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1. Introduction 

Ocean fronts correspond to geophysical fluid flows for which there are 
sharp horizontal gradients in the temperature and velocity fields (see Figure 
1). Examples of these types of flows include upwelling and surface coupled 
fronts typically seen over continental shelves and buoyancy-driven currents 
produced by large river out flows. These currents possess regions with 
relatively large horizontal gradients. This kinematic property has made the 
development of a stability theory for these flows somewhat difficult since 
one cannot, in principle, apply classical quasigeostrophic instability theory 
(e.g., Pedlosky, 1987; see also Paldor and Killworth, 1987). Recently, 
Swaters (1993) developed and analyzed an intermediate-lengthscale model 
for the baroclinic evolution of these flows. This theory filtered out the 
Rayleigh-like barotropic instabilities and focussed on the inherently baro- 
clinic destabilization of buoyancy-driven ocean fronts, while respecting the 
essential kinematic properties of these currents. 

Swaters derived two sets of general stability results for this new model. 
The first set of stability conditions was derived in the context of normal- 
mode perturbations and the second set of general Liapunov stability condi- 
tions was derived via an appropriately constrained energy invariant. 
However, the two sets of stability conditions were not completely isomor- 
phic to each other and this was a problematic aspect of the analysis from 
the author's point of view. 

The principal purpose of this note is to show that the normal-mode 
stability conditions derived by Swaters can be obtained by working with an 
appropriately constrained linear momentum invariant and that these stabil- 
ity results can be generalized to establish conditions for the nonlinear 
stability in the sense of Liapunov for buoyancy-driven ocean fronts. In 
addition, as a technical side issue, by working with the linear momentum 



Vol. 47, 1996 Stability theory of buoyancy-driven ocean currents 29 

invariant, we show that it is possible to dispense with the undesirable PoincaM 
inequality that Swaters was forced to introduce using an energy invariant. This 
mathematical result is of particular physical interest in applying the theory 
to, for example, buoyancy-driven flows along a coastline for which no Poincar6 
inequality exists since the domain may be considered as effectively unbounded. 

The plan of this note is as follows. In w we briefly introduce the Swaters 
(1993) model. The stability analysis is most properly understood as a 
consequence of the underlying noncanonical Hamiltonian structure of the 
governing equations. This structure is introduced in w as are the associated 
invariants needed in our stability theory. 

In w we establish a variational principle for steady buoyancy-driven 
fronts based on an appropriately constrained linear momentum invariant. We 
show that the normal-mode stability results presented by Swaters (1993) are 
sufficient to ensure that the second variation of the constrained momentum 
invariant evaluated at the steady solution is definite. Assuming these 
hypotheses, it is straightforward to establish the linear stability in the sense 
of Liapunov of these flows. Finally, in w we generalize these linear stability 
conditions to state sufficient convexity hypotheses on the constrained linear 
momentum invariant which will establish the nonlinear stability in the sense 
of Liapunov of these flows. 

In w we compare the stability results presented here with those of Swaters 
(1993). We also interpret our results in the context of the potential vorticity 
gradients associated with the steady flow and make some concluding remarks. 

2. Problem formulation and Hamiltonian structure 

2. I. Governing equations 

Since a detailed derivation of the equation has already been given (see 
Swaters, 1993) we will be brief in our presentation. The basic model is a two 
layer shallow water system with both layers inviscid and incompressible. 
Assuming that the aspect ratio h , / H ,  where h ,  is a thickness scale for the 
frontal layer and H is a thickness scale for the lower layer (see Figure 1), is 
a smaller parameter, i.e., 

0 <  h* 
H ~ 

it is possible 

(@ +h), 
to show that the leading order dynamics are described by 

4- •(p, Ap + h - sy) =0,  

h,+O(p +h Ah + Vh. Vh, h)=O, (2.1) 
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Figure 1 
The geometry of the two-layer model used in this paper. 

with the associated geostrophic velocities 

lgl = e3 X Vh, 

u2 = ~3 x Vp, 
(2.2) 

where p, h, s ul and lg 2 are the lower layer pressure, frontal height, bo t tom 
slope, upper  layer velocity and lower layer velocity, respectively, and  where 
~(A, B ) = - A x B y -  AyBx. The inclusion of  the upper  layer advective terms 
results in the nonlinear  frontal height terms seen in the second equat ion of  
(2.1). A similar model  appropria te  for a midlat i tude fi-plane has been 
derived independent ly by Cushman-Rois in  et al. (1992). 

