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Abstract

We show that collisionless shock waves can be driven in unmagnetized electron-positron plasma

by performing a two-dimensional particle-in-cell simulation. At the shock transition region,

strong electric and magnetic fields are generated due to Weibel instabilities which exponentially

decrease after the transition region. The structure of the shock propagates at an almost constant

speed. We show the existence of Weibel like instabilities by observing patterns in the density

of thermalized particles. We also analyse the variation of electron-positron densities and their

velocities across the shocks.
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Chapter 1

Introduction

Collisionless shocks are one of the important phenomenas that occur in astronomical plasma.

They are believed to be the main source for production of high energy particles like cosmic rays

upto E ∼ 1017 eV. This process of accleration of particles through shocks is called Diffusive

Shock Acceleration [1]. In DSA, particles gain energy by repeatedly scattering across the shock,

increasing their energy as if being squeezed between two converging walls.

The magnetic and the electric fields are amplified and generated around collisionless shocks

in several supernovae remnant. These magnetic fields may be generated by the high-energy

particles accelerated at the shocks. For the generation of magnetic fields in the relativistic shocks

associated with the afterglows of gamma-ray bursts, Medvedev & Loeb (1999) [2] suggested that

the Weibel instability [3] is driven at the shock and generates strong magnetic fields. This

mechanism can work in shocks in electron-positron plasmas as well [4].

In this project we would like to study the dynamics of collisionless shocks in unmagnetized

electron-positron plasmas in detail by performing a high-resolution two-dimensional particle-

in-cell simulation and confirm that a kind of collisionless shock indeed forms, mainly due to

the magnetic fields generated by the Weibel-like instability. Over the course of the project we

would like to see the variation velocities of individual particles and propose a mechanism for

acceleration of the particles.

1.1 Motivation

Being an aerospace student, who is also interested in astrophysics, I would like to use my

knowledge of fluid flow across shocks in studying collisionless shocks which have astrophysical
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Chapter 1. Introduction 2

implications. Also the knowledge of palsma dynamics that I gain through this project would

have various applications in propulsion and other areas of aerospace This has been the main

reason for me to chose this project.

1.2 Overall Structure

In this report, Chapter 2 deals with the basic desciption of collisionless shocks, Chapter 3 deals

with Particle-in-Cell simulations and Chapter 4 deals with the simulation and the results

2



Chapter 2

Basics of Collisionless Shocks

A collisionless shock is loosely defined as a shock wave where the transition from pre-shock to

post-shock states occurs on a length scale much smaller than a particle collisional mean free

path [5]. The reason such a structure can exist is because particles interact with each other not

through Coulomb collisions, but by the emission and absorption of collective excitations of the

plasma - plasma waves.

2.1 Classification

Collisionless shocks can be classified into various categories based on the direction of magnetic

fields before and after shock. Some of the terms used to describe collisionless shocks are:

• Quasi-perpendicular: The pre-shock magnetic field is aligned closer to the shock front.

In these shocks the particles gyrate back into the shock

• Quasi-parallel: The pre-shock magnetic field field vector is aligned closer to the direction

of the shock velocity vector. A 1D normal shock is perfectly parallel. In these type of

shocks, the particles can get reflected back into the upstream medium.

• Slow mode: The magnetic field along the shock front decreases on going through the

shock. They require vshock/vsound > 1 but an Alfven Mach number of vshock/valfven < 1

i.e magnetic energy density > gas pressure in the upstream medium.

• Fast mode: The magnetic field along shock front increases on going through the shock.

Fast mode shocks require vshock/vAlfven > 1 in parallel propagation & vshock/
√
v2Alfven + v2sound >

1 in perpendicular propagation.

3



Chapter 2. Basics of Collisionless Shocks 4

• Unmagnetized Shocks: Besides the above kinds of shocks in which there exists a mag-

netic field upstream, shocks can even form in unmagnetized plasma. In this project, we

mainly focus on these kinds of shocks.

2.2 Weibel Instability

The Weibel instability is a plasma instability present in homogeneous or nearly homogeneous

electromagnetic plasmas which possess an anisotropy in momentum (velocity) space [6]. This

anisotropy is most generally understood as two temperatures in different directions. Burton

Fried(1959) [7] showed that this instability can be understood more simply as the superposition

of many counter-streaming beams. It is like the two-stream instability except that the pertur-

bations are electromagnetic and result in filamentation as opposed to electrostatic perturbations

which would result in charge bunching. In the linear limit the instability causes exponential

growth of electromagnetic fields in the plasma which help restore momentum space isotropy.

