Meeting Report

Lawren Sack1, Marilyn C. Ball2, Craig Brodersen3, Stephen D. Davis4, David L. Des Marais5,6, Lisa A. Donovan7, Thomas J. Givnish8, Uwe G. Hacke9, Travis Huxman10, Steven Jansen11, Anna L. Jacobsen12, Daniel M. Johnson13, George W. Koch14, Christophe Mauré15, Katherine A. McCulloh16, Nate G. McDowell16, Andrew McElrone17,18, Frederick C. Meinzer19, Peter J. Melcher20, Gretchen North21, Matteo Pellegrini22, William T. Pockman23, R. Brandon Pratt12, Anna Sali24, Louis S. Santiago25, Jessica A. Savage5,6, Christine Scoccoli1, Sanna Sevanto16, John Sperry26, Stephen D. Tyerman27, Danielle Way28 & N. Michele Holbrook6

1 Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA, 2 Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia, 3 School of Forestry & Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA, 4 Natural Science Division, Pepperdine University, Malibu, CA 90263, USA, 5 Arnold Arboretum, Harvard University, Cambridge, MA 02131, USA, 6 Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA 02138, USA, 7 Department of Plant Biology, University of Georgia, Athens, GA 30602, USA, 8 Department of Botany, University of Wisconsin Madison, Madison, WI 53706, USA, 9 Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada, 10 Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA 92697, USA, 11 Ume University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee 11, Ulm 89081, Germany, 12 Department of Biology, California State University, Bakersfield, CA 93311, USA, 13 Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID 83844, USA, 14 Center for Ecosystem Science and Society, and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA, 15 Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, INRA-CNRS-Sup Agro-Université de Montpellier, 2 Place Viala, Montpellier F-34060, France, 16 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA, 17 Department of Viticulture and Enology, University of California, Davis, CA 95616, USA, 18 USDA-Agricultural Research Service, Davis, CA 95616, USA, 19 Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331, USA, 20 Department of Biology, Ithaca College, Ithaca, NY 14850, USA, 21 Department of Biology, Occidental College, Los Angeles, CA 90041, USA, 22 Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA, 23 Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA, 24 Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA, 25 Botany and Plant Sciences, University of California, Riverside, CA 92521, USA, 26 Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA, 27 ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia and 28 Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada

ABSTRACT

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, ‘Emerging Frontiers in Plant Hydraulics’ supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.

Key-words: cavitation; drought; embolism; genomics; phloem; stomata; vascular pathogens; vascular transport; xylem.

Water plays a central role in plant biology (Kramer & Boyer 1995) and the efficiency of water transport throughout the plant (i.e. ‘plant hydraulics’) affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems (Jones 2014; Smith & Sperry 2014). Moreover, hydraulic traits mediate the ways in which...
plants interact with their abiotic (e.g. drought, temperature extremes) and biotic (e.g. pathogens, invasive species) environment (Anderegg & Callaway 2012; Choat et al. 2012; Jacobsen et al. 2012; Jacot et al. 2012; McDowell et al. 2013a; Osier et al. 2013). At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems (Choat et al. 2012; Gleason et al. 2015). Indeed, as a discipline, plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants (Table 1). A workshop entitled ‘Emerging Frontiers in Plant Hydraulics’ supported by the National Science Foundation, was held in Washington DC, 2015, over 2.5 days with 36 participants. The goal of the workshop was to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion both of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.

Previous workshops on hydraulics have facilitated or enabled breakthroughs or the dissemination of breakthroughs – for example the 2003 meeting at Harvard Forest (Holbrook & Zwieniecki 2005), the highly productive workshop, ‘Structure and Function of Plant Hydraulic Systems’ in Fullerton, CA in 2008 (Pratt et al. 2008), the Canadian Society of Plant Biologists Annual Meeting in Edmonton, Canada in 2012 (Hacke et al. 2012) and the International Workshop on Plant Hydraulic Techniques meeting in Ulm 2014 (Jansen et al. 2015). The need for such workshops underscores the bottleneck that continues to arise because of the lack of scientific exchange that would normally occur through a structure such as a national or international meeting attended by the many practitioners working in the field; for example, US researchers working in plant hydraulics are equally likely to attend the meetings of the American Society for Plant Biology, the Ecological Society of America, the Botanical Society of America, and the American Geophysical Union; analogous splitting of the research core occurs every year in the conferences in Europe and Australia. A Gordon Research Conference entitled ‘Multi-Scale Plant Vascular Biology’, meeting for the first time June 26 – July 1, 2016 (https://www.grc.org/programs.aspx?id=17277), should help to fill this gap.

