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Properties and determination of the interface stiffness
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Abstract

The chemical potential of a curved interface contains a term that is proportional to the product of the interface curvature and the
interface stiffness. In crystalline materials, the interface stiffness is a tensor. This paper examines several basic issues related to the prop-
erties of the interface stiffness, especially the determination of the interface stiffness in particular directions (i.e. the commonly used scalar
form of the interface stiffness). Of the five parameters that describe an arbitrary grain boundary, only those describing the inclination are
crucial for the scalar stiffness. We also examine the influence of crystal symmetry on the stiffness tensor for both free surfaces and grain
boundaries. This results in substantial simplifications for cases in which interfaces possess mirror or rotational symmetries. An efficient
method for determining the interface stiffness tensor using atomistic simulations is proposed.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The interface stiffness is the coefficient of the interface
curvature in the description of the capillarity contribution
to the chemical potential. In curvature-driven interface
migration, the interface velocity is proportional to the
interface stiffness, mobility and curvature. As a result, the
interface stiffness is the key material property that relates
interface curvature to interface thermodynamics and kinet-
ics. The determination of interface stiffness is, however,
extremely difficult. In the past several years, there have
been several attempts to determine the stiffness using atom-
istic simulation methods (e.g. Ref. [1] is a pseudo-three-
dimensional study of a grain boundary and Ref. [2] is a
pseudo-three-dimensional study of a liquidsolid interface
based on two-dimensional stiffness). Recently, the thermal
fluctuation-based method [2] for liquid–solid interface stiff-
ness was generalized to study the interface stiffness of grain
boundaries in 3D and showed a relatively mild anisotropy
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for a boundary in Ni [3]. The interface stiffness depends not
only on interface orientation but also the direction of the
curvature. In fact, the interface stiffness in three dimensions
is a 2 · 2 tensor whose components vary with all of the
parameters that specify the interface crystallography (for
grain boundaries, there are five such parameters – includ-
ing inclination and misorientation). For the special case
of a special R7[11 1] – tilt asymmetric grain boundary, it
was observed that the interface stiffness had a twofold sym-
metry and could be fitted with a simple trigonometric
function [3,4].

In this note, we examine several basic issues regarding
interface stiffness and describe a practical approach for
determining it. In particular, we examine the essential dif-
ference between the stiffness and the stiffness tensor, and
provide an analytical form that relates the two. The rela-
tionship demonstrates that the trigonometric dependence
of the stiffness upon the direction of curvature [3] found
in the atomistic simulation of a special R asymmetric grain
boundary has a fundamental basis and is a common fea-
ture of general anisotropic interfaces. Based on this rela-
tionship, we describe a method for efficiently determining
rights reserved.
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the stiffness tensor from atomistic simulations. Finally, we
examine the influence of crystal symmetry on the stiffness
tensor for both free surfaces and grain boundaries. The
results were found to be consistent with the distribution
of grain boundary types in polycrystalline materials.

2. Free surface stiffness tensor

Consider a solid surface at which the solid is in contact
with a vacuum, vapor or liquid. If the only driving force for
surface evolution is capillarity and the only operative evo-
lution mechanism is evaporation/condensation [5], the sur-
face velocity in two-dimensions (i.e. a one-dimensional
surface) is

V ¼ �Mðcþ c00Þj ¼ �MCj ð1Þ
where M is mobility, c is the surface free energy, j is the
curvature, the double prime indicates the second derivative
with respect to the orientation of the surface normal and
the surface stiffness is C = (c + c00).

In three dimensions (i.e. a two-dimensional surface), the
surface energy c is a function of the surface normal n. In
this case, the surface evolves under evaporation/condensa-
tion kinetics with the curvature as

V ¼ �MC : j ¼ �M ½ðcðnÞ1þrnrncðnÞÞ : j� ð2Þ
where $n is the surface gradient on the unit sphere of inter-
face normal n,

CðnÞ ¼ ðc1þrnrncÞ ð3Þ
is the stiffness tensor, j = $n is the curvature tensor and
A:B = AijBij.

In two dimensions, the stiffness C(n) is a scalar function
and in three dimensions the stiffness tensor C(n) is a second
rank, symmetric tensor function of the surface normal n.
The value of the stiffness at a point depends on the direc-
tion the surface is curved at that point. If t is the tangent
direction in which the surface is curved, then T is the space
of all such tangent vectors perpendicular with normal n, i.e.

TðnÞ ¼ ftjt � n ¼ 0; jtj ¼ 1g ð4Þ
Choosing fixed orthogonal unit reference vectors e1 and e2

in the tangent plane at n, the tangent vector set T can be
parameterized by

TðnÞ ¼ ftjtðhÞ ¼ cos he1 þ sin he2; h 2 ½0; 2p�g ð5Þ
where h is the angle between the tangent vector t and e1.

