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1. Introduction 

Modons are isolated dipole-vortex solutions of the quasi-geostrophic 
equations of motion (e.g., Stern, 1975; Larichev and Reznik, 1976; Flierl et 
al., 1980). It has been suggested (McWilliams, 1980; Flierl et al., 1983; 
Butchart et al., 1989; Haines and Marshall, 1987; Haines, 1989) that/~-plane 
modons may be useful prototype models for atmospheric blocking; particu- 
larly for those blocking configurations which resemble a dipole such as that 
frequently seen over the Northeast Atlantic ocean. Since the real atmo- 
sphere and ocean are obviously baroclinic, it is of considerable interest to 
construct modon-like solutions for the continuously-stratified quasi- 
geostrophic equations. However, Haines and Marshall (1987) and Butchart 
et al. (1989) have qualitatively established that the horizontal amplitude 
field associated with the gravest mode of a vertical normal mode decompo- 
sition of the blocking streamfunction, for a continuously-stratified fluid of 
finite depth, necessarily contains a downstream Rossby wave-tail if the 
background zonal flow is eastward. While explicitly pointing out this very 
important conclusion, the above authors did not determine the detailed 
structure of the streamfunction/vorticity fields. The principal purpose of the 
present paper is to present an analytical solution for a stationary modon 
embedded in an eastward baroclinic zonal flow in a continuously-stratified 
fluid depth on a//-plane which satisfies the appropriate radiation condition 
in the upstream flow region and to discuss its dynamical characteristics. 

It is hoped that the solution presented here will be useful in analyzing 
the detailed structure of actual baroclinic blocks. The solution presented 
here should also be useful in plasma physics where modon solutions have 
been proposed as models for certain aspects of the convective motion 
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associated with observed anomalous heat transports in fusion-containment 
devices. The method of solution presented here will also be relevant for 
modon perturbation and modulation theory in the situation where the 
modon is undergoing non-adiabatic adjustment and a generated field of 
external Rossby waves will be an intrinsic aspect of the time-dependent 
behavior. 

The plan of the paper is as follows. In Section 2 the governing equations 
are given and the normal mode decomposition are described. For complete- 
ness, we briefly review the gravest-mode radiation theorem of Haines and 
Marshall (1987) and Butchart et al. (1989) using an alternate argument 
based on a Rayleigh-Ritz variational principle. In Section 3 we present our 
solution for the radiating baroclinic modon which satisfies the appropriate 
upstream radiation condition. In Section 4 we discuss some of the dynami- 
cal characteristics of the solution. The paper concludes with Section 5, 
which contains a summary and a few closing remarks. 

2. Governing equations and normal mode decomposition 

The nondimensional baroclinic quasi-geostrophic equations for a contin- 
uously-stratified incompressible Boussinesq fluid of finite depth can be 
written in the form 

[Ap + (U-Zpz)z]t + flPx + J[P, Ap + (U-Zpz)z] = 0, (2.1a) 

with the vertical boundary conditions 

P~, +J(P,  Pz) = 0 ,  on z =0,  1, (2.1b, c) 

where the notation is standard (e.g., Pedlosky, 1987). The geostrophic 
pressure is given by p =p(x, y, z, t) with horizontal geostrophic velocity 
v =- (u, v) = 23 x Vp - ( -py ,  Px), where (x, y, z, t) are the eastward, north- 
ward, vertically upward, and time coordinates, respectively. The nondimen- 
sional beta-parameter is given by f i - f i*U2. /L  where ( f l* ,U . ,L )  
correspond to the dimensional scales for beta, horizontal velocity field and 
horizontal lengthscale, respectively. The nondimensional Burger's parameter 
(or equivalently the nondimensional squared Brunt-Vaisala frequency) is 
given by N2(z) -- (H/foL)2( - g o , 1  dO/dz) > 0 (stable stratification) where g, 
0 . ,  O(z), H and f0 are the gravitational constant, constant reference density, 
variable hydrostatic background density, mean depth of the fluid, and 
constant Coriolis parameter, respectively. The Jacobian is given by 
J(A, B) =_ AxBy -- BxAy and subscripts with respect to (x, y, z, t) indicate the 
appropriate partial derivative. In addition, A =  azx +O2y. The vertical 
lengthscale is the depth of the fluid so that z = 0, 1 corresponds to the (flat) 
bottom and (rigid) top or surface, respectively, of the fluid. The boundary 
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condit ions (2.1b, c) express the no-normal  flow constraint  required on the 
surface and bo t tom of  the fluid, respectively. 

We seek a stationary solution to (2.1) of  the form 

p = - y U ( z )  + q)(x, y, z), (2.2) 

where (p(x, y, z) will be called the eddy streamfunction.  The term - y U ( z )  
corresponds to a baroclinic eastward (U(z) > 0) mean  zonal current  that  is 
not  sheared with respect to y. We are interested in an isolated solution. By 
isolated we mean,  following Flierl et al. (1980), a solution for q~ satisfying 
]q~[ ~ 0 as x 2 +  y 2 ~  oo for which there exist regions containing closed total 
streamlines of  p. The fluid within these regions cannot  exit and is thus 
isolated f rom the exterior region fluid. 