The 2015 ‘Emerging Frontiers in Plant Hydraulics’ workshop highlighted numerous areas for increased collaboration and inter-disciplinary and trans-disciplinary research. Firstly, the workshop clearly demonstrated that water transport within plants, as a key feature influencing the soil–plant–atmosphere continuum, is by its very nature an interdisciplinary topic, given that aspects of the pathway involve fundamental processes at the interfaces of physics, biochemistry, meteorology and physiology (Stroock et al. 2014). Water moves through the xylem under tension, and through a number of living tissues in the roots and leaves. All of these tissues exhibit features of anatomy (e.g. pits in xylem conduit walls) and/or molecular regulation (e.g. water channel proteins in the cell membranes) that allow the plant to respond to key environmental and physiological challenges (Chaumont & Tyerman 2014; Maurel et al. 2015). Physically, water transport relies on heat and mass transport through porous media in solid, liquid and vapour phases. The transport of water in the xylem is integrated with that of sugars in the phloem, and has subsequent feedbacks across carbon metabolism, allocation and storage (McDowell et al. 2011; Dietze et al. 2014). Plant water transport relies on physical and biochemical processes, and thus breakthroughs in physics and molecular biology both inform and extend our core understanding and capacity for making accurate measurements and contribute new methods of measurement and analysis (Prado & Maurel 2013; Stroock et al. 2014). The NSF Hydraulics 2015 workshop gathered researchers with primary foci on diverse aspects of the hydraulic system and its interfaces with other fields of science, including phloem function, ecological genomics, xylem pathology, plant physiology, ecology, hydrology and nanodesign. The invitees were selected based on centrality of water transport in their research programmes.

Table 1. Centrality of the role of hydraulics in plant biology, ecology, evolution, palaeobiology and climate change

<table>
<thead>
<tr>
<th>Topic</th>
<th>Recent publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Woody plant responses to climate</td>
<td>Limousin et al. 2013; Sevanto et al. 2014; Anderegg 2015; De Kauwe et al. 2015; Dickman et al. 2015; Domec et al. 2015; Hartmann et al. 2015; Manzoni et al. 2015; Sperry & Love 2015; Ward et al. 2015</td>
</tr>
<tr>
<td>2. Species distributions and ecosystem function</td>
<td>Choat et al. 2012; Gleason et al. 2015; Nguyen et al. 2015; Pausas et al. 2015; Skelton et al. 2015</td>
</tr>
<tr>
<td>3. Prediction of photosynthetic productivity under contrasting environments</td>
<td>Osborne & Sack 2012; Mackay et al. 2015</td>
</tr>
<tr>
<td>7. Increasing agricultural productivity (biomass yield and tolerance to salinity, flooding, freezing, heat, as well as drought)</td>
<td>Caldeira et al. 2014; Barrios-Masias et al. 2015; Borland et al. 2015; Mniussi et al. 2015; Moshelion et al. 2015</td>
</tr>
<tr>
<td>Topic</td>
<td>Current controversies and challenges</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
</tr>
</tbody>
</table>
| 1. Embolism of xylem and refilling | - Does xylem refilling under tension exist? If it exists, is it common or rare in given species or across species? If it exists, does it provide an advantage in tolerance or productivity?
- Is there a publication bias for xylem refilling?
- Are r-shaped stem or root hydraulic vulnerability curves real?
- Can matching of lab and field data resolve controversies? Can vulnerability curves be matched with native percent loss of conductivity in the field? Do these datasets already exist?
- Is it possible to develop a protocol to completely avoid artefacts across labs?
- Are visualization methods (e.g. Fig. 1) more reliable than indirect hydraulic methods? What potential artefacts exist in modern visualization tools? e.g. can microCT distinguish air versus tyloses versus gels versus droplets; how can we best truth the visualization tools?
- If we calibrate hydraulic methods against visualization, do we have to do it for every species or will a few dramatically different representative species suffice? How to know?
- What resolution is needed among visualization and measurement tools that provide contrasting cues regarding embolism? e.g. microCT does not reveal the embolism suggested by certain methods, e.g. the cavitron.
- Does embolism act as a signal or promote signalling for stomatal closure?
- What are the energy costs of water transport and or embolism refilling?
- What exactly is the role of hydraulic failure, and avoidance thereof, in drought-induced mortality? | Brodersen & McElrone 2013; Cochard et al. 2013; Zwieniecki et al. 2013; Choat B. et al., 2016, Hacke et al. 2015b; Pratt et al. 2015; Tombesi et al. 2015, Torres-Ruiz et al. 2015 |
| 2. Important hydraulics traits | - What traits most strongly influence plant performance? What kills plants during drought? When is a plant dead?
- What are the important plant traits (hydraulic vulnerability, capacitance of water storage, dormancy, lethal water potentials, compartmentalization, resprouting) that cause or predict plant mortality?
- Which traits are best to characterize communities and ecosystems?
- Which traits should be measured in model plant systems and for crop phenotyping?
- How can we model the integrated function of individual and multiple traits?
- Do different traits matter for different organs and life stages?
- How important are tradeoffs? | Lachenbruch & McCulloh 2014; Reich 2014; Sevanto et al. 2014; Anderegg et al. 2015; Marechaux et al. 2015; Moshelion et al. 2015; Sperry & Love 2015 |
| 3. What are the roles of non-structural carbon compounds? | - What role do NSCs play, if any, in plant hydraulics, including embolism refilling?
- How important are NSCs for osmotic adjustment and drought resistance? Do NSCs influence drought-survival thresholds?
- Does metabolic water from NSC hydrolysis play a role in localized water relations/refilling? | Dickman et al. 2015; Germino 2015; Hartmann 2015; Plavcová et al. 2016; Quentin et al. 2015; Woodruff et al. 2015 |
| 4. Are there clear categories of hydraulic responses and drought tolerance? | - Different ways to classify plant hydraulic strategies: water spender versus water saver, isohydric versus anisohydric, dehydration sensitive versus dehydration tolerant, and desiccation sensitive versus desiccation tolerant. | McDowell et al. 2013a; Martinez-Vilalta et al. 2014; Attia et al. 2015; Mencuccini et al. 2015; Pivovaroff et al. 2015; Skelton et al. 2015 |