The spatial domain  associated with p(x,y,  t) will be given by 
R = {xL < x < xR, - B < y }, which qualitatively represents a domain  with a 
coast at y = - B  and periodic in x (see Figure 1). The domain  of  the 
front  associated with h(x, y, t ) >  0 is given by F = {xc < x < x R , - B  < 
q~l(x, t) < y  < q~z(X, t) _< oo} where the functions qSl(x, t) and q~2(x, t) mark  
the boundary  or outcroppings of  the front. 

The boundary  condit ions are given by 

p = 2  on y = - B ,  

live [I as y ~ o e ,  (2.3) 

h = 0  on y = 41,2, 

where the condit ion at y = q52 is replaced by 

Jlvhll-,0 asy-  , 
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when q~2 = oo, with the smooth  periodicity condit ions 

(p, h, q~,,2)lx=.~t. = (P, h, ~,,2)lx=xR- 

These boundary  condit ions specify no normal  flow on the coast, zero 
velocity far f rom the coast, and frontal height of zero at an outcropping,  
respectively. It should be noted that  the boundaries  y = q~1.2 are dynamic 
and so condit ions also apply to their evolution. These do not  come into play 
in our  analysis (see Swaters, 1993). 

2.2. Hamiltonian formulation 

The derivation of  our stability is most  concisely presented as a conse- 
quence of  the underlying Hamil tonian structure of  the governing equations. 
The model  (2.1) can be cast into the noncanonical  Hamil tonian  form (see 
Swaters, ]993, Benjamin, 1984, or Olver, 1982) 

6H 
q' = J 6q (2.4) 

where cSH/6q is the variational derivative of the Hamil tonian,  H, with 
respect to q, 

H ( q )  = -2 Vp . Vp  dx  dy - h Vh  . Vh dx  ay - Vp  . n dS,  
R 

(2.5) 

J = [Jo] is a 2 • 2 matrix of  differential operators whose components  are 
given by 

J~j = - 6i~ c~j~ O(q, - sv, ,) + 6i2gj20(q2, ,), (2.6) 

where 3 .... is the Kronecker  delta function and q = (q~, q2)T with 

ql - Ap + h, q2 - h. (2.7) 

It is s traightforward to check that  H(q) is an invariant of the dynamics (see 
Swaters, 1993). Note  that  the second term in (2.5) is cubically nonlinear.  It 
is the presence of  this term that  necessitated the int roduct ion of  a Poincar6 
inequality in the energy-based stability a rgument  of Swaters (1993). 

Alternatively, we may  write the system (2.1) in the Poisson bracket  
nota t ion 

q, = [q, HI,  (2 .8)  

where 

/c~F, j c 3 G \ ,  
IF, G1=- \ 7  q (2.9) 
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is the Poisson bracket for arbitrary functionals F and G and where (a, b)  
is the inner product 

( a, b)  = [" ab T dx dy. 
dR 

2.3. Casimir and momentum invariants 

The Casimirs are those conserved quantities that lie in the kernel of the 
Poisson bracket, that is, they satisfy 

[F, C] = 0, 

for all sufficiently smooth functionals F(q). Using the definition of the 
bracket (2.9) it follows that 

j b C - o ,  
8q 

giving the general solution 

c(q) = j O&(q,- sy)dx dy + j ' j r  CI)2(q2)dx dy, (2.10) 

where ~1 and q~2 are sufficiently smooth functions of their arguments. 
We can find other invariants of the system using Noether's Theorem (see 

Courant and Hilbert, 1962). For our purposes, all we need is the invariant 
associated with the fact that H and J are invariant under translations in x. 
This invariant, denoted M, satisfies (see Benjamin, 1984) 

aM 
J - -  - qx, (2.11) 

6q 

giving the general solution (modulo a Casimir) 

M(q) = f fRy(ql -- q2) dx + = f fRy Ap dx dy. (2.12) 

The functional M corresponds to the x component of linear momentum for 
the lower layer, as can be seen by writing M as 

M ( q )  = y(v2x - u2y) dx  dy 

f? = u2 dx dy + B u2 (x, --B, t) dx, 
L 

where we have integrated by parts and exploited the boundary conditions. 
This invariant is also referred to as the x component of "Kelvin's impulse" 
(Benjamin, 1984). Note that M as given by (2.12) does not contain the cubic 
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nonlinear frontal height terms seen in (2.5). It is this property which will 
obviate the need for a Poincar6 inequality in the following analysis. 