Substi tut ion of  (2.2) into (2.1a) leads to 

J [ - y U  + q), Aq0 + (N-2q),-)~ + {f - (N-2U~)~ }y] = 0, (2.3a) 

which can be immediate ly  integrated to imply 

- y U  § ~o = ~[A~o + (N-2q~)~ + { f  - (U 2U-~)~ }y, z], (2.3b) 

where the exact form of  the function ~- ( , ,  z) is yet-to-be-determined. 
Because the Jacobian operator  involves only explicit (x, y)-differentiation, it 
follows that  the function o~(, ,  z) can have an explicit dependence on the 
vertical coordinate  z. 

2.1. Form of  ~ ( * ,  z) in the exterior region 

For  all those streamlines which extend to infinity, (2.3b) implies 

- y U ( z )  = ~,~[{f - (N-2U, ) ,  }]y, z], 

or, equivalently 

~ ( , ,  z) = {U/[(N-ZU~)z - f]}*, (2.4) 

where we have explicitly used the fact that  J~0J ~ 0  as x 1 +yZ__, oo for all 
z e (0, 1). As in classical barotropic  m o d o n  theory, we consider the situation 
where all the streamlines in the region r - (x z + y2)1/2 > a extend to infinity 
and call this the exterior region. The cylinder r = a is called the m o d o n  
boundary  or radius. It is convenient  to represent Y given by (2.4) in terms 
of  the mean s t reamfunct ion Po = -  U(z)y and potential  vorticity q o -  
Apo + (N-2po_)z + ElY = { f  -- (N-2U~)~]Y in the form 

~ ( , ,  z) = */Ao(z), for r > a, (2.5a) 

where 

A0 - Oqo/@o = [(N-2U_@ - f]/U. (2.5b) 
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We may interpret (2.5b) as defining A0(z), or equivalently defining U(z) 
given a potential vorticity/streamfunction relationship 

Ao = Oqo/@o. (2.6) 

Because of the profound relationships between Ao and the Hamiltonian 
structure of the governing equations (e.g., Holm, 1986), Arnol'd's stability 
criteria (Swaters, 1986; Mclntyre and Shepherd, 1987), and potential vor- 
ticity/streamfunction scatter diagrams as a diagnostic tool in free-mode 
theory (Read et al., 1986), it is more convenient to adopt the latter view. 
Thus, given Ao(z), we determine U(z) such that 

(N zU~)~ - A0U = fl, (2.7) 

subject to appropriate boundary conditions which will be specified later. 
Substitution of (2.5) into (2.3b) implies that for all those streamlines 

which extend to infinity 

Acp + (N-2cp:)_,- - Aocp = O. (2.8) 

It is important to emphasize that even though (2.8) is completely linear in 
the eddy streamfunction, any solution to (2.8) when substituted into (2.2) 
yields a fully nonlinear solution to (2.1). 

2.2. Form o f  ~,~(*, z) in the interior region 

For those streamlines which do not extend to infinity, corresponding 
to the region r < a, it is not possible to use the far field structure to 
determine the form of ~ ( , ,  z). Again, as in classical barotropic modon 
theory, we call this region the interior region. In the interior region we 
assume 

J~(*, z) = [A0(z) - #(z)]-1,, r < a, (2.9a) 

where the additional parameter #(z) is, in general, a function of the 
vertical coordinate. Substitution of (2.9a) into (2.3b) implies that the total 
streamfunction satisfies 

Ap + (U-Zp+)~ + (# - A0)p = - f l y ,  r < a. (2.9b) 

Again, we emphasize, even though (2.9b) is linear, any p which solves 
(2.9b) is a fully nonlinear solution to (2.t). It is more convenient to work 
with the total streamfunction rather than the eddy streamfunction in the 
modon interior. The dimensional analogue of the parameter # has the 
dimensions of inverse length squared. In classical barotropic modon theory, 
# 1/2 is often referred to as the modon wavenumber and we shall refer to # 1/2 
similarly. 
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Vertical boundary conditions 

If  (2.2) is substituted into (2.1b, c), it follows that 

- y U  + q) = ~ (  - y U :  + qo~), (2.10a) 

- y U  + (p = ~o( - yU: + q):), (2.10b) 

on z = 1 and z = 0, respectively, where the functions 4 ,0 (* )  are yet-to-be 
determined. For  all those streamlines which extend to infinity (2.10a) and 
(2.10b) imply 

U 
~ ( * )  =~-~ *, (2.1 la) 

U 
o~o(*) =~__ *, (2.1 lb) 

on z = 1 and z = 0, respectively, where we have again explicitly used the fact 
that I~01 ~ oe as r--,  Go on z = 0, 1. Substitution of  (2.11) into (2.10) yields 
the exterior vertical boundary  conditions in the form 