We now relate the general stiffness tensor to the value of
the stiffness at a particular point P on a surface which is
curved in a particular direction along t(h). Since we are
only concerned about this one curvature direction, we
focus on the case where the other principal curvature (the
principle curvature directions are orthogonal to each other)
has zero magnitude. Then, the curvature tensor is

j ¼ jtðhÞ � tðhÞ ð6Þ
where (A � B)ij = AiBj. Substituting this relation into
Eq. (2), the stiffness C(h) in the tangent orientation t(h) is
Cðh; nÞ ¼ tðhÞ� CðnÞ � tðhÞ: ð7Þ
We can rewrite this general form for the stiffness explic-

itly as

Cðh; nÞ ¼ C11 cos2 hþ C22 sin2 hþ C12 sin 2h ð8Þ

¼ C11

1þ cos 2h
2

þ C22

1� cos 2h
2

þ C12 sin 2h ð9Þ

¼ C11 þ C22

2
þ C11 � C22

2
cos 2hþ C12 sin 2h; ð10Þ

where C11, C22 and C12 are all three unique components of
the symmetric stiffness tensor C(n), measured with respect
to the reference orthogonal unit vectors e1 and e2 in the
tangent plane at n. Therefore, only three parameters are re-
quired to determine the stiffness tensor and the dependence
of the stiffness on the tangent orientation at each surface
normal orientation n.

Examination of Eq. (10) shows that the stiffness C(h;n)
possesses a twofold rotational symmetry in the tangent
space at n. This is not surprising, since C(n) is a 2nd rank
tensor. Interestingly, this twofold rotational symmetry is
present even if the underlying material possesses no such
symmetry.

Note that, although we have a stiffness tensor for the
three-dimensional case (i.e. the stiffness is a function of
both surface orientation n and tangent orientation t(h) in
the tangent space at n), the mobility M for evaporation/
condensation in Eq. (2) is a scalar and is a function of sur-
face orientation n only.

3. Interface stiffness tensor

For general interfaces, such as grain boundaries in poly-
crystalline materials, the situation is further complicated by
the larger number of degrees of freedom that grain bound-
aries possess. It is important to unify the language used to
determine grain boundary geometry and that used to deter-
mine interface stiffness.

Consider a boundary separating two grains, I and II (i.e.
the grain boundary in a bicrystal). Five parameters are nec-
essary to fully describe the bicrystallography of such a
boundary. These five parameters can be divided into two
sets. The first set S1 indicates misorientation; three inde-
pendent parameters are required to specify the rotation
of grain II with respect to grain I. The second set S2 indi-
cates the inclination of the interface normal n; two indepen-
dent parameters are required to specify the normal
direction.

Thus the grain boundary energy is parameterized by

c ¼ cðn; S1Þ ð11Þ
The grain boundary stiffness tensor is

Cðn; S1Þ ¼ ðcðn; S1Þ1þrnrncðn; S1ÞÞ ð12Þ
where, similar to the free surface interface discussed previ-
ously, $n is the surface gradient on the unit sphere of grain
boundary normal n. Conceptually, in order to determine
the stiffness tensor, we first fix the misorientation S1
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between the two grains and write the grain boundary en-
ergy as cS1

ðnÞ ¼ cðn; S1Þ. Thus the stiffness for each tangent
orientation Cn;S1(h) is related to the stiffness tensor C(n;S1)
through a similar relationship as for the free surface

Cn;S1
ðhÞ ¼ C11 þ C22

2
þ C11 � C22

2
cos 2hþ C12 sin 2h ð13Þ

Here, C11, C22 and C12 are components of C(n;S1) with re-
spect to the orthogonal reference unit vectors e1 and e2 in
the tangent plane at n for misorientation S1. We emphasize
that how the stiffness depends on the direction in which the
boundary curves is completely characterized by the stiffness
tensor.

4. Determination of the interface stiffness tensor

It is possible to determine the interface stiffness directly
from molecular dynamics simulations, as shown by Ref.
[2] using quasi-two-dimensional simulations. Due to its
complexity, few efforts were devoted to determine stiffness
tensors. For a weak anisotropic interface (such as a solid–
liquid interface near melting temperature), it is possible to
determine interface energy directly using lower order har-
monic expansion together with a thermal fluctuation-based
method [2]. For mild or strong anisotropy, harmonic expan-
sion involves many terms. However, it is still possible to
determine the grain boundary stiffness tensor directly from
molecular dynamics simulations with three-dimensional
configurations, as shown by Ref. [3], using the thermal fluc-
tuation method. Due to the three-dimensional nature of the
simulations, it is necessary to employ a very large simula-
tion cell in all directions to allow sufficient freedom for
the boundary profile to fluctuate in all directions. This
requires more simulation efforts than quasi-two-dimen-
sional simulations.