3. Stability of parallel shear flow solutions 

The model (2.1) with (2.3) admits the parallel shear flow solutions h = ho(y) 
and p =Po(y).  In this section we shall give sufficient conditions for the 
linear and nonlinear stability of such flows. The stability will be determined 
in the sense of Liapunov, that is we will determine conditions which provide 
an a priori bound on the perturbation norm, [IcSq ]1, in terms of a multiple of 
the same norm evaluated at t =0 ,  written as il~qll- 

To establish stability we first present a variational principle for the 
steady flows based on the constrained linear momentum invariant, also 
referred to as the pseudomomentum, given by 

JC/= M + C, (3.1) 

where M is the linear momentum invariant given by (2.12) and C is the 
Casimir given by (2.10). We choose the Casimir density functions so that 
the first order necessary condition for the steady solutions to be an extremal 
of ~ ,  i.e., 6J//(p0, h0) = 0, is satisfied. We note here that a similar varia- 
tional principle has been used by Ripa (1983) to establish general stability 
conditions for zonal flows in a one-layer model on a fi-plane or a sphere. 

3.1. Variational principle 

It follows from (3.1) that 

= j jR [(~', (q~ - sy) +y)  6q~ + (~'~(q2) - Y )  6q2] dx dy. (3.2) g ~  

And thus, parallel shear flow solutions of the form Po(Y) and ho(y) satisfy 
the first-order necessary condition, cS.////(p0, h0 )=0 ,  for extremizing the 
constrained linear momentum invariant, Jg, provided the Casimir densities 
are chosen to satisfy 

�9 (p% + ho - s y )  = - y ,  

�9  (h0) = y. (3.3) 

That is, the Casimir density functions are chosen so that 

Poyy + ho - sy = ~ (y), (3.4) 

h0 = (3.5) 

where ~ and ~2 are the inverse functions associated with (1)'~ and ~ ,  
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respectively. We will discuss the restrictions associated with the existence of 
the inverse functions 01 and 02 in w 

3.2. Linear stability 

The variational principle can be exploited to derive linear stability 
conditions as follows. The second variation of Jg is given by 

c52jZ(p0, h0) = f fR {[qb~'(p% + ho - sy)](A@ + 6 h )  2 

+ [q~ (ho)l(cSh) 2} dx dy. (3.6) 

It is straightforward to verify that 62~(po, h0) is an invariant of the linear 
equations obtained by substituting h(x,y,t)=ho(y)+cSh(x,y,t) and 
p(x,y, t)=P0(Y)+ @(x, y, t) into (2.1) and neglecting quadratic terms in 
the perturbation quantities. 

Since 62dg(po, h0) is an invariant of the linear stability problem, it 
follows that linear stability can be established if conditions can be found on 
@]' and ~ so that 62~(po, h0) is definite for all perturbations 6p and 6h. It 
follows from (3.6) that Po(Y) and ho(y) are linearly stable in the sense of 
Liapunov with respect to the perturbation norm 

Ilaq I? = ff~ (Aap + ah) ~ + (ah) ~ dx dy, (3.7) 

if the Casimir density functions ~1 and ~2 as determined by (3.3) satisfy 
either 

�9 '((p% + ho- sy) > 0, and qb~(h0) > 0, (3.8) 

o r  

O~(Poyy + ho- sy) < 0, and @~(ho) < 0. (3.9) 

for all y ~ [ - B ,  oo) or y ~ [qS~, q52] as appropriate. 
Clearly, conditions (3.8) guarantee that 62jg(po, ho) is positive definite 

while conditions (3.9) guarantee that ~ 2~(po, ho) is negative definite (which 
establishes the formal stability of the solution; see Holm et al., 1985). In 
order to establish linear stability, all that remains is to show if conditions 
(3.8) or (3.9) hold, it is possible to a priori bound the perturbation norm. 