U~0: - U~q~ = 0, on z = 0, 1. (2.12) 

Here, again, it is not possible to use the far field flow structure to 
determine the form of  N ( . )  and 4 ( * )  in the interior region r < a. Our 
choice is to impose (2.12) on the entire flow region. This ansatz has been 
made in oceanographic isolated eddy calculations (e.g., Hogg, 1980; Swaters 
and Mysak, 1985) and is implicit in the modelling work of  Butchart et al. 
(1989). Adopting (2.12) as the uniform surface and bot tom condition is 
consistent with requiring the continuity of  pressure and normal mass flux on 
the surface and bottom, respectively, across the modon  boundary  r = a. The 
boundary  condition (2.12) is written in terms of  the eddy streamfunction 
q)(x, y, z). While this is appropriate for the exterior region, in the interior 
region it will be more convenient to re-cast (2.12) into the form U p z -  
U,p = 0  on z = 0 ,  1. 

2.4. Matching conditions on the modon boundary 

The modon boundary  forms a streamline, which will separate the 
interior and exterior regions. On r = a, we impose the conditions 

(~o - Uy)r=o+ = 0, (2.13) 

Pl~=a- = 0 .  (2.14) 

These conditions will imply that the leading order geostrophic pressure and 
normal mass flux are continuous at the modon boundary.  The implications 
of  (2.13) and (2.14) on the continuity of  the vorticity and azimuthal mass 
flux at the modon boundary  will be discussed in Section 4. 
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2.5. Normal mode decomposition 

If a separation of  variable solution for the exterior eddy streamfunction 
of  the form ~o(x,y, z )=  H(z)h(x,y) is introduced into (2.8) and (2.12), it 
follows that 

~o = ~, n~(z)hn(x, y), (2.15) 
n = 0  

where the orthonormalized vertical modes are determined from 

( N - 2 n ; )  ' + (;~n - -  A o ) n n  = 0, (2.16a) 

UFI~ - U 'H,  = 0, on z = 0, 1. (2.16b) 

fo ~ Fin (z) Hm (z = . . . .  (2.16c) dz 

for n = 0, 1, 2, 3, . . ,  where ( )' =_ d( )/dz and b .... is the Knonecker  delta 
function between n and m. The eigenvalues 2~ form a discrete set {~n }2=o 
satisfying - oo < 2o < 21 < " " " < Go. The corresponding horizontal prob- 
lems are given by 

Ahn -2nhn  = 0, for r > a. 

The boundary  condition (2.13) can be written in the form 

(2.17a) 

H n ( z ) h n  ]r = .  * = U(z)a sin 0,  
n = 0  

(2.17b) 

where tan 0 = y/x. 
If the minimum eigenvalue 20 > 0, then the solutions for hn for n >- 0 all 

exponentially decay as r ~ oo and there are no Rossby waves in the exterior 
region. However, Butchart et al. (1989) have shown that, at least, 2o < 0 if 
U(z) > 0 and thus there are exterior Rossby waves associated with the 
gravest mode. For  completeness, we give an alternate demonstrat ion of this 
theorem via a Rayleigh-Ritz variational principle for the minimum eigen- 
value of  the problem (2.16). This result is closely related to earlier proofs of  
the non-existence of baroclinic inertial boundary currents in oceanic flows 
(e.g., Robinson, 1965; Pedlosky, 1965). 

If we introduce the transformation H n ( z ) =  U(z)@n(z) into (2.16), it 
follows that 

(U20;/N2)' + ()on U 2 + flU)O. = O, 
! 

0 . = 0  o n z = O ,  1, 

fo 

(2.18a) 

(2.18b) 

(2.18c) 
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If (2.18a) is multiplied through by @n(z) and the result integrated over 
z e (0, 1), it follows that 

f0 f0 2~ = - B  U ~  1 dz + U2(*n)2/N 2 dz. (2.19) 

Thus, a Rayleigh-Ritz variational principle for 2o can be expressed in the form 

{;  fo } 2o = min - /7 U(z) dz + U2(O')2/N 2 dz , (2.20) 

where the minimization is carried out over all smooth functions ~b(z) satisfying 
~b' = 0 on z = O, 1 and (qS, q~) = 1. Clearly, one candidate is the constant 
c~ = [S~ U2(z) dz]- 1/2, so that we can bound 20 by 

fo' I;o' 20 -< - /7 U(z) dz U2(z) dz. (2.21) 

From which we conclude that 20 < 0 if U(z) > 0 for all z E (0, 1). 
This result is extremely important physically since it necessarily implies 

that it is not possible to obtain isolated eddy solutions to (2.1) which do not 
possess a Rossby wave field in the exterior region if the ambient mean flow 
is eastward (or westerly in the jargon of atmospheric dynamics). This is the 
flow geometry associated with mid-latitude blocking configurations. Haines 
and Marshall (1987) have pointed out, however, that this conclusion does not 
necessarily imply that continuously-stratified modon models cannot provide 
useful prototype blocking solutions since the decay timescale of the radially 
outward energy flux associated with the Rossby waves can still be long in 
comparison to the timescale associated with transient synoptic eddies. Thus 
the structure of the flow pattern in the blocking region can appear coherent 
for timescales comparable to observed blocks which is about 10 days (Rex, 
1950). Indeed, it can be argued that the intrinsic energy flux associated with 
the exterior Rossby wave field provides a mechanism for the eventual decay 
of blocks more or less back into the averaged climatology. 

