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Chapter 1

CALIBRATING REDSHIFT
DISTRIBUTIONS BEYOND
SPECTROSCOPIC LIMITS

WITH CROSS CORRELATIONS

Cosmic Microwave Background Radiation [1] is the thermal radiation left over from the epoch of recom-
bination in Big Bang cosmology. It was discovered by Penzias and R. W Wilson when they measured an
excess antenna temperature of 4.2K. The CMB is a snapshot of the oldest light in our Universe, imprinted
on the sky when the Universe was about 380,000 years old. It is the best blackbody source of radiation
that we know with a temperature of 2.72548±0.00057 K. Even though the CMB is the most homogeneous
source of radiation we know of, it has very small anisotropies.

Inflation is a period of extremely rapid exponential expansion of the universe for a small fraction of a
second after the Big Bang, during which the universe expanded in size by a factor of 1026−1027. The theory
of inflation was proposed to resolve several issues imposed on the standard model of cosmology. Since
the first proposal of the theory, several models of inflation have been proposed and studied extensively.
Quantum fluctuations during the inflation is believed to have seeded the formation of the large scale
structure of the universe. Quantum fluctuations also gave rise to tensor perturbations which sourced the
primordial gravitational waves. It is believed that primordial gravitational waves could provide constraint
on any model of inflation.
In this report, CMBR spectrum has been analysed to validate different models of inflation.

Overall structure

In this report, Chapter 2 deals with the theory of inflation, Chapter 3 deals with the elements of CMBR
spectrum and Chapter 4 deals with the different models that have been analysed.
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Chapter 2

Inflation

2.1 The beginning

The standard model of hot Big Bang cosmology has a singularity conventionally taken to be at time t=0.
As time t→ 0, the temperature t→∞. [2] However, the standard model equations can be safely used only
at a temperature comfortably below Planck mass MP = 1.22 × 1019GeV , as above these temperatures,
quantum gravitational effects are expected to become essential. Thus at such a temperature, the universe
can be described as a set of initial conditions, and the subsequent conditions are described by the standard
model equations.

In the standard model, the initial universe is taken to be completely homogeneous and isotropic, and
filled with a gas of effectively massless particles in thermal equilibrium at the initial temperature T0 .[? ]
Thiiiie universe can be completely described at any subsequent stage subject to the initial conditions, at
least in theory. However, as with any theory, a number of mysteries and problems have arisen as a result
of the development of the Big Bang theory.

2.2 Problems with the Standard Model

2.2.1 The Horizon Problem

This problem arises from the premise that information travel has a finite upper speed limit. As the
universe has a finite age, there is a limit on the size of causally disconnected regions (particle horizons)
which is violated by the observed isotropy in the CMBR - for example, wider regions have the same
temperature without having the time to communicate that information throughout the region.

2.2.2 The Flatness Problem

The universe may have positive, negative or zero curvature depending on its net energy density(ρ). The
energy density of the universe today is very near the critical energy density(ρcr) corresponding to the
zero curvature solution (the borderline between an open and a closed universe). The key point here is
that the condition for zero curvature is unstable, and any deviation from critical density will grow with
time. Also, the timescale for the amplification of this deviation is of the order of Planck’s time. A typical
closed universe will reach its maximum size on the order of this timescale, while a typical open universe
will have its ρ diminish to values quite less than ρcr. For the universe to be as it is after roughly 15 billion
years since its formation, an extreme fine tuning of initial values of ρ and initial expansion rate (Hubble
constant H) is required, so that ρ remains very close to ρcr. For initial conditions taken at To = 1017GeV ,
Ho must be fine tuned to an accuracy of one part in 1055. This incredibly precise initial relationship must
be assumed in the Standard Model without explanation.
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Chapter 2. Inflation CHAPTER 2. INFLATION

Figure 2.1: Solution to Horizon Problem

2.2.3 Magnetic Monopoles

In the late 1970s, Grand unified theories predicted topological defects in space that would manifest as
magnetic monopoles. These objects would be produced efficiently in the hot early universe, resulting in
a density much higher than is consistent with observations, given that no monopoles have been found.

