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1. Introduction 

Swaters [1] introduced a simple multiple-scales asymptotic theory to 
describe the turbulent dissipation of the two-dimensional Lamb dipole 
vortex assuming a relatively small damping parameter. The Lamb couple or 
modon as this inertial dipole is sometimes referred to, is a ubiquitous 
feature in many experimental [2, 3] and numerical [4, 5] realizations of 
two-dimensional turbulence and plays a role in the double-cascade [6, 7, 8] 
concept where enstrophy and energy undergo blue and red cascades, 
respectively. In particular, it is believed that inertial dipole vortices similar 
to the Lamb couple may have a role to play