We study how plants cope with stress like drought and frost. The key element for us is vascular transport. We ask, how is vascular transport constrained by stress, and how does this impair whole-plant function?


Vascular transport maintains all plant functions. Specific examples are the dependence of gas exchange on water supply, the dependence of growth on turgor pressure, and the need to transport sugars and signaling molecules throughout the plant body. In short, large organisms cannot exist without transport systems. If the organisms are long-lived, as trees are, then these transport systems must function over decades and centuries, time scales that may greatly surpass human life spans. Such transport systems must cope with environmental changes and adjust to the growth of the organism over time.

How should these transport systems function? How does their anatomy support their function? How do vascular systems develop? What are the challenges to transport? Cardiovascular diseases cause many problems for human health, and it turns out to be a similar situation for plants. Vascular transport in plants is responsive to abiotic stress, and that in return impacts growth and survival.

Drought and freezing are major research themes in my laboratory. We strive to learn how plants cope with different and variable climate conditions.


By looking at the other pages of this website, you will learn about the lab members and our research.

Contact and links

Phone: (780) 492 8511; Email: uwe.hacke at ualberta.ca; Address: 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada

Department of Renewable Resources; University of Alberta


Nothing at this time. Two graduate student positions were filled.


This is what you see when driving west of Edmonton...