NSC, non-structural carbon.
and included women and underrepresented minorities, as well as individuals from both research institutions and primarily undergraduate serving institutions.

Much emphasis was placed on designating and debating the key controversies and challenges in the field (Table 2), many of which revolve around methods. Work in plant hydraulics encompasses fundamental and newly developed approaches in bio-imaging, plant anatomy, computational models and lab measurements (Fig. 1), and includes both in situ and destructive approaches. Debate over methods has grown to include controversies concerning the conditions under which xylem embolism occurs, the methods to quantify the impact of water stress on xylem conductivity, and the mechanisms by which plants respond to and recover from drought (Cochard et al. 2013; McDowell et al. 2013; Rockwell et al. 2014; Wang et al. 2014; Hacke et al. 2015b; Jansen et al. 2015; Torres-Ruiz et al. 2015). Other controversies in the field are related to the application of hydraulics in understanding a range of other processes, such as expansive growth and storage, especially of carbon, within plant hydraulic tissues and their role in drought mortality and recovery (Dietze et al. 2014; Hartmann 2015; Quentin et al. 2015). These issues are not merely technical in nature; they have the potential to transform our current understanding of the stability of water under tension in the xylem, the conditions under which embolism can be reversed, and thus the water-use, productivity and survival of plants both in well-watered soil and during progressive drought.

The participants affirmed that the structural and physiological diversity of plants necessitates a diversity of approaches and techniques, but that all methods must continually be examined for bias and artefact. One suggestion was for studies to be more transparent and comprehensive in reporting the details of their experimental methods, something that should be achievable in the age of on-line supplemental materials. A second proposal was to develop protocol resources for given measurements that would facilitate reporting of approaches and methodologies (Sack et al. 2010). Several felt that such resources could reduce the rejection of papers or grant proposals on the basis of methodology, as reviewers might recognize that given the explicit details, future researchers could account for imperfect methods in interpreting the results and conducting future meta-analyses.

