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Figure 11.16. The curve of growth or the variation of the equivalent width (EW)
with the column density of absorbing atoms N (atoms/m2), for the absorption case.
The flattening at intermediate N is due to the saturation of the central part of the
absorption line (Fig. 14e). On this log-log plot, the linear dependence for weak
lines and the (approximate) square root dependence for intense lines appear as
slopes of 1 and 1/2 respectively.

As more and more atoms are added, the weak wings due to collisional broadening
finally become important (Fig. 14e). At this stage the EW begins to increase again,
approximately as N 1/2. This is a slower rate of increase in EW than for the unsat-
urated state. The N 1/2 dependence is not derived here. The growth of an emission
line (Fig. 14 b,d,f) is largely similar to the absorption case.

The shape of the curve of growth will vary depending on the relative widths of
the thermal and damping terms. Knowledge of the curve of growth enables one to
determine column densities of different elements in stellar atmospheres and hence
the chemical compositions.

11.5 Formation of spectral lines (radiative transfer)

Radiation propagating through a gas is transformed by emission and absorption
processes. The result is the observed spectrum including spectral lines. Here we set
up the differential equation for an elementary case of radiative transfer and solve
it for several different conditions. This allows us to understand the formation of
spectral lines in terms of the frequency dependence of the optical depth.

Radiative transfer equation (RTE)

The differential equation that governs the absorption and emission in a layer of gas
follows from the geometry of Fig. 17. A uniform cloud (“source”) of temperature
Ts, depth Λ, and optical depth τΛ lies between the observer and a background source
at some other temperature T0.
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Figure 11.17. Geometry for the radiative transfer equation. The background sur-
face emits with specific intensity I0 and the intervening gas cloud emits thermal
radiation with specific intensity Is when it is optically thick. An observer in the
cloud at position x , or optical depth τ viewing leftward will detect radiation from
the cloud atoms at lesser τ and from the background source to the extent it is not
absorbed by the cloud.

For the immediate discussion, we refer to radiated intensities at some single
frequency (in a differential band) without regard to the entire spectrum. In fact,
the overall spectral shape may be inconsistent with a single temperature. Hence
we discuss intensities without necessarily defining a temperature. Nevertheless, in
stellar atmospheres, temperatures can be defined in regions of local thermodynamic
equilibrium (LTE). In this case, a higher intensity at a given frequency does represent
a higher temperature.

In the absence of the cloud, the observer in Fig. 17 would detect a specific
intensity I0 (W m−2 Hz−1 sr−1) from the background source (T0) at the frequency
in question. We refer to I0 as the background intensity. If the intervening cloud is in
place, it will absorb some of the radiation from the background source. In addition,
the cloud will emit its own thermal radiation in the direction of the observer. If the
cloud is optically thick, the emerging radiation would exhibit the specific intensity
Is characteristic of blackbody radiation at Ts.

Intensity differentials
Consider a beam of photons moving in the direction of an observer at some location
in the cloud. The differential equation that describes absorption of the photons in a
differential path length dx is, from (10.17), dN/N = −σn dx , where dN/N is the
fractional change in the number of photons in the beam, σ (m2) is the cross section
per atom, and n (m–3) is the number density of atoms. The fractional change of
the photon number will be equal to the fractional change in the specific intensity,
giving,



11.5 Formation of spectral lines (radiative transfer) 367

dI1

I
= −σn dx (Absorption in layer dx) (11.34)

where dI1 is one of two contributions to the total change dI.
The cloud also contributes photons to the beam. The thermal emission originating

in the layer at x in dx of the cloud can be described with the volume emissivity
j (W m–3 Hz−1). This gives rise to an element of specific intensity from the layer
in question which is, from (8.48),

dI2 = j dx
4π

(Thermal emission from gas) (11.35)

The sum of these two effects yields the net change in intensity I of the beam,

dI = −Iσn dx + j dx
4π

(Net change in I in dx at x) (11.36)

This is the differential equation that allows us to find, by integration, the variation
of beam intensity as it traverses the material on its way to the observer.

Intensity variation with optical depth
Rewrite (36) to be a function of optical depth τ . Recall the definition of the opacity,
κ ≡ σn/ρ (10.24), where ρ (kg/m3) is the mass density. Opacity is the cross section
per kilogram of material (m2/kg). Substitute κρ for σn into (36) and rearrange,

1
κρ

dI
dx

= −I + j
4πκρ

(11.37)

The product κρ or σn is simply the inverse of the mean free path xm with units
of (m−1); see Table 10.1. Thus the product κρx is the number of mean free paths in
the distance x for fixed κ and ρ. In other words it is the optical depth τ = κρx , a
dimensionless quantity previously defined (10.29). The denominator κρ dx of the
left side of (37) is thus equal to dτ since κ and ρ do not change appreciably in an
incremental distance dx .

The equality (37) demands that the rightmost term have units of specific intensity.
Since j is the volume emissivity of our cloud, we define this term to be the cloud
intensity, or the source intensity Is,

Is ≡ j (W m−3 Hz−1)
4π(sr) κρ (m−1)

(Source intensity defined: (11.38)
W m−2 Hz−1 sr−1)

This expression has the form of (8.53), the relation between j and I for an opti-
cally thin plasma of thickness Λ, namely I = javΛ/4π. Here, the mean free path
(κρ)−1 plays the role of the cloud thickness Λ. In our optically thick case, an ob-
server can “see” only a depth of about one mean free path into the cloud. The
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source intensity (38) is thus the intensity an observer embedded in the cloud would
measure if her view were limited by optically thick conditions (τ # 1).

It follows from the above considerations that the differential equation (37) may
now be written as

!
dI (τ )

dτ
= −I (τ ) + Is (Equation of radiative (11.39)

transfer)

where we express I as a function of τ , the optical depth of the cloud in the observer’s
line of sight (Fig. 17). This is the differential radiative transfer equation (RTE)
which may be solved for the unknown quantity I (τ ), the specific intensity at optical
depth τ for our chosen frequency.

In (39), I (τ = 1) is the specific intensity measured by an observer within the
cloud at the depth of one mean free path into the gas. Note that depth is measured
from the left edge of the cloud. At τ = 0.1 or τ = 3, the function I (τ ) is the specific
intensity at depths of 0.1 and 3 mean free paths respectively. If the entire cloud has
optical depth τΛ (corresponding to thickness Λ), the function I (τΛ) is the specific
intensity measured by the observer outside the cloud.

The quantity I (τ ) is distinct from Is. It includes the radiation from the background
source I0 as modified by absorption and emission in the cloud. The background
radiation is the “initial condition” we apply to the differential equation (39). The
source function reflects the volume emissivity of the cloud itself.

The quantities τ, I (τ ) and Is in (39) are all functions of frequency; namely
τ (ν), I (ν), and Is(ν). We continue to consider one frequency only and suppress
the argument ν. The function j , and hence Is, can vary with position in the cloud,
i.e., both can be functions of τ . This is the case in stellar atmospheres where the
temperature varies continuously with altitude. In the following, we consider Is to
be a constant throughout the cloud; the important consequences of (39) are well
illustrated in this case.

Local thermodynamic equilibrium

If the gas of the cloud were in complete thermodynamic equilibrium, the radiation
and matter would all be in thermal equilibrium at some temperature T ; the specific
intensity I (τ ) would not vary throughout the cloud. In this case, the derivative in
(39) equals zero, dI/dτ = 0, and the observed intensity I (τ ) is given by

I (τ ) = Is (Perfect thermal (11.40)
equilibrium)
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which is independent of τ . Since I (τ ) is the specific intensity for complete thermo-
dynamic equilibrium, its spectrum must be the Planck (blackbody) function (23).
In turn, the source intensity Is must also have a blackbody spectrum.

The solutions we seek are, in general, not for complete thermodynamic equilib-
rium because they involve a gas at one temperature and incoming photons repre-
sentative of a slightly different temperature. Also, the limited extent of the cloud
implies that radiation is leaving the volume of the cloud, so that complete equilib-
rium can not exist near the surface. Nevertheless, in solving the RTE one can make
the assumption of local thermodynamic equilibrium (LTE).

Under LTE, the matter (e.g., protons and electrons) in a local region is in equi-
librium with itself, but not necessarily with the radiation. That is, the matter obeys
strictly the Boltzmann–Saha–Maxwell statistics, i.e., (9.14) and (9.15), for the lo-
cal temperature, but the photon distribution is allowed to deviate slightly from it.
Nevertheless, the radiation emitted from the local region follows the frequency de-
pendence of the blackbody function for the local temperature, according to (40). The
source function Is for radiation emitted in a local region is therefore the blackbody
function (23) for the (matter) temperature of the local region.

One can show that in the solar photosphere, the number density of particles is
∼105 times that of the photons. Since every such photon or particle has about the
same energy, ∼kT, in thermal equilibrium, the energy content is overwhelmingly
contained in the particles. They can thus maintain their own temperature and radiate
at that temperature in their local region even if photons from a lower and slightly
hotter region diffuse up into their region and minimally distort the overall photon
spectrum.

Solution of the RTE

Insight into the behavior of I (τ ) according to the radiative transfer equation (39)
can be gained simply from knowledge of the relative magnitudes of I (τ ) and Is.
If I (τ ) < Is at some depth τ , the derivative in (39) is positive which tells us that
I (τ ) increases with optical depth. This is shown as the heavy line in Fig. 18a;
note that it lies below the horizontal dashed line for Is. Recall that in our case we
hold Is constant throughout the cloud. If, on the other hand, I (τ ) > Is, then I (τ )
decreases with depth (heavy line in Fig. 18b). In each case, I (τ ) moves toward Is

and asymptotically approaches it at large optical depth.
At zero optical depth, I (0) is equal to the background intensity I0 because only

the background source, and no part of the cloud, is in the observer’s line of sight
as is clear from Fig. 17. We also see this in both panels of Fig. 18. This obvious
result also follows from the formal solution of the RTE to which we now proceed.
We will find that the solution naturally provides for absorption and emission lines.
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Figure 11.18. Plots of intensity I (τ ) vs. optical depth τ from (44) for two cases:
(a) source (cloud) intensity greater than the background intensity, Is > I0, and (b)
Is < I0. As frequency is varied, the optical depth becomes higher at a resonance.
If depth “A” is off resonance and depth “B” is centered at the resonance, case (a)
yields an emission line and case (b) an absorption line.

The RTE (39) can be solved for I (τ ) by integration as follows. Multiply (39)
by eτ ,

dI
dτ

eτ + I eτ = Is eτ, (11.41)

rewrite the left side as d(I eτ )/dτ , and integrate from 0 to τ ,

∫ τ

0
d(I eτ ) =

∫ τ

0
Is eτ dτ (11.42)

For our cloud with Is independent of optical depth τ ,

I (τ ) eτ |τ0 = Is eτ |τ0 (11.43)

Insert the limits and divide through by eτ ,

! I (τ ) = I0 e−τ + Is(1 − e−τ ) (Solution of radiative (11.44)
transfer equation)

This is the solution of the RTE. The first term on the right shows the decreasing
effect of the background radiation I0 as the optical depth increases, while the second
term shows the increasing effect of the source (cloud) emission. These two terms
and their sum are plotted in Fig. 18. These plots illustrate the variation of intensity
with τ for a single chosen frequency.
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Limiting cases

The solution (44) readily illustrates the formation of spectral lines if we consider the
variation of τ (and also I0 and Is) with frequency. There are four cases to consider,
one of which has two possibilities:

I0 = 0: there is no background radiation illuminating the cloud
(i) τ % 1: the gas is optically thin
(ii) τ # 1: the gas is optically thick

I0 > 0 : background radiation illuminates the back of the cloud
(iii) τ % 1: the gas is optically thin (for Is > I0 and Is < I0)
(iv) τ # 1: the gas is optically thick

Case 1: I0 = 0, τ % 1

The condition I0 = 0 means that I (τ ) will be affected only by radiation from the
cloud. The τ % 1 condition allows us to expand the exponential, e−τ ≈ 1−τ . The
solution (44) then reduces to

I (τ ) = τ Is (I0 = 0, τ % 1) (11.45)

This tells us that the emission is proportional to the optical depth, for τ % 1.
This is reasonable because, for an observer located at τ ≈ 0 with leftward viewing
detectors (Fig. 17) , there are no atoms in view. The optical depth is zero and so is
the detected intensity. As the observer moves to the right, toward increasing τ , the
number of atoms in the line of sight increases linearly with τ . The cloud is optically
thin so every layer dτ of the cloud that is in view contributes equally to the intensity
(Fig. 8.8); hence I ∝ τ . Note that changes in mass density ρ and opacity κ along
the line of sight are automatically incorporated into τ .

Now we address the frequency variation of the quantities in (45). Let the atoms
in the cloud have an atomic transition or resonance at some frequency. At that
frequency the cross section σ for absorption of incoming photons is high, and hence,
so is the optical depth τ . In general, τ is a function of frequency and therefore so
is the intensity I . We therefore rewrite (45) as

I (ν) = τ (ν) Is(ν) (I0 = 0, τ % 1) (11.46)

Resonances at two distinct frequencies are hypothesized and illustrated in Fig.
19a (left panel) which is a plot of τ vs. ν for an observer at fixed position x . From
(46), we see that high optical depths at these frequencies lead to high emerging fluxes
I (ν) at these same frequencies, provided that Is is a smooth function of frequency.
A plot of I vs. ν for an arbitrarily chosen spectrum Is(ν) (Fig. 19a, right panel)
shows emission lines at the two resonance frequencies. Note that the spectrum lies
well below the source spectrum Is because τ % 1, in accord with (46).
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Figure 11.19. Frequency dependence of optical depth τ (ν) (left) and specific in-
tensity I (ν,τ ) (right) for an observer at some fixed position x in the cloud. I fol-
lows from τ (ν) and the solution (44) of the radiative transfer differential equation.
Arbitrary spectral shapes for the source (cloud) spectrum Is and the background
spectrum I0 are shown as dashed lines. Emission lines are expected if the fore-
ground gas is optically thin, τ % 1, and hotter than the background source (c) or, in
the limiting case, there is no background source (a). Absorption lines are expected
if the background source is hotter than the foreground source, again if the cloud
is optically thin (d). If the cloud is optically thick, the continuum spectrum of the
cloud is observed (b,e).
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At resonance frequencies, with their higher cross sections, the gas behaves as if it
contains more atoms, or as if it were thicker. In this case, the observer would seem
to “see” more emitting atoms, and hence greater intensity. At frequencies adjacent
to a line, τ will be lower by definition and fewer atoms are seen. If τ is constant
at these adjacent frequencies, as in the left panel of Fig. 19a, the output spectrum
I (ν) will, according to (46), mimic the spectrum Is away from the line as shown in
the right panel.

Case 2: I0 = 0, τ# 1

Here the gas is very thick (τ # 1), and the expression (44) reduces to,

I (ν) = Is(ν) (I0 = 0, τ # 1) (11.47)

which we have previously deduced (40); here we use the variable ν rather than τ (ν).
The output radiation given by (47) equals that of the continuum source specific

intensity at all frequencies. If the source spectrum is the blackbody spectrum, the
output spectrum at any depth τ # 1 is also blackbody. Even though the resonances
may exist (Fig. 19b), the intensity I (ν) has no dependence on τ , and hence no
spectral lines will form.

In this case, the local observer sees the maximum possible number of emitting
atoms at any frequency so the resonances are not apparent. It is like being immersed
in a thick fog that is denser (more opaque) in some directions than others. Never-
theless, the appearance in all directions (frequencies) is uniform as long as the fog
is totally impenetrable (τ # 1) in all directions.

The observer in the fog sees only to a depth that yields enough water droplets
to completely block the view. The same number of water droplets are thus seen
in all directions, and the view appears uniform even though in some directions
it penetrates less deeply than others. In our case, the increase of opacity at some
frequency reduces the depth of view, but the observed intensity does not change.

The optically thick character of the gas allows the photons and particles to interact
sufficiently to come into equilibrium thus giving rise to the continuum (blackbody)
spectrum characteristic of the cloud.

Case 3: I0 > 0, τ % 1

In this case, there is a source behind the cloud. Since τ % 1, we again use the Taylor
expansion, e−τ ≈ 1 − τ , so that (44) becomes

I = I0 + τ (Is − I0) (I0 > 0, τ % 1) (11.48)

Consider two cases here, Is > I0 and Is < I0. In the former case, the output intensity
is the background intensity I0 plus another positive term. If the optical depth τ is
higher at some frequency (i.e., greater opacity κ) than at surrounding frequencies,
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the emerging flux will be greater at that frequency. This yields an emission line
(Fig. 19c).

In the case of Is < I0, the rightmost term is negative, and the emerging intensity
is less than the background intensity. If again, the optical depth τ is especially large
at some frequency, the emerging intensity is depressed even more at that frequency.
This yields an absorption line (Fig. 19d).

These same conclusions extend to somewhat larger optical depths, τ ! 2, as
illustrated in the plots of the function I (τ ) vs. τ (Fig. 18). In the case of Is > I0

(Fig. 18a), the observed intensity I increases with optical depth τ . At a given
frequency not at a resonance, the intensity I might be given by the value at point A in
the plot. At the frequency of a resonance, the optical depth is higher (by definition),
and the observed intensity is therefore higher (point B). Thus an emission line is
observed. For Is < I0 (Fig. 18b), the increase in opacity again moves the observer
from A to B, but in this case it yields a decrease in intensity, or an absorption line.

If the functions I0 and Is are each blackbody spectra, the one with the higher
temperature will have the greater intensity at any frequency (Fig. 8). Thus we have
Ts > T0 for the Is > I0 case, and Ts < T0 for the Is < I0 case. We conclude therefore
that if the temperature of the foreground cloud Ts is greater than the background
temperature T0, a spectrum with emission lines will emerge, and that if the cloud
is cooler than the background, a spectrum with absorption lines will emerge.

In most stellar atmospheres at the depth seen in visible light (the photosphere),
the temperature decreases with altitude, i.e., toward the observer. The deeper hot
layers are then the background radiation for the higher, cooler regions. Absorption
lines are thus prevalent in stellar spectra at visible wavelengths.

In contrast, radiation from the sun at ultraviolet frequencies yields emission
lines. The observed ultraviolet radiation comes from high in the solar atmosphere
because the higher opacities in the ultraviolet limit the depth into which the
observer can “see”. In these higher chromospheric regions, the temperature is in-
creasing with height (moving toward the 106-K corona). Thus the higher temper-
atures are in the foreground, and the spectra characteristically exhibit emission
lines.

Case 4: I0 > 0, τ # 1

In this case, the gas is optically thick and (44) again yields

I (ν) = Is(ν) (11.49)

This is the same expression obtained when there was no background intensity (47).
Since the gas is optically thick, the presence of the background source is immaterial
(Fig. 19e). The radiation at any τ is simply the continuum source (blackbody)
spectrum of the optically thick cloud. It does not matter whether I0 > Is or I0 < Is.
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Summary
This concludes our discussion of the limiting cases of the solution to the radiative
transfer equation. In each case the result is a continuum spectrum that reflects one
or both of the spectra I0 and Is with, in some cases, superimposed lines created by
increases in the optical depth τ at certain frequencies. If the foreground cloud inten-
sity (temperature) is greater than the background intensity (temperature), emission
lines are formed. If the opposite is true, absorption lines are formed.

Problems

11.2 Plots of spectra

Problem 11.21. (a) The spectral flux density in wavelength units of some source
varies as the inverse fourth power of the wavelength, Sλ = Kλ−4, where K is a
constant. What is Sν , expressed as a function of ν? See if you can do this from
first principles without reference to the text. Give the units of S in both forms. (b)
Develop an expression for the specific intensity in wavelength units, Iλ = I (λ,T ),
for blackbody radiation. Start with the blackbody spectrum (23). Give the units of
Iλ.

Problem 11.22. An x-ray astronomer measures the spectrum of the diffuse x-ray
background over the range 2–60 keV and finds it to have an exponential shape. He
reports the energy specific intensity to be

IE = 3.6 × 104 exp
(

− hν

23 keV

)
keV s−1 m−2 keV−1sr−1

where hν is given in keV. (a) Convert this to a photon number specific intensity
Ip(ν) with units s−1 m−2 Hz−1 sr−1 and with the coefficient that gives the correct
quantitative values. (b) This radiation is believed to come from the active galactic
nuclei (AGN) of many distant galaxies, not from an isothermal optically thin
plasma as might be inferred from its spectical shape; see Section 3. If it were such
a plasma, what would be its temperature in kelvin? [Ans. ∝ IE/ν; ∼108 K]

11.3 Continuum spectra

Problem 11.31. Consider the sketches of thermal bremsstrahlung spectra on a
log-log plot in Fig. 3c. The curves are for two identical plasmas, with constant
identical Gaunt factors, except that their temperatures differ. Suppose that one is
three times hotter than the other, T2 = 3T1. (a) At what photon energy hν do
the curves for T1 and T2 cross. Express your answer in terms of kT1. (b) Make
a quantitative log-log plot similar to Fig. 3c showing three thermal bremsstrahlung
spectra (I vs. ν) for temperatures T , 2T and 3T , drawn properly to scale, again
for identical plasmas with identical constant Gaunt factors. [Ans. (a) ∼0.8 kT1]
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the half width of the curve at one-half the maximum amplitude (HWHM). (b) Based
on these results, make rough sketches of the damping curves for γ = 0.5, 1, and
2. (c) Repeat part (a) for the Doppler distribution (28). (d) Consider Fig. 15. What
is the value of the parameter γ for the damping expression given there? Find an
expression for the Doppler response κ1 that has unit amplitude and HWHM twice
that of the HWHM of the damping curve. Compare to the Doppler expression
given in the figure. [Ans. ν0, 4/γ , γ /2; ; ν0, 1, σ (2 ln 2)1/2; 1, same]

11.5 Formation of spectral lines (radiative transfer)

Problem 11.51. Consider a stellar atmosphere where Is varies with depth in the
cloud as Is = a + bτ where a is a positive constant and b is a constant that can
be positive or negative. (In the text, we took Is to be constant throughout the
cloud.) Assume that conditions of local thermodynamic equilibrium are satisfied,
and that the observer views the atmosphere head on, as in Fig. 17. (The variation
in Is arises through a variation the volume emissivity with position (38) which
in turn is a consequence of temperature variation within the atmosphere. (a) Find
the solution I (τ ) of the equation of radiation transfer (39) for this situation. (b)
Evaluate the solution for the case of no background source, I0 = 0, with τ % 1 and
with τ # 1. (c) Explain why spectral lines will or will not be formed in each of
these two cases. If they are, what are the condition(s) on b that result in emission
or absorption lines? In the τ % 1 case, how would you constrain b so that only
emission lines occur in the region τ < 0.1, in the context of your approximations?
[Ans. (b) I (τ % 1) ≈ aτ + (b − a)(τ 2/2)]