The Rossby wave field in the exterior region must, however, satisfy the 
appropriate radiation condition in the upstream region which removes any 
incoming Rossby waves (Miles, 1968; McCartney, 1975) given by 

limit rl/2(p = 0 ,  for all 0 ~ (n/2, 3n/2), (2.22) 
r ----~ o o  

where we are assuming U(z) > O. 
In summary, the exterior eddy streamfunction qo(x, y, z) will be obtained 

by solving (2.16), (2.17) together with the no-upstream waves constraint 
(2.22). The far-field mean zonal flow U(z) is determined by (2.7) subject to 
the boundary conditions 

U(0) = U0 > 0, (2.23a) 

U(1) = U1 > O. (2.23b) 
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In the interior (r < a) region, we obtain a solution for the total stream- 
funct ion p(x, y, z) in the form 

p = ~ H,(z)g,(x,y). (2.24) 
n=O 

Subst i tut ion of  (2.24) into (2.9b) and (2.14) leads to, after exploiting (2.16), 
the sequence of  horizontal  problems given by 

 {fo } (A - 2,)g,  + #(z)H,(z)IIm(z) dz gm= 7,Y, (2.25a) 
m=0 

g, [r= a = 0, (2.25b) 

7~ - - /3  1-In(z ) dz, (2.25c) 

for n = 0, 1, 2, 3 , . . . .  Equat ion  (2.25a) corresponds to an infinite set of 
coupled partial differential equations.  We have not  been able to obtain a 
general solution to (2.25a) for an arbitrary #(z). However,  further ana- 
lytical progress can be made  if we assume # is a constant.  If  we 
make  this approximat ion,  the integral in (2.25a) is given by #(~.m and 
the g,(x,y) functions will be determined by the uncoupled system of  
equations 

(A + # - 2,) = 7,Y, (2.26) 

for n = 0, 1, 2, 3 , . . . .  For  the remainder  of  this paper  it will be assumed 
that  # is constant  so that  (2.26) can be used to determine g,(x, y). 

3. The solution and determination of the modon wavenumber 

The solution for the n th -componen t  of  the horizontal  part  of  the 
interior total s t reamfunct ion as determined by (2.26) subject to (2.25b, c) is 
s traightforward to obtain and is given by 

gn(X, y)  = {Yn~~ -~- ~n(# - -  '~n) - l r}  sin 0, (3.1a) 

where 

v, = ayn[(2, - / t ) 5 ~  (3.1b) 

&O(r) _= f J ,  [(# -- 2,)'/2r], i f / t  > 2 , ,  (3.1c) 
[I~[(2, -- #)'/2r], if # < 2 , .  

The solution for the n th -componen t  of  the horizontal  part  of  the 
exterior eddy s t reamfunct ion as determined by (2.16), (2.17) and (2.22) can 
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be written in the form 

h.(x, y) = duo ~, ee { Yt [ ( -2 . )  1/2r] sin(fO) + xr 0)}/Ye[(-2.)  ~/2a], 
E = I  

(3.2a) 

zr O) = ~ b<mJm[(-2,)~/2r] sin(m0), (3.2b) 
m = l  

for all those n for which 2, < 0; say, n = 0, 1, 2 , . . . ,  N (we guaranteed that, 
at least, 20 < 0), and 

h,(x, y) = Jg'nK~ [(2,)~/2r] sin 0/1s [(2,)1/2a], (3.2c) 

for all n > N for which 2 n > 0. There will be no cosine terms in (3.2a, b) and 
no higher sine harmonics in (3.2c) because of the boundary condition 
(2.17b). The fact that there are no cosine terms in (3.2) will imply that the 
downstream Rossby wave-tail will be an odd function about y = 0. This is 
precisely what Haines and Marshall (1987) have observed in their numerical 
simulations. The coefficients ~4d, and at will be determined by the boundary 
condition (2.17b) and the coefficients bt,m are chosen to satisfy the no 
upstream waves condition (2.22). 

For those eigenmodes in which 2, > 0, the horizontal structure func- 
tions, given by (3.2c), decay exponentially rapidly at infinity and so trivially 
satisfy the no-upstream waves constraint (2.22). Physically, for these vertical 
modes there is no exterior Rossby wave contribution. For those eigenmodes 
for which 2~ < 0, the horizontal structure functions decay like O(r-1/2) and 
thus the zt(r, O) contribution is necessary to satisfy (2.22). 