Assuming (3.9) holds, we have from (3.6) and (3.7) that 

rl [[,Sq II ~ ~ ~ ( p o ,  ho) ~ rzll~q I[ ~, 

where 

F1 = min(inf q~]'o, inf ~;o) > 0 and 
R F 

(3.1o) 

F2 = max(sup @'~0, sup qb~0) > 0. 
R F 
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It then follows from (3.10), and the invariance of 6z~/(p0, ho) that 

I[aq II_ (F2/F1)l/21160/], 

where [1601[-= Ilaqll~-o. 
Similarly if (3.9) holds we have I[aqll_ K[160[I, where 

K 2 : min(inf ~'o, inf ~o )  /[max( sup ~{o, sup ~o)] > 0. 
R F R F 

These a priori estimates establish linear stability provided (3.8) or (3.9) 
hold. 

3.3. Nonlinear stability 

To establish the nonlinear stability of these parallel shear flow solutions, 
we must consider the total variation of the pseudomomentum, AJr given 
by 

AJH = M(po + @, ho + 6h) - M(po, ho) 

+ C(po + 6p, ho + 6h) - C(po, ho), (3.11) 
where M and C are given by (2.12) and (2.10) respectively, with the Casimir 
densities determined by (3.3). We note that A J// is conserved by the full 
non-linear dynamics (2.1). Equation (3.11) can be expressed in the form 

= .IItR {~,(q,o + 6ql) - Ol(qlo) - r (ql0) 6q,} dx dy A/C[ 
w 

+ j j l  ~ {q)2(ho + 6h) - cbz(ho) - *'2(ho) 6h} dx dy, (3.12) 

where we introduced q~o-P% + h o - s y  for notational convenience. 
Suppose that the convexity conditions 

~, _< o7(~) _</~1, 
e2 < {1)~(~) </~2, (3.13) 

hold for all arguments 3, where cq, /Ji, c~2, and /32 are real numbers; 
Conditions (3.13) can be integrated twice and substituted into (3.12) to give 

f fR{~l(6q~)2+c~2(6h)2}dxdy<2A~<ffR{f l~(6q~)2+fi2(6h)2}dxdy.  

(3.14) 

It follows that if the Casimir densities (I)~(d) and q52(~), which are 
determined by the parallel shear flow solutions Po(Y) and ho(y) through the 
relations (3.3), satisfy either 

0<cq<q)~ ' (~ )<_ /~ l<~ ,  and 0<~2<q5~(~)</~2<oo,  (3.15) 
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o r  

--0(2) <~1 ~I~(~ )  -</~1 <0,  and - 0 0  <3{2-<(I)~(~) -<f12<O, (3.16) 

for all { where ~1, ill, ~2, and fi2 are some real constants, then the parallel 
shear flow solutions Po(Y) and ho(y) are nonlinearly stable in the sense of 
Liapunov with respect to the disturbance norm 116q[I given by (3.7). 

Clearly conditions (3.15) and equation (3.14) establish that 

0 < min(e,, c~2) [laq II 2 _<2 AJg -< max(ill,/~2) ]]c~q II 2 < 

and therefore that 

< Fmax(fi,, ~2)~1/2 
I l aq l l -  Lmin(cql 7~2) J [laoll 

giving nonlinearly stability in the sense of Liapunov. Similarly, when 
conditions (3.16) hold it follows from (3.14) that 

0 < -max(i l l ,  fi2)Ilaq I[ 2 -< -2AJ/Z(q) -< -min(71, ~2)Ilaq II 2 < 

and therefore that 

< ~2) 1/2 
F min(~"~2) ]  Ila01l 

II aq tl - Lmax(fi~, 

giving nonlinearly stability in the sense of Liapunov. 