However, based on the previous analysis, we can devise
a scheme that requires no more than three traditional
quasi-two-dimensional simulations to determine the full
stiffness tensor C(n;S1) and thus the dependence of the stiff-
ness on the orientation of the tangent direction in which the
boundary curves. In such quasi-two-dimensional simula-
tions, the simulation cell would be long in one direction
parallel to the nominal boundary plane and very thin in
the orthogonal direction (i.e. orthogonal to this direction
and the boundary normal). Using this elongated simulation
cell, it is possible to determine the stiffness in the long direc-
tion (i.e. the long direction is parallel to the tangent orien-
tation t(h)). If we do three simulations with the long axis of
the simulation cell oriented in three different directions, it is
possible to extract the full boundary stiffness tensor for any
set of n and S1. Such an approach would be much more
efficient that performing such a simulation on a large
three-dimensional simulation cell.

Firstly, we choose two orthogonal reference orientations
e1 and e2 in the tangent plane at n for misorientation S1.
Next, we run simulations for three quasi-two-dimensional
cells (as described above) with the long axis parallel to
three orientations t(h) with h ¼ 0; p
4

and p
2
, respectively,

where h is the angle between t and e1. Using the thermal
fluctuation method, this will yield three values of stiffness:
Cn;S1
ð0Þ, Cn;S1

ðp
4
Þ and Cn;S1

ðp
2
Þ. Using Eq. (13), we have

Cn;S1
ð0Þ ¼ C11 ð14Þ

Cn;S1

p
4

� �
¼ C11 þ C22

2
þ C12 ð15Þ

Cn;S1

p
2

� �
¼ C22 ð16Þ

Solving this set of equations for C11, C22 and C12 gives

C11 ¼ Cn;S1
ð0Þ ð17Þ

C22 ¼ Cn;S1

p
2

� �
ð18Þ

C12 ¼ Cn;S1

p
4

� �
�

Cn;S1
ð0Þ þ Cn;S1

p
2

� �
2

ð19Þ

We expect that this approach is at least seven times more
efficient than the straightforward three-dimensional
approach.

5. Interface symmetries

While the discussion presented above was completely
general, crystalline materials necessarily exhibit certain
symmetries that decrease the relevant parameter space.
Most interfacial properties (e.g. grain boundary energy,
surface energy) exhibit extrema (often cusps) for particular
high symmetry orientations (misorientations, inclinations).
Therefore, it is reasonable to assume that crystal symmetry
may play an important role in interface stiffness as well. In
this section, we examine the effects of crystal symmetry
operations on the stiffness tensor and see how symmetry
can reduce the number of unknowns.

Firstly, if there is a mirror plane orthogonal to the inter-
face, then we can choose e1 such that it is the intersection of
the interface and the mirror plane. In this case, the inter-
face tensor must be an even function of h in Eq. (13)
and, therefore, C12 = 0, where e2 is orthogonal to e1 and
both are principal directions of the stiffness tensor (i.e.
the stiffness tensor is diagonal). When there is a mirror
plane perpendicular to an interface, only two simulations
are necessary to determine the stiffness tensor. All free sur-
faces that are perpendicular to a mirror plane of the bulk
crystal possess a mirror symmetry. Table 1 shows a com-
plete list of such surfaces in common cubic and hexagonal
materials.

For grain boundaries, the symmetry is determined by
the common symmetries of grains on both sides of the
interface. For grain boundaries, the condition for mirror
symmetry is more restricted. In order to possess a mirror
symmetry, the interface must be perpendicular to a special
plane which is a mirror plane of the bulk crystals of both
grains I and II. Thus there are three classes of possible mis-
orientations: (a) pure tilt boundaries with a tilt axis corre-
sponding to the normal to a mirror plane common to both
grains (valid for any misorientation (R or non-R) and any



Table 1
All of the surfaces and grain boundaries in cubic and hexagonal crystals that exhibit a mirror plane perpendicular to the interface

Crystal class Free surface Grain boundary

Cubic [001] or [110] tilt axes
(hk0); (001) mirror plane 90� twist about ½1�10�; mirror planes (001) and(110)
ðh�hkÞ; (110) mirror plane 60� twist about [111]; mirror planes ð1�10Þ and ð�101Þ

45� twist about [100]; mirror planes (001) and (011)