The workshop equally focused on new research frontiers (Table 3), including next steps and potential solutions to address methodological challenges listed in Table 2. Additionally, workshop sessions identified areas for productive collaboration between plant hydraulics and other fields (e.g. disease ecology, ecological genomics, ecohydrology and climate change). Here the relevant questions are not only where the productive interfaces among fields lie, but also the issue of scaling hydraulic measurements, typically made on only small portions of a plant, to processes relevant for the whole plant, coordinated plant-soil systems and complex watersheds in their natural ecological or agricultural context, and in using plant hydraulics to inform models of ecosystem and Earth system processes (Mackay et al. 2015; Sperry & Love 2015). Detailed discussions focused on the value of understanding the molecular and genetic mechanisms driving plant hydraulics and how to utilize genomic tools such as transcriptomics, genome wide association studies and candidate gene analysis to further our understanding of plant function (Chory et al. 2000). Of particular

Figure 1. New technologies are revolutionizing the field of plant hydraulics, including non-invasive imaging (e.g. nuclear magnetic resonance imaging and X-ray micro-tomography); while both panels show the cross-sectional anatomy of the stem of *Vitis*, featuring the xylem, the left panel shows a painstaking illustration based on light microscopy (Grew 1671), while the right panel shows a micro-tomographic image taken in 2015, in vivo, and faithfully documents the three-dimensional organization of the xylem network, but also reveals the functional status of the plant, where darker, air-filled vessels can be clearly distinguished from their water-filled, functional counterparts (Badel, pers. comm). These images highlight an important turning point in our understanding plant water transport and are an example of the emerging tools available for validating methodologies and longstanding hypotheses. Picture credit: Eric Badel.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Specific opportunities and frontiers</th>
<th>Recent publications (2013-)</th>
</tr>
</thead>
</table>
| 1. New visualization and sensor methods | • New imaging methods, including synchrotron-based micro computed tomography
• Can best practices and visualization techniques (e.g. microCT) eliminate long-standing controversies regarding apparently conflicting results?
• How do we reduce the error in whole tree transpiration and conductance estimates based on sapflow?
• Need to recognize wide opportunities, especially for bio-inspired engineering of novel sensors which do not currently exist, e.g. for imaging flow rates in vivo, or sensing turgor in cells, such as mechanoo-osmotic sensor from *E. coli* | Brodersen *et al.* 2013; Cochard *et al.* 2013; Coates *et al.* 2015; Cochard *et al.* 2015 |
| 2. Application of hydraulics in whole plant models, climate models, DGVMs | • What is a realistic representation of hydraulics in models of plant growth, and in ecosystem function and earth models, especially for predicting effects of climate change?
• How do hydraulics determine rates of photosynthetic productivity?
• Links to development (structure and function), across multiple organs, across organisms and scaled up (temporal and developmentally).
• Apply hydraulic principles/issues to conservation/restoration and ecohydrology.
• What are the feedbacks and interactions between available carbohydrates and hydraulics?
• How do hydraulics influence stomatal behaviour?
• How to account for large variation in anatomy and function within given organs and individuals? (e.g. large variation in vessel diameter even within poplar)
• How can hydraulics and xylem-phloem interactions contribute to simulated global fluxes, productivity and survival?
• How do hydraulic traits vary under different growth environments?
• What are the important climate traits to characterize hydraulic response?
• How can NSCs be measured in a standard way? Can they be measured accurately?
• Stem vulnerability: presenting PLC in absolute versus relative terms; cavitrone versus standard centrifuge; initial sample preparation, such as cutting under tension (‘Wheeler effect’) and flushing before measuring v-curves; accounting for variability among stems and seasonal effects; measurement details, such as time of adjustment, repeated cutting, eliminating wounding effects. Can hydraulic phenomena be investigated in cut or excised plant parts to represent those in intact plants?
• What potential artefacts exist in modern visualization tools? e.g. can microCT distinguish air versus tyloses versus gels versus droplets?
• Methods comparisons are needed. Challenges—high biodiversity, time consuming measures, general acceptance of methods | Duan *et al.* 2014; De Kauwe *et al.* 2015; Givnish *et al.* 2014; Holta *et al.* 2015; Mackay *et al.* 2015; Skelton *et al.* 2015; Sperry & Love 2015 |
| 3. Methodology, best practices needed, standard spreadsheets | • Need to partner labs to resolve methods issues
• Need for best practices, methods repository, improved terminology, standardized units and a plant hydraulics handbook
| 4. Genomic basis for hydraulics traits and their impact on plant performance | • The genomic basis for xylem structure and function within and across species for improving drought tolerance, and crop improvement. | Cobb *et al.* 2013; Sengupta & Majumder 2014 |