4. Discussion and conclusions 

From a physical point of view, it is important to interpret the linear 
stability results in the context of the mean potential vorticity gradients. It 
follows from (3.3) that 

1 
~ (Po~ + ho - sy) - Uo~ - ho~ + s ' 

1 
~,'; ( ho ) - 

hoy' 

where U o ( y ) - - d p o / d y  is the x-direction velocity in layer one. Thus 
conditions (3.8) are equivalent to 

Uoyy-ho ,+s>O,  V y e [ - B , ~ )  and hoy>O, Vy�9 (4.1) 

and conditions (3.9) are equivalent to 

Uoy~-ho ,+s<O,  V y � 9  oo) and hoy<0, Vy�9 (4.2) 

Physically, these conditions establish the stability of parallel shear flows if 
the transverse vorticity gradients in each layer are everywhere of the same 
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sign and are exactly the conditions presented in the normal-mode linear 
stability analysis of Swaters (1993). However, deriving the stability condi- 
tions (4.1) and (4.2) as a consequence of the underlying Hamiltonian 
structure has the distinct advantage that it is clear how to generalize (4.1) 
and (4.2) to establish conditions for the nonlinear stability of the steady 
solutions. In addition, these conditions do not require the existence of a 
Poincar6 inequality and thus can be applied to a coastal domain which is 
unbounded in the offshore direction. 

The conditions (4.1) and (4.2) imply that p%. + h o - s y  and h0 are 
monotonic functions. Under this restriction, their inverse functions exists. 
Thus, the form of the Casimir densities given in (3.4) and (3.5) do not 
restrict the solutions that the linear theorem can be applied to. Since any 
flow which is nonlinearly stable is necessarily linearly stable, there are also 
no restrictions placed on the nonlinear results. While theoretically inverse 
functions can be found, in practice it may prove to be difficult. 

The conditions (3.15) and (3.16) cannot be recast into a form involving 
the parallel shear flow variables since the conditions must hold for all 
arguments ~. This also implies that the nonlinear conditions are much 
stricter than the linear conditions. This is best explained through an 
example. Consider the flow given by 

e y 
ho(y) = 1 - - - ,  

2 

e y 
p o ( S )  = , 

2 

where we have taken ~bl = - 1 ,  ~b2 = oo and s = 1. The flow represents an 
isolated front at y = - 1  with an exponentially decreasing velocity in the 
lower layer. It follows from (4.1) that this flow is linearly stable. From (3.4) 
and (3.5) we can solve for the Casimir densities to get 

~ ' 1 ( ~ ) = ~ - 1  and q b ; ( ~ ) = - l n ( l _ ~ )  

and thus obtain that 

@~'(~) = 1 and q)~(~) =(1  - ~)- ' .  

Since q~(~) can be both positive and negative, the flow cannot meet either 
of the nonlinear stability conditions (3.15) or (3.16). While the linear 
stability condition (3.8) is required to hold only for 0 _< ~ < 1, that is when 

takes on the values of h0(y), the nonlinear condition must be satisfied for 
all positive ~, since ~ now corresponds to the perturbed frontal height. Thus, 
having transverse potential vorticity gradients everywhere of the same sign 
in each layer does not guarantee nonlinear stability. It should be noted that 
flows which do not satisfy the stability conditions are not necessarily 
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unstable. In order to better understand both the stability conditions and the 
characteristics of  possible instabilities a numerical analysis is necessary. 

In conclusion, we have shown that through the use of  the invariant 
associated with the x component of linear momentum it is possible to do a 
complete study of the stability of parallel shear flows for the geostrophic 
model developed by Swaters (1993). By using the linear momentum func- 
tional, the stability analysis does not require the existence of a Poincar6 
inequality. As well, the linear stability conditions presented in this paper are 
identical to the normal mode results of  Swaters (1993). 
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Abstract 

In a previous paper, a new model was derived describing the baroclinic dynamics of buoyancy- 
driven ocean, currents over a sloping bottom. In particular, a normal mode stability analysis and a 
general stability analysis based on an appropriately constrained energy invariant were presented. 
However, these two sets of  stability results were not identical to each other. Here, we show that the 
normal-mode stability results previously described may be derived from a general stability analysis based 
on an appropriately constrained linear momentum invariant. In addition, we establish conditions for the 
nonlinear stability in the sense of  Liapunov of  these flows. The analysis presented here eliminates the 
need to introduce a Poincar6 inequality between the perturbation energy and the enstrophy which the 
previous analysis was forced to assume. Relaxing this assumption means the present analysis is 
applicable to a much larger range of flow geometries and is therefore a substantially stronger result. 
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