Recalling that the even (odd) Je(.)  functions have the same asymptotic 
behaviour as the odd (even) Ye(.) functions for ( .)  ---, oe (Abramowitz and 
Stegun, 1964), it follows from (2.22) that the coefficients be,m must satisfy 
the constraints 

sin(2f0) = ~ ( -  1) ~+m+ ib2~,m+l sin[(2m + 1)0], (3.3a) 
m = 0  

sin[(2t' + 1)0] = ~ (-1)t+mb2~+ ~,2m sin(2m0), (3.3b) 
m = l  

for L' = 0, 1, 2, 3 , . . .  in the interval 0 s (~/2, 3n/2). Exploiting the fact that 
both the sets {sin(2~'0)}T=0 and {sin[(2g + 1)0]}Y=o form complete the 
orthogonal sets of (odd) basis functions in the interval 0 e(rG2, 3rc/2) 
(Miles, 1968), it follows that 

((4/~)E(m 2_  E2)-1, (E even, m odd), 

bt,m = ~(4/zOm( m 2 -  ~2)-1, (~ odd, m even), (3.4) 
t0, (m - E even). 

These relations completely determine the be,,n coefficients. 
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To determine the ~ coefficients we rewrite the sum in (3.2a) as 

h n ( x ' Y ) = Y n ~ { ~ c ~ l F < m ( r ) }  f = l  (3.5a) 

where 

F,.m(r) = {6<" Y,[( -2n)'/2r] + bAmJm[ ( - -  ~ n ) 1 / 2 / ]  }/}re[  (--'~'n) ~/2al. (3.5b) 

In order to satisfy the boundary condition (2.17b) we choose that c~t in 
(3.5a) to satisfy 

~e F<,~(a) = I~m,1, (3.6) 

for m = 1, 2, 3 , . . . ,  when 6m, l is the Kronecker delta between m and 1. The 
condition (3.6) determines the at coefficients. As it turns out, relatively 
few ~ need to be computed to be able to give a very good approximation 
in the infinity sums in (3.5). If we recall that Y~[(-2,)l/2a]--~-co and 
Jm[(--2,) ~/2a] ~ 0  as • and rn ~ oo, respectively (Abramowitz and Stegun, 
1965), then Ft ,m(a)~ fit,,, for sufficiently large ~ and m. In practice, we 
found that retaining the first 20 x 20 terms for the matrix Fc,,.(r) gave 
extremely accurate results (for a similar calculation see Swaters and Flierl 
(1991)). 

All that remains to be determined in the exterior solution are the 
~ coefficients in (3.2a) and (3.2c). Note that because of  our choice 
of writing (3.2c) and our choice in determining e~ in (3.6), it follows 
that h, lr=a---oU, sin0 for all n. Consequently, it follows from (2.17b), 
that 

X~ II,(z) = aU(z), (3.7a) 
n = 0  

from which it follows that 

;0 ~Y~ = a g(z)II,(z) dz, (3.7b) 

in which (2.16c) has been used. This completes the determination of the 
exterior solution. 

In non-wavelike or classical modon  theory, the interior modon  
wavenumber #~/2 present in the solution (3.1) is determined by demanding 
that the azimuthal velocity given by ~0r, be continuous at r = a. In the 
modon  solution presented here it is not possible to determine/~ such that the 
azimuthal velocity is continuous across r = a because of the presence of  the 
{sin(n0)}~=l terms in the exterior region which does not occur in the 
interior region and because of  the sum over the vertical modes. In classical 
modon  theory, there is only the single sin(0) term in the exterior and interior 
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regions and the vertical structure is barotropic so that it is possible to select 
a modon wavenumber so that ~0r is continuous at the modon boundary. 
There is no contradiction with the underlying principles of inviscid fluid 
mechanics since, in the quasi-geostrophic limit, the continuity of the 
geostrophic streamfunction on the streamline defining the modon boundary 
ensures that leading order pressure and (trivially) the normal mass flux is 
continuous at r = a for our solution. The continuity of the azimuthal 
velocity field on the modon boundary which is a streamline is not formally 
required in inviscid fluid mechanics. We will discuss the implications of this 
more completely next section. 

There are two choices one can make about the modon wavenumber in 
the solution presented here. Either do nothing, and leave the modon 
wavenumber unspecified, free to take on empirically determined values as 
obtained from actual blocking data, or invoke some sort of closure ansatz. 
We have decided to do the latter realizing that this choice is arbitrary. Our 
choice is to mimic the classical solution as closely as possible and determine 
the modon wavenumber by insisting that the azimuthal velocity field 
associated with the sin(0) contribution of the gravest vertical mode be 
continuous at r = a. We may formally write this constraint in the form 

limit II o (z) sin Opr (r, O, z) dO dz r ---~ i~ -l- 

f01 ~02g = limit H0(z) sin Opr(r, O, z) dO dz. (3.8) 

In the limit of a barotropic modon with no external Rossby wave-tail, it will 
be shown next section that (3.8) reduces to the barotropic limit of the 
Larichev and Reznik (1976) modon dispersion relationship. Finally, we 
point out that it is not possible to select a vertical dependence for/~ so that 
the azimuthal velocity is continuous at the modon boundary. 