HCP [0001] or ½1�100� tilt axes
(hk l0); (0001) mirror plane 60� twist about [0001]

h
2

h
2

�hn
� �

; ð1�100Þ mirror plane 90� twist about [1210]
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inclination angle); (b) pure twist boundaries with a twist
axis corresponding to the intersection of two mirror planes
in the underlying crystal and with a twist angle equal to the
angle between these two mirror planes; and (c) mixed tilt/
twist boundaries, provided that the twist component is as
described in (b) followed by a tilt with the tilt axis perpen-
dicular to the mirror plane. A complete list of pure tilt and
pure twist grain boundaries in cubic and hexagonal materi-
als that have mirror symmetries is provided in Table 1. For
boundaries in other crystal classes, the symmetry can be
obtained by removing symmetry elements from one of
these two classes.

For interfaces with threefold or higher rotational sym-
metries, the stiffness tensor is isotropic, i.e. the stiffness is
independent of the direction(s) about which the interface
is curved. In such cases, only one simulation is required
to determine the stiffness tensor, i.e.

C11 ¼ C22 ¼ C; C12 ¼ 0: ð20Þ
Some examples of interfaces with three- and fourfold

rotational symmetries are listed in Table 2. Note, in some
hexagonal systems, the {0001} planes actually possess six-
fold symmetry as induced by the isogonal symmetry. This,
however, does not change the conclusion that the stiffness
is isotropic.

6. Discussion

This paper focused on the relation between interface
stiffness and the interface stiffness tensor. The stiffness is
the increase in the energy of an interface resulting from
curving the interface in one direction. The stiffness tensor
measures the stiffness for curving in an arbitrary direction
(this includes curving along one or two arbitrary axes).
This relation is represented analytically in Eq. (13). The
relationship demonstrates that the trigonometric depen-
Table 2
Examples of surfaces and grain boundaries that have three- and fourfold
rotation axes perpendicular to the interface

n-Fold rotational
symmetry

Free surface Grain boundary

3 {111} in cubic (111)jÆ111æ twist in cubic
{0001} in HCP (0001)jÆ0001æ twist in hexagonal

4 {100} in cubic (100)jÆ100æ twist in cubic
dence of the stiffness on the direction of the axis of curva-
ture observed in atomistic simulations for a special R
asymmetric grain boundary [3] is mandated by the mathe-
matics and is a common feature of general anisotropic
interface. Based on this general relationship, we propose
an approach for measuring the full stiffness tensor that
results in significantly more efficient simulations than previ-
ous efforts.

Symmetry considerations can be used to simplify the
stiffness tensor, leading to a full description with fewer
parameters. Two particular types of symmetry are note-
worthy: mirror planes and n-fold rotational symmetries,
with n P 3. We identified all of the surfaces and grain
boundaries in cubic and hexagonal crystals for which such
mirror symmetries may be present (see Table 1). For grain
boundaries with mirror symmetry, the interface stiffness
tensor has only two unique parameters. For grain bound-
aries containing threefold or higher rotational symmetries,
the stiffness tensor is isotropic and therefore is fully
described by a single parameter.

Recent experimental observations of the population of
grain boundary planes in a polycrystalline, cubic aluminum
was not random; nor was it determined by the density of
coincident lattice points [6]. This study showed that
(00 1), (110) and (111) boundary planes appear signifi-
cantly more often than expected. Examination of Table 1
shows that these boundaries are special in the sense that
they possess mirror symmetries. The experimental mea-
surements of the boundary population in polycrystalline
aluminum [6] indicate that (111)jÆ111æ and (100)jÆ100æ
(boundary plane, rotation axis pairs) boundaries (i.e. pure
twist) occur with a higher probability than other bound-
aries, regardless of the twist angle. Examination of Table
2 shows that (11 1)jÆ111æ and (100)jÆ10 0æ boundaries in
a cubic material have three- and fourfold rotational sym-
metry, respectively. In particular, the 60� twist
(11 1)jÆ111æ boundary was observed to have the largest
population amongst all of the Æ111æ(111) boundaries [6].
The 60� (111)jÆ111æ twist boundary also possesses a mirror
symmetry with a coincident site lattice density R3. This is
the only grain boundary in a cubic system that has both
a mirror symmetry and a threefold rotational symmetry.
While we have not established the link between grain
boundary stiffness and grain boundary population density,
these observations do show that boundaries that are special
from the point of view of stiffness are also special from the
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point of view of population in a polycrystalline material.
This suggests that when the grain boundary distribution
is determined by grain growth (as in the aluminum experi-
ments), the boundary stiffness is the key parameter that
determines the grain boundary population. At this point,
however, this remains conjecture.
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