2.3 Need For inflation

A resolution to the Horizon Problem is offered by inflationary theory in which a homogeneous and
isotropic scalar energy field dominates the universe at some very early period. During inflation, the
universe undergoes exponential expansion, and the particle horizon expands much more rapidly than
previously assumed, so that regions presently on opposite sides of the observable universe are well inside
each other’s particle horizon. The observed isotropy of the CMB then follows from the fact that this
larger region was in causal contact before the beginning of inflation. The magnetic monopole problem is
also resolved, as inflation removes all point defects from the observable universe, in the same way that it
removes most of the anisotropy, thus driving the universe extremely close to flatness.

2.4 Slow Roll conditions for inflation

Consider a scalar field φ, the inflaton, with potential V (φ).
The inflaton φ(t) is governed by the Klein-Gordon equation, [3]

φ̈+ 3Hφ̇ = −V ′ (2.1)

where H is given by the Friedmann equation,

H2 =
1

3Mp
2
l

[
1

2
φ̇2 + V

]
(2.2)

From the above two equations, we get the continuity equation ..

Ḣ = −1

2

φ̇2

Mp
2
l

(2.3)
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Chapter 2. Inflation CHAPTER 2. INFLATION

Figure 2.2: Slow Roll Inflation

The slow roll parameters ε and η are defined as follows.

ε(φ) =
M2
P

16π

(
V ′

V

)2

, η(φ) =
Mp

2
l

8π

V ′′

V
(2.4)

Using the continuity equation we get,

ε =
1

2

φ̇2

M2
PH

2
(2.5)

Inflation occurs only if ε < 1, i.e. if potential energy V dominates over kinetic energy 1
2 φ̇

2. For this

condition to persist, the scalar field acceleration must be small. We note that the condition 1
2 φ̇

2 � V
implies that ε � 1 . This condition is called the slow roll approximation and is used to simplify the
equations of motion. Hence the Friedmann eq. simplifies to

H2 ≈ V

3M2
P

(2.6)

The Klein-Gordon equation reduces to
3Hφ̇ ≈ −V ′ (2.7)

The conditions for slow-roll inflation to occur are,

εv ≡
M2
P

2

(
V ′

V

)2

� 1and | ηv |≡Mp
2
l

V ′′

V
� 1 (2.8)

It is worth noting that though the above conditions are necessary for slow roll inflation to occur, they are
not self-sufficient. It is still possible that the scalar field has a very large initial velocity capable enough
to override the flatness of the potential V.
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Chapter 3

CMB Temparature and Polarisation
Anisotropies

Cosmic Microwave Background Radiation [1] is the thermal radiation left over from the epoch of recom-
bination in Big Bang cosmology. Ever since its discovery in 1965, it has been used as an active probe of
the early universe. Even though the CMB is the most homogeneous source of radiation we know of, it has
very small anisotropies. The largest contributor to these anaisotropies is the dipole contribution of the
earth’s velocity through space. This dipole contribution is not of cosmological interest. In this chapter,
we study the anisotropies (after removing this dipole term) in detail.

3.1 CMB Observables

The CMBR is described by its intensity distribution.[4] Since the spectrum of CMB brightness is close
to thermal, in most cases the intensity is described by the temperature T (n) where n is the direction of
observation. The fluctuations represented by ∆T (n) are of the order of 10−5T, after removing the dipole
contribution. These CMB anisotropies ∆T (n)/T = Θ(n) at the observaer can be expanded in spherical
harmonics.

Θ(n) ≡ ∆T

T
(θ φ) =

∑
lm

almYlm(θ, φ) (3.1)

with a∗lm = (−1)mal−m since the temperature is a real quantity.
Assuming Θ to be Gaussian random field we have,

〈almal′m′〉 = Clδll′δmm′ (3.2)

Because of statistical isotropy, the power spectrum is independent of m. Theorectical predictions of
CMBR anisotropy are then comapred with observations by computing the Cl’s or the correlation function
C(α) = 〈Θ(n)Θ∗(m), where cosα = n ·m

C(α) =
∑
lm

∑
l′m′

〈alma∗l′m′〉YlmY ∗lm =
∑
l

Cl
2l + 1

4π
Pl(cosα) (3.3)

The mean-square temperature anisotropy,

〈(∆T )2〉 = T 2C(0) = T 2
∑
l

Cl
2l + 1

4π
Pl(cosα) ≈ T 2

∫
l(l + 1)Cl

2π
dlnl (3.4)

with the last approximate equality valid for large l, and so l(l+ 1)Cl/2π is a measure of the power in the
temperature anisotropies, per logarithmic interval in l space.
Note that CMB brightness and hence Θ is a function of spacetime location (x, η) where x and η are
the conformal spatial and time coordinates respectively. C(α) is calculated by the ensemble average
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Chapter 3. CMB CHAPTER 3. CMB TEMPARATURE AND POLARISATION ANISOTROPIES