(Continues)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Specific opportunities and frontiers</th>
<th>Recent publications (2013-)</th>
</tr>
</thead>
</table>
| 5. Leaf and root hydraulics | - Applications of reverse genetics; genome editing; forward genetics, QTL and GWAS to determine the network of genes controlling hydraulic traits
- Genotyping-phenotyping projects require rapid proxies for hydraulic conductivity and vulnerability and water status.
- Clarifying the hydraulic pathways through organs that include xylem and living tissue pathways, and vapour versus liquid phase transport
- Determining the functional roles of anatomical variation and response of individual tissues to water status
- Clarifying the roles and dynamics of aquaporins in various tissues
- Root hydraulics. How important are deep versus shallow roots?
- Leaf hydraulic vulnerability: do the different methods measure the same pathways? | Prado & Maurel 2013; Scoffoni et al. 2014; Bouche et al. 2015; Buckley et al. 2015; Maurel et al. 2015 |
| 6. Drought tolerance | - What traits determine the response of photosynthesis, whole plant carbon balance and survival during droughts?
- Impact of resource availability on the structure and function of water transport tissues
- What are the tipping points for failure of the hydraulic system? | Sevanto 2014; Woodruff 2014; Pivovaroff et al. 2015 |
| 7. Mechanism of water transport in xylem given diverse and complex anatomy; integration of xylem with living parenchyma and phloem | - How do surfactants act to stabilize nanobubbles? Does a plant actually need to remove embolism on a fast time scale to survive?
- CO₂ and ion permeation of aquaporins
- The hydraulic architecture of the xylem and phloem and their developmental and functional interdependence and co-evolution
- Interactions between xylem and phloem under different environmental conditions and in different organs (e.g. fruit, flowers and roots)
- How does wood anatomy determine vulnerability to embolism? How does wood parenchyma act to promote or protect from embolism?
- Integration of water transport system through all organs in the plant
- Parenchyma: temporal dynamics of carbon storage (minutes to years)
- Developmental determinants of hydraulic networks
- ABA influence on stomata and/or on aquaporins in vascular parenchyma
- Hydraulic capacitance, role of parenchyma and phloem in plant defence and resilience to disturbance
- Are the mechanisms of embolism initiation (i.e. first conduits to embolize) and embolism spread the same? Do conduits embolize in isolation (i.e. no adjacent air filled vessels)? Can parenchyma cells act as a source of air seeds?
- Xylem-phloem interactions in relation to behaviour of cambium/meristems
- Applications of plant hydraulics for entomologists, pathologists, microbial biologists given that plant water relations influences susceptibility to herbivores and pathogens | Chaumont & Tyerman 2014; Hacke et al. 2015a; Jansen & Schenk 2015; Rolland et al. 2015; Zwieniecki & Secchi 2015; Morris et al. 2016; Savage et al. 2016 |
| 9. Evolution and comparative methods; diversity within individuals and across species and communities | - Clarifying the role of hydraulics in community ecology, including trait-based ecology and resource-use spectra | Charrier et al. 2014; Liu et al. 2015; Nguyen et al. 2015 |
Table 3. (Continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Specific opportunities and frontiers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Envisioning path toward comprehensive understanding of plant water transport and its implications for future research in the field, and a framework or roadmap for future research in the field, as has been done for some applications of plant hydraulics research (McDowell et al. 2015) and more broadly for other specific fields or topics in plant biology (e.g. Yang et al. 2015). A review is needed of the points of consensus and controversy on the frontiers of the field, and the applications of this research in agriculture, biological conservation, resource management and ecosystem response to climate change. Further, the group began planning for the development of a research collaboration network, and, equally important, training workshops in ecological physiology (e.g. PHYS-Fest http://www.k-state.edu/ecophyslab/phys_fest.html). It is critical that students can be inspired by the importance and centrality of plant hydraulics, despite the rigorous methodology and open controversies. The Gordon Research Conferences will be locations for further development of these plans. The workshop made clear the need for continuous emerging discussion and agreement on grand challenges, to promote full understanding of plant water transport and its implications – from genes through proteins to whole plant to ecosystems to biomimetic applications.</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

We are grateful to additional participants Leo De La Fuente, Barb Lachenbruch, Tony Rockwell, Jochen Schenk, Rachel Spicer, Abe Strook, Paul Verslues and Maciej Zwieniecki. We are especially grateful to Irwin Forseth and the National Science Foundation Grant IOS-1445238 that made the workshop possible.

REFERENCES

Received 24 November 2015; accepted for publication 6 March 2016