Substituting (3.1) and (3.2) into (3.8) yields, after a little algebra, the 
baroclinic radiating modon dispersion relationship in the form 

CtToJ2[(# 
=--3~r0(--)],0) 1/2 ~ ~e {~z, l Y2[(--"~o) '/2a] 

(/~ - 20)1/2j, [ ( ~ t  - 20) 1/2a1 t = 1  

+ bt, lJ2[( -2o)1/2a]}/Ye[( -2o)1/2a]. (3.9) 

This relationship implicitly defines # = #(a, U, fl) where the dependence 
of /a on the ambient baroclinic zonal flow U(z) is manifested in the ~o 
and 3r coefficients. For a given set of parameters, there are a countable 
infinity of # solutions satisfying (# - 2 0 )  > 0. The smallest value of #1/2 
such that # > 20 will be called the ground-state modon wavenumber and 
the corresponding modon called the ground-state baroclinic wave-like 
modon. 
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4. Dynamica l  characteristics and a simple example  

The solution as constructed has cont inuous  pressure and normal  mass 
flux at the m o d o n  boundary .  However,  only the azimuthal  velocity field 
associated with the sin(0) componen t  of  the gravest vertical mode  is 
cont inuous  at r = a. Consequently,  all the other horizontal  and vertical 
modes  associated with q~r will not  be cont inuous  at r = a. This implies that  
the potential  vorticity is not  cont inuous  at r = a. But, as we now show, the 
interior and exterior limits of  the potential  vorticity at the m o d o n  boundary  
exists and are equal. Thus  the limit of  the potential  vorticity at the m o d o n  
boundary  exists. 

I f  we define the to ta l  potential  vorticity to be given by q = Ap + 
( N - 2 P z ) z  + BY where p is the to ta l  geostrophic pressure, it follows f rom 
(2.5a) and (2.9a) that  

limit q = limit Ao(z)p --- 0, (4.1a) 
r - - ~ a  + r - - ~  a - -  

limit q = limit [A0(z) - # ] p  = 0, (4.1b) 
r ---~ ~ - -  r ---* g / - -  

on account  of  (2.13) and (2.14), respectively. Hence we conclude 

limit q = 0. (4.2) 
r ---~ g /  

Because the limit exists, it follows that  the j u m p  in the potential  vorticity 
across the m o d o n  boundary ,  defined by 

[q]~ -: limit q - limit q, 
r - - - , a  + r - - ~ a - -  

is identically zero, that  is [q]a = 0. The wave-like baroclinic m o d o n  
boundary ,  therefore, corresponds to a cylindrical vortex sheet with a zero 
potential  vorticity jump.  

The solution for the geostrophic pressure p ( x ,  y ,  z)  as constructed above 
is therefore a classical solution of  the potential  vorticity equat ion except on 
the set of  measure zero given by the cylinder r = a. Note  that  as r ~ a, our  
solut ion satisfies (2.1a) since 

limit J ( p ,  q) = a - t {limit P~qo - limit Poqr } = 0, 
r ---~ a r ---, a r --~ a 

since limitr_, a +,- ~0~, qr [ < ~ and limitr _~ a Po = limitr_. ~ qo = 9 .  

The mos t  impor tan t  dynamical  properties of  the solution can be nicely 
illustrated with the following simple example. Suppose the fluid has con- 
stant stratification N - - c o n s t a n t  > 0 (stable stratification) and the mean  
zonal flow is barotropic  U -= U .  (constant)  satisfying U .  > 0 (an eastward 
flow). It follows f rom (2.7) that 

A0 = - E / U ,  < 0, (4.3) 
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since fl > 0 and is obviously constant. The orthonormalized vertical modes 
1-I,,(z), determined by (2.16), are given by 

Ho(z ) = 1, (4.4a) 

FI.(z) = x/~ cos(nrcz), (4.4b) 

for n = 1, 2, 3 , . . . ,  with corresponding eigenvalues 

2 n -~ -- (fl/U,) + n 2 n Z / N  2. (4.4c) 

In particular, note that 

2o = - ( f l / U , )  < 0. (4.4d) 

The solution for the total interior streamfunction, determined by (2.24), 
(2.25b, c), (2.26) and (3.1), is simply 

p = Ho(Z)go(X, y), for r < a, (4.5) 

since it follows from (2.25c) that 7n = -fltn,o. Substitution of (4.4) and (3. l) 
into (4.5) implies that the total interior streamfunction can be written in the 
form 

{ aJl[(l't-2~ } 
P = - f l  (20--- l t ~ l ( ~  -- 2-~/2]a + r(~ - 20) -1 sin 0, (4.6) 

in r < a .  
The total exterior streamfunction, given by (2.2), (2.15), (2.17), (3.2), 

(3.4), (3.6) and (3.7) can be written in the form 

p = - U , y  + IIo(z)ho(x, y), (47) 

since it follows from (3.7b) that J~ff~ = aU,6~.o. Substitution of (3.5) and 
(4.4) into (4.7) implies that the total exterior streamfunction can be written 
in the form 

p = - U . y + U . a  ~ { ~  e=l ' (4 .8 )  

where Fe,,,(r) is determined by (3.5b) and (3,4) and the at coefficients are 
determined by (3.6). 