〈Θ(x0, η0,n)Θ(x0, η0,m)〉. The Fourier component to Θ, for every k mode depends on n only through

k̂ · n = µ where k̂ = k/ | k |. Expanding Θ by Fourier Legandre series,

Θ(x0, η0,n) =

∫
d3k

(2π)3
eik·x0

∑
l

(−i)l(2l + 1)al(k̂, η0)Pl(k̂ · n) (3.5)

For a homogeneous, isotropic, Gaussian random Θ field,
〈al(k, η0)a∗l′(p, η0)〉 = 〈| al(k, η0) |2〉δl,l′(2π)3δ3(k− p) where the power spectrum 〈| al(k, η0) |2〉 depends
only on k =| k |. Therefore

C(α) =
∑
l

2

π

∫
dk

k
k3〈| al(k, η0) |2〉2l + 1

4π
Pl(cosα) (3.6)

Comparing with equation 3.3, we see that,

Cl =
2

π

∫
dk

k
k3〈| al(k, η0) |2〉 (3.7)

3.2 Sources of CMB anisotropies

The major sources of CMB anisotropies have been discussed in this section.[5]

3.2.1 Saches-Wolfe Effect

This is the simplest source of density fluctuations through gravitational redshift. A photon coming from
a slightly overdense region is more redshifted than the photon coming from an underdense region. Thus
the CMB temperature anisotropies can by calculated due to slightly varying Newtonian potential Φ from
the density fluctuations at surface of last scattering(

∆T

T

)
=

1

3
Φ (3.8)

Fluctuations on large angular scales (low multipoles) are larger than the horizon at the time of last
scattering, so this phenomenon is dominant on large angular scales.

3.2.2 Acoustic Oscillations

Matter tends to collapse due to gravity onto regions of higher density. But since baryons and photons are
strongly coupled, the photons tend to resist the collapse and push the baryons outside. The gas heats as
it compressed and cools as it expands, and this creates fluctuations in the CMB. These oscillations can
be used to calculate the curvature of the universe.

3.3 Power Spectrum

The Power spectrum P (k) is defined as the variance per unit logarithmic interval. For convenience the
different components of the CMBR spectrum (scalar and tensor) are seperated and denoted by PS(k)
and PT (k) respectively.

The power law for the scalar spectrum is of form

PS(k) ∝ knS−1 (3.9)

where nS is the scalar spectral index. Similarly the tensor spectrum is given by

PT (k) ∝ knT−1 (3.10)

where nT is the tensor spectral index.
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Chapter 3. CMB CHAPTER 3. CMB TEMPARATURE AND POLARISATION ANISOTROPIES

It can be show that for a slow role inflation:

nS = 1 + 2η − 6ε

nT = −2ε
(3.11)

For convenience we can calculate PS(k) and PT (k) at a pivot value of k and then from the power law
we can find the power spectrum at other modes
For scalar power spectrum the pivot value is taken as kS∗ = 0.05.
For tensor power spectrum the pivot value is taken as kT∗ = 0.002.
For these pivot values

PS =
2V

3π2M2
pl

(3.12)

PT =
1

12π2M2
pl

V 3

V ′2
(3.13)

3.4 Polarisation

In addition to anisotropies in the CMB temperature, we expect the CMB to become polarized via Thomson
scattering of the photons from free electrons just before decoupling(see Figure 3.1

Figure 3.1: Quadrupole anisotropy leading to polarisation

The advantages of studying polarisation in addition to studying the temperature anisotropies are:

1. The detection of polarisation in CMB were important confirmations of gravitational instability
paradigm.

2. Polarization spectrum provides the information complementary to temperature spectrum which can
be used to break degeneracies and fix cosmological parameters more accurately.