As an example, to understand the formation of unmagnetized shock, consider the following

non relativistic case:

An electron beam with density nb0 and initial velocity v0z propagating in a plasma of density

np0 = nb0 with velocity −v0z. SInce there is no background electromagnetic field, B0 = E0 = 0.

The perturbation will be taken as an electromagnetic wave propagating along x̂ i.e. k = kx̂.

Assume the electric field has the form:

E1 = Aei(kx−ωt)z (2.1)

From Faraday’s laws we obtain:

∇×E1 = −∂B1

∂t
⇒ ik×E1 = iωB1 ⇒ B1 = ŷ

k

ω
E1 (2.2)

Since the perturbations are small, we can linearise the velocity of electron beam by writing

vb = vb0 + vb1 and density nb = nb0 + nb1. Assuming vb0 and nb0 to be constant, and the

perturbation velocities to be very small, we apply the Newton-Lorentz equation and simplify to

get

− iωmvb1 = −eE1 − evb0 ×B1 (2.3)

4



Chapter 2. Basics of Collisionless Shocks 5

Decomposing the equation into components we get:

vb1z =
eE1

miω
vb1x =

eE1

miω

kvb0
ω

(2.4)

We use the continuity equations to find the perturbation density:

∂nb
∂t

+∇ · (nbvb) = 0 (2.5)

simplitfying we get:

nb1 = nb0
k

ω
vb1x (2.6)

Now we use the equation of current density of beam to get:

Jb1x = −nb0e2E1
kvb0
imω2

Jb1z = −nb0e2E1
1

imω
(1 +

k2v2b0
ω2

) (2.7)

Doing a similiar analysis for plasma, it can be seen that the x components of current densities

of electron beam and plasm cancel each other while the z components get added. Thus:

J1 = −2nb0e
2E1

1

imω
(1 +

k2v2b0
ω2

)ẑ (2.8)

Substituting in Maxwell’s equations nd manipulating we get,

E1 = Aẑeγteikx (2.9)

B1 = ŷ
k

ω
E1 = ŷ

k

iγ
Aeγteikx (2.10)

where: γ =
ωpkv0

(ω2
p+k

2c2)1/2
= ωp

v0
c

1

(1+
ω2
p

k2c2
)1/2

It can be seen that,

|B1|
|E1|

=
k

γ
∝ c

v0
>> 1 (2.11)

These Weibel instabilities have a length scale of c/ωp and time scales of 10/ωp. As the

two current filaments merge, the field cascades from c/ωp to larger scales, thus increasing the

magnitude of electric and magnetic fields produced. Once the electromagnetic fields reach a

certain value, they can deflect the particles leading to collisionless shocks.

5



Chapter 3

Particle-in-Cell Simulations

The idea of the PIC simulation is simple: The code simulates the motion of plasma particles

and calculates all macro-quantities (like density, current density and so on) from the position

and velocity of these particles. The macro-force acting on the particles is calculated from the

field equations. The name “Particle-in-Cell” comes from the way of assigning macro-quantities

to the simulation particles. In general, any numerical simulation model, which simultaneously

solves equations of motion of N particles

dXi

dt
= Vi ,

dVi

dt
= Fi(t,Xi,Vi, A) (3.1)

for i = 1, ..., N and of macro fields A = L1(B), with the prescribed rule of calculation of macro

quantities B = L2(X1, V 1, ..., XN, V N) from the particle position and velocity can be called a

PIC simulation. For plasma simulations PIC codes are usually associated with codes solving the

equation of motion of particles with the Newton-Lorentz’s force(changed according to relativistic

formulas)
dXi

dt
= Vi ,

γ

c

dVi

dt
=

q

mc

(
E +

u×B
γ

)
(3.2)

for i = 1, ...., N and the Maxwell equation

∇ ·D = ρ(r, t)
∂B

∂t
= −∇×E D = εE

∇ ·B = 0
∂D

∂t
= ∇×H− J(r, t) B = µH

(3.3)

6



Chapter 3. PIC Simulations 7

3.1 Particle Movers

During PIC simulation the trajectory of all particles is followed, which requires solution of the

equations of motion for each of them. This part of the code is frequently called “particle mover”

The number of particles in real plasma is extremely large and exceeds by orders of magnitude

a maximum possible number of particles, which can be handled by the best supercomputers.