Finally, the modon dispersion relationship (3.9) can be written in the 
form 

J2[(~ - 20)'/2a] 
(#  _ 20 ) 1/2j, [ (#  _ 20 ) 1/2a] = - ' / a  a ,  Y 2 [ (  

E=I 

+ b,,1 J2 [( -- 20)'/2a1 } / Yt [( -- 20) '/2a]. (4.9) 

Clearly, this example corresponds to a stationary barotropic modon embed- 
ded in a constant barotropic eastward flow which will have a downstream 
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Rossby wave-tail. Upstream, however, the radiation condition (2.23) is 
satisfied and there will be no Rossby wave field. Although barotropic, this 
example will serve to illustrate the horizontal structure of the wave-like 
modon.  

In this example we set U ,  > 0. It is easy to see how in this example the 
Rossby wave-tail disappears if U ,  < 0. The solution for the total interior 
streamfunction remains the same, albeit it is now understood 2o = -  
(f l /U,) > 0. However, if 20 > 0, then the solution for the total exterior 
streamfunction given by (4.8) dramatically changes. In this situation the 
Bessel functions in Ft,m(r) are replaced by the modified K~[(2o)l/2r] Bessel 
functions. However, these functions decay exponentially-rapidly at infinity 
so the radiation condition (2.22) is trivially satisfied. Consequently, h i ,  m =- 0 
for all (t', m). The boundary condition (3.6) will therefore imply that the 
only remaining term in F~,m(r) will be proportional to Kl[O~o)l/Zr]. The 
dispersion relation is transformed accordingly with the second term on the 
right-hand-side of (4.9) identically zero. The resulting dispersion relation- 
ship is identical to the barotropic limit of the modon dispersion relationship 
derived by Larichev and Reznik (1976). It is the desire to have our solution 
reduce to the barotropic limit of the Larichev and Reznik dispersion 
relationship if U ,  < 0 that motivates our choice for determining the baro- 
clinic modon  wavenumber via (3.8). 

We will conclude this section by illustrating the example barotropic 
solution with the additional specific parameter values of N = U ,  = fl = a = 
1.0. The ground-state modon  wavenumber will be given approximately by 
/[~1/2 ~., 3.55 (corresponding to (# - 20) 1/2 -~ 3.69). In Figs. 1 and 2 we 
show, respectively, a cross-section for - 2  < y < 2 on x = 0 of the total 

Figure 1 
A y-cross-section of the total s treamfunction 
field on x = 0  for - 2 - < y - < 2 .  The modon  
boundary is located at y = -- 1 and + 1, respec- 
tively. 
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y-axis  
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Figure 2 -8 
A y-cross-section of  the total potential vorticity 
field on x = 0  for - 2  < y - < 2 .  The modon 
boundary, which is a vortex sheet in the solution -12 

-2 presented here, corresponds to the two open 
circles located at y = - 1  and + I, respectively. 
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streamfunction p(x, y, z) and total potential vorticity q = Ap + (N-2pz)z + 
fly (appreciating, of course, that pz = 0 in this particular example). We 
remark that p and q are continuous but not differentiable at r = a (located 
at y = ___ 1 where the two cusps occur in Fig. 2). The apparent near-smooth- 
ness at the modon  boundary in the total streamfunction (see Fig. 1) is a 
simple numerical consequence of  the fact that the radial derivatives associ- 
ated with the higher azimuthal harmonics make a relatively small contribu- 
tion to the overall solution in comparison to the sin(0) mode near the 
modon  boundary for these parameter values. 

In Figs. 3a and 3b, we present "close-up" and "large-scale" contour 
plots of the total potential vorticity Ap + (N-Zp~)z + fly for - 2  < x, y < 2 
and - 10 < x, y < 10, respectively. The modon  boundary corresponds to the 
closed circular O-contour. The reader is reminded that the zero value on the 
contour associated with the modon  boundary represents the limit of  the 
potential vorticity at the modon  radius r = a. The potential vorticity at 
r = a does not  formally exist since the modon  boundary corresponds to a 
vortex sheet. The Rossby wave-tail, which is not  particularly evident in Fig. 
3a is clearly seen in Fig. 3b. Note how the wave-tail is confined to the 
downstream region in accordance with the radiation condition (2.22). Also, 
as pointed out earlier, note that the potential vorticity field is an odd 
function with respect to y. This is the pattern observed in the numerical 
experiments reported by Haines and Marshall (1987). 