3. Confirms acoustic interpretation of temperature peaks

4. Not affected by physical processes. Hence it is a direct probe to the last scattering surface.

5. We can distinguish the components of the power spectrum and so study the cosmological model
more accurately

3.4.1 Stokes parameters

The anisotropy is characterized by intensity matrix tensor Iij(n̂). It is a function of the direction on the
sky and the two directions perpendicular to it which are used to define its components (, ). The Stoke
parameters are defined as

Q =
I11 − I22

4
(3.14)
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Chapter 3. CMB CHAPTER 3. CMB TEMPARATURE AND POLARISATION ANISOTROPIES

U =
I12
4

(3.15)

and the temperature anisotropy is

T =
I11 + I22

4
(3.16)

The polarisation magnitude and angle are given by:

P =
√
Q2 + U2 (3.17)

α =
1

2
tan−1

(
U

Q

)
(3.18)

The quantity T is invariant under rotation and and should be expanded in terms of scalar spherical
harmonics as in equation 3.1.
The quantities Q and U transform under rotation by angle ψ as a spin -2 field (Q± iU)(n̂)→ e∓2iψ(Q±
U)(n̂). The harmonic analysis of Q±U can be done by its expansion in terms of tensor(spin -2) spherical
harmonics

(Q± iU)(n̂) =
∑
lm

a±2,lm±2Ylm(n̂) (3.19)

3.4.2 E/B decomposition

The spin-1 polarization field can be decomposed spin-0 quantities, the so-called E- and B-modes i.e instead
of moments a±2,lm it is convenient to introduce liner combinations

aE,lm ≡ −
1

2
(a2,lm + a−2,lm) aB,lm ≡ −

1

2i
(a2,lm − a−2,lm) (3.20)

E(n̂) =
∑
lm

aE,lmYlm(n̂) B(n̂) =
∑
lm

aB,lmYlm(n̂) (3.21)

The angular spectrum are defined as:

CXYl =
1

2l + 1

∑
m

〈a∗X,lmaY,lm〉, X, Y = T,E,B, (3.22)

The scalar quantities E and B completely specify the linear polarization field. E-mode polarization is
curl-free with polarization vectors that are radial around cold spots and tangential around hot spots on
the sky. In contrast, B-mode polarization is divergence-free but has a curl: its polarization vectors have
vorticity around any given point on the sky.

Figure 3.2: E modes and B Modes
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Chapter 4

Analysis of Inflation Models

4.1 Models of Inflation

An inflation model can be described by specifying a potential V (φ). For the purposes of this report, we
have studied four different inflation models and used them to derive the Scalar mode (PS)and Tensor
mode fluxes (PT ) and their ratio r under the slow roll approximation.

4.2 Steps of Analysis

1. For a given V (φ), the under the slow-roll approximation we calculate the power spectrum for scalar
and tensor modes, the ratio r and the scalar and tensor spectral indices using the methods described
in Chapters 2 and 3.

2. The e-folding number was assumed to be N = 60 for all models described.

3. Using the parameters so obtained, the CAMB code was used to obtained the BB mode spectrum.[6]

4. The data from the Planck - BICEP experiment for BB model was compared to the data generated
in the previous step to test the feasibility of the model.

4.2.1 Large Field Inflation

V (φ) = M4

(
φ

MP

)2

For the purpose of analysis, we have used M ≈MP × 3× 10−3.
This is an example of chaotic inflation model. The field rolls down a quadratic potential and oscillates
around the true vacuum position.

Using the slow-roll approximation outlined in Chapter 3, we arrive the following results for the given
model:

PS = 1.0013× 10−8

PT = 1.3241× 10−9

r = 0.1322

The data obtained from CAMB was compared with Planck-BICEP data. We see that data generated
for this model fits quite well for the given model.
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Figure 4.1: Model 1

4.2.2 Mixed Large Field Inflation

V (φ) = M4 φ
2

M2
P

(
1 + α

φ2

M2
P

)
The results for this model are arrived to be as follows:

PS = 2.562× 10−9

PT = 7.0334× 10−10

r = 0.2745

4.2.3 Mutated Hilltop Inflation

V (φ) = M4

(
1− sechφ

µ

)
µ

MP
≈ 10−2

M

MP
≈ 10−4
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Figure 4.2: Model 2
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Figure 4.3: Model 3 : Potential
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This potential graphically looks like a quadratic potential near the origin.

PS = 3.601× 10−9

PT = 6.755× 10−18

r = 1.876× 10−9

We see that similar to the Large Field Inflation model, this model again fits quite well with the
observations.
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Figure 4.4: Model 3

12



Chapter 5

Conclusion

We see that the inflation models studied in this report adhere to Planck-BICEP observations.
We see that model 1 fits the best wherein r is of the order of 0.1.
The knowledge of potential of the inflation field can be used to study the origin of the field itself and can
potentially lead to a clearer understanding of physics of the early universe.
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