(C)
 Used ψ: Z(e) → Rex_e(M) ψ^{ra}: Rex_e(M) → Z(e) is <=> ψ^{ra}(id_n) is a frobenius Frobenius monoidal Q when is ψ^{ra}(id_n) Frobenius?
THEOREM 3 [Y2] The following one equivalent as what is Frobenius monoidal
b) y ^{ra} (idm) is a Frobenius algebra in Z(E). c) Rex _e (M) is a unimodular finite tensor category.
d) 5° • m ⁿ ≃ id _m [Here, 5°: M→ M is the relative Serve functor] N': M→ M is the Nakaiyania functor
DEFINITION: If any of the above four equivalent conditions is satisfied, we call M a unimodular module cotegory.
Remarks. Theorem 3 essentially follows from work of Shimizu. • For part (d), we use the formula for Drexelmy provided in the work of Fuchs-Galindo-Jaklitsch-Schweigert.

BACK TO HOPF ALGEBRAS ---

· Consider C = Rep(H), then Z(C) = HyD (rettor-Drinfeld modules) · By results of Andruskiewitsch-Mombelli, every left l-module category is of the form M=Rep(L) for L a left H-comodule alaphra algebra. Then $\operatorname{Rex}_{e}(M) \cong {}^{m}_{L}M_{L}$ (L-bimodules with compatible H coaction) S (from Shimizu's work) and IN, we Using a description of characterize the unimodular module are able to explicitly categories over Rep(H). THEOREM 4 [42] M = Rep(L) is $\iff L$ admits a unimodular element (this answers a question of Shimiza)

UNIMODULAR ELEMENT	• •	•	• •	•	• •	•
· By Skyrabin's result, L is a Frobenius	alget	nor.	• •	٠	• •	٠
· V, = Nakayama automorphism of L		۰	• •	٠	• •	0
· 9H = distinguished grouplike element o	FH	•	• •	•	• •	•
		٠	• •	٠	• •	٠
DEFINITION A unimodular element of L is JEL satisfying	ân	Inve	ertiple	e ele	ment	0
(i) glg ⁻¹ = √(l) ¥leL	• •	٠	• •	٠	• •	۰
(ii) $1_{\mu} \otimes \overline{g} = \Im \cdot \delta(\overline{g})$	• •	٠	• •	٠	• •	٠
Here, $\nabla(l) = \langle \alpha_{H}, S(\alpha_{-1}) \rangle v_{L}^{2}(\alpha_{0})$ $J = \langle \lambda_{A}, \alpha_{0}^{i} \rangle \langle \lambda_{A}, \alpha_{0}^{i} \rangle g_{H} S^{-3}(\alpha_{-1}^{i})$) 5 ⁻ '(a ⁱ	() () ()	v(b	; b;)	ЕH	⊗ L ĭk
This definition simplifies a lot, the form X_L is grouplike.	د المع د	we	0 9 8	ume	. 	iat.
	• •	٠	• •	٠	• •	٥