In Figs. 4a and 4b we present the analogue "close-up" and "large-scale" 
contour plots of the total streamfunction p(x, y, z) associated with the 
potential vorticity field shown in Fig. 3. Here, again, the modon  boundary 
corresponds to the circular closed O-contour. The ambient flow moves 
eastward and the modon  is stationary. 
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Figure 3a 
A "close-up" contour plot of  the potential field for - 2 - <  x , y  < 2. The solid and dashed contours 
correspond to non-negative and negative isolines of  potential vorticity, respectively. The contour 
increment is about + 1.0. The modon boundary corresponds to the circular zero-value contour. The 
maximum and minimum values of  the potential vorticity within the modon interior are about + 10.5 and 
- 10.5, respectively. 
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Figure 3b 
A "large-scale" contour plot of the total potential vorticity field for - 10 _< x, y -< I0. The solid and 
dashed contours are in Fig. 3a. The contour increment is about 4-2.0. 
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Figure 4a 
A "close-up' contour plot of  the total streamfunction field for - 2  - x, y -< 2. The solid and dashed lines 
correspond to non-negative and negative streamline values, respectively. The contour increment is about 
+0.3. The modon boundary corresponds to the circular zero-value contour. The relative maximum and 
minimum values of  the streamfunction within the modon interior are about +0.72 and -0 .72 ,  
respectively. 
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Figure 4b 
A "large-scale" contour plot of  the total streamfunction field for - 10 -< x, y -< 10. The solid and dashed 
contours are as in Fig. 4a. The contour increment is about + 1.0. 
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5. Summary 

The structure of stationary, baroclinic modons embedded in a baroclinic 
eastward flow in a continuously-stratified fluid of finite depth has been 
determined. The gravest mode necessarily contains radiating Rossby waves 
in accordance with the radiation theorem established by Butchart et al. 
(1989). The solution we obtain satisfies the correct upstream radiation 
condition. The solution we constructed has continuous leading-order 
geostrophic pressure and normal-mass flux at the modon  boundary. How- 
ever, it is not  possible to construct a radiating modon  solution for which the 
azimuthal velocity field is continuous at the modon  boundary. We have 
adopted the ansatz of determining the modon  wavenumber by demanding 
that the azimuthal velocity field associated with the sin(0) component  of the 
gravest vertical mode be continuous at the modon  boundary. It was shown 
that this constraint reduces in the barotropic limit to the barotropic limit of  
the Larichev and Reznik (1976) modon  dispersion relationship. Finally, we 
illustrated our solution with a simple barotropic example. Our solution has 
many qualitative features consistent with the numerical simulation of mod- 
ons with a Rossby wave-tail presented by Haines and Marshall (1987). 

There are several issues we have not  addressed in this paper. We have 
not examined the stability of these solutions to infinitesimal perturbations. 
Nor  have we examined how our solutions would be modulated with varying 
upstream flows, bot tom topography, Ekman friction and so on. These and 
other issues must be examined before the role of radiating modons in 
geophysical fluid dynamics is to be understood. 

The fact that we cannot choose the modon  wavenumber in such a way 
as to ensure that the azimuthal velocity field is continuous at the modon  
boundary implies that the modon  boundary in our solution is a vortex 
sheet. The implications of this property on the stability of the present 
solution needs to be :further examined in order to better determine the 
physical importance of this solution as a model for a stationary dipole with 
a Rossby wave-tail on a t-plane.  Preliminary numerical time integrations of 
the equivalent-barotropic potential vorticity equation using the stationary 
solution presented in Section 4 as an initial condition suggests that the 
qualitative features of the solution remain coherent for several eddy circula- 
tion time scales. However, it needs to be emphasized again these observa- 
tions are preliminary and further study is required. 

Another  issue we have not examined here is the effect of  the wave drag 
associated with the wave-tail. Because there will be a nonzero downstream 
momentum flux associated with the wave-tail, there must be an energy 
source for the waves. Consequently, there will be a decay in the strength of 
the dipole over time. The stationary ansatz introduced here will make sense 
only if the decay time scale is long in comparison with the eddy circulation 
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time scale. However, it can be shown that the net or integrated quasi- 
geostrophic energy flux is zero. A detailed calculation of this decay based on 
the full primitive equations is required to verify that our ansatz has physical 
merit. 
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Abstract 

It is qualitatively known that the gravest mode associated with a vertical normal-mode decomposi- 
tion of a stationary, baroclinic modon in a continuously-stratified fluid of finite depth on a /~-plane 
necessarily contains an exterior downstream Rossby wave field if the background zonal flow is eastward. 
A n  exact solution is presented describing this situation which satisfies the correct upstream no-waves 
constraint. 
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