Hence, during a PIC simulation it is usually assumed that one simulation particle consists of

many physical particles. Because the ratio charge/mass is invariant to this transformation, this

superparticle follows the same trajectory as the corresponding plasma particle.

The time in PIC is divided into discrete time moments. Usually the time step, ∆t, between the

nearest time moments is constant. Thus: t→ tk = t0 + k∆t and A(t)→ Ak = A(t = tk)

3.1.1 Leap - frog method

The leap-frog method calculates particle velocity not at usual time steps tk , but between them

tk+1/2 = t0+(k+1/2)∆t. In this way equations become time centred, so that they are sufficiently

accurate and require relatively short calculation time. It is an explicit time solver in that in

depends only on older values from previous time steps

Xk+1 −Xk

∆t
= Vk+1/2,

Vk+1/2 −Vk−1/2

∆t
=

e

m

(
Ek +

Vk+1/2 −Vk−1/2

2
×Bk

) (3.4)

3.1.2 Boris method

This method is frequently used is PIC simulations. Here we write

Xk+1 = Xk + ∆tVk+1/2 Vk+1 = u+ + qEk (3.5)

where u+ = u− + (u− + (u− × h)) × s, u− = Vk−1/2 + qEk, h = qBk, s = 2h/(1 + h2)

and q = ∆t/(2(e/m)). In general, the Boris method requires 39 operations (18 adds and 21

multiplies).

7



Chapter 3. PIC Simulations 8

3.2 Boundary Effects

Physically, particles can be absorbed at boundaries, or injected from there with any distribution.

But, numerical implentation leads to problems like (i) the velocity and position of particles are

shifted in time (∆t/2), and (ii) the velocity of particles are known at discrete time steps, while

a particle can cross the boundary at any moment between these steps. Here we discuss how

different boundary conditions are implemented in PIC simulations.

• Reflection: One of the frequently used reflection model is specular reflection. Here,

Xrefl
k+1 = −Xk+1 and V x,refl

k+1/2 = −V x
k+1/2. It is the simplest reflection model, but the

accuracy is very low.

• Reinjection: Reinjection is applied usually when the fields satisfy periodic boundary.

The reinjection is given by Xrefl
k+1 = L−Xk+1 and V x,refl

k+1/2 = V x
k+1/2 where x = L denotes

the opposite boundary.If the fields are not periodic, then this expression has to be modified.

Otherwise a significant numerical error can arise.

• Absorption: particle absorption is the most trivial operation and done by re-moving of

the particle from memory.

• Injection: When a new particle is injected it has to be taken into account that the initial

coordinate and velocity are known at the same time, while the leap-frog scheme uses a

time shifted values of them. In most cases the number of particles injected per time step

is much smaller than the number of particles near the boundary, hence, the PIC code use

simple injection models.

8



Chapter 4

Simulation and Results

4.1 Simulation Setup

We use WARP open-source code [8] for the simulation of collisionless shocks. WARP is a fully

relativistic code that takes input and gives output in Python interface but processes the data

in FORTRAN. Here we have performed simulation of electron-positron plasma with two spatial

and three velocity dimensions (2D3V).

From now on we use τ = ω−1
pe,0 as the unit of time and the electron skin depth l0 = cω−1

pe,0 as

the unit of length, where ωpe,0 = (4πne0e
2/me)

1/2 is the electron plasma frequency. The units

of electric and magnetic fields are both taken as E∗ = B∗ = c(4πne0me)
1/2 ; they are defined so

that their corresponding energy densities are both equivalent to half of the mean electron rest

mass energy density.

The simulations were performed on a Nz ×Nx = 6400× 128 grid, with 80 particles per cell

for both species. The complete simulation box is of Lz ×Lx = 640× 15 in the units of l0. Thus

(∆z,∆x) = (0.1, 0.1). The time step is taken as ∆t = 0.04

Since we consider collisionless shocks in unmagnetized plasmas, the electromagnetic fields

were initially set to zero over the entire simulation box. The boundary condition of the electro-

magnetic field is periodic in each direction.

In this simulation, collisionless shock is formed by merger of 2 high-speed plasma flows with

velocities in opposite directions. The two walls at z = 0 and z = 640 are absorbing for both

particles and fields. Initially each plasma flow is loaded uniformly in half the simulation box.

The plasma between z = 0 and z = 320 are given a bulk velocity of uz = 2.0 while the particles

between z = 320 and z = 640 are given a bulk velocity of uz = −2.0(both corresponding to

9



Chapter 4. Results 10

bulk Lorentz factor Γ = 2.24) . Their thermal velocities were given so that the distribution of

each component of the 4-velocity ui(i = x, y, z) obeys a Gaussian distribution with a standard

deviation of σth = 0.1 in the plasma rest frame. At initial stages of the simulation, particles

of the two flows near z = 320 interact as the two flows merge. This interaction causes some

instabilities, and then two collisionless shocks are formed progating in opposite directions

4.2 Results

All the above results refer to 4000th iteration unless specified.

Figure 4.1 shows the electron number density,ne across the simulation box. The middle region

is the region of shock. We observe that the number density rapidly increases while crossing the

transition regions,i.e from z = 190 to z = 260 and z = 380 to z = 450, and then it becomes

homogeneous. The transition regions do not have a one-dimensional structure, but rather a two-

dimensional filamentary structure, with density fluctuations along the y-direction. The typical

size of the filaments is on the order of several electron skin depths.

Figure 4.1: Density variation across the grid

Figure 4.2 shows the time development of the electron number density. The horizontal and

vertical axes represent the z-coordinate and time, respectively. The plotted number density is

10



Chapter 4. Results 11

averaged over the y-direction. We observe that the transition region, which is visible as the

jump in the number density, propagates upstream with time at an almost constant speed.The

thin structure propagating upstream at almost the speed of light is due to particles that have

passed at very early stages of simulation when the shock hadn’t formed. This structure fades as

time passes and won’t be seen at later time steps.

Figure 4.2: Density variation with time

Figure 4.3 shows the x -averaged profiles across the simulation box, normaised to the up-

stream value. We see that there is an initial increase in density at the point beginning of the

transition regions. The two shocks propagate in opposite directions, implying that the region

of shock in between keeps increasing with passage of time. The compression ratio across the

shocks is 3.3.

11



Chapter 4. Results 12

Figure 4.3: Electron density averaged wrt x v/s z

Figure 4.4 and 4.5 represents the x - averaged profiles of electric and magnetic fields across

simulation box. We see the presence of strong electric and magnetic fields that increase expo-

nentially in the transition region and then decay in the region of shock.

Figure 4.4: x-averaged electric fields v/s z

12



Chapter 4. Results 13

Figure 4.5: x-averaged magnetic fields v/s z

Figure 4.6 shows the distribution of magnetic field across x and z axes at 1200 iteration. In

this figure we can see the sinusoidal variation of magnetic field in X direction. This shows the

onset of Weibel instabilities that lead to the formation of the shock.

Figure 4.6: Onset of Weibel instabilities

13



Chapter 4. Results 14

We also look at the variation in the velocity distribution with time. We see that initially the

velocities of the two flows are seperate, but as the simulation progresses we see that the velocities

tend to merge and they also tend more and more particles reach higher velocities. This can be

seen in the following figures

Figure 4.7: uz v/s z for 400th iteration

14



Chapter 4. Results 15

Figure 4.8: uz v/s z for 2000th iteration

Figure 4.9: uz v/s z for 4000th iteration

40

15



Chapter 4. Results 16

Figure 4.10: uz v/s z for 7200th iteration

Fig 4.11 shows the variation of maximum uz with time.Note that the highest velocity reached

is around 10, after which the maximum uz is almost constant.

Figure 4.11: Maximum uz v/s t

16



Chapter 4. Results 17

Figure 4.12 shows the distribution function of uz in logarithmic scales. We can see that the

distribution is broader than the initial velocity profile. This indicates the rise in temperature of

electron.

Figure 4.12: Distribution function of velocity

All the above results have been analysed for electrons. We see that the positrons also have

the same features since their mass are equal to that of electron.

4.3 Conclusion

The simulation results clearly show that collisionless shocks can be driven in unmagnetized

electron-positron plasmas. The structure of the collisionless shock propagates at an almost

constant speed. We observe that after the shock more and more particles have higher velocities

depicting the increase in temperature of the plasma, but there is a decrease in the bulk kinetic

energy as most particles have zero uz. This dissipation of the upstream bulk kinetic energy is

mainly due to the deflection of particles by the strong magnetic field generated around the shock

transition region by the Weibel- type instability.

In the second part of project we would like to study shocks with already existing magnetic

fields where we can observe particle acceleration, and study the mechanisms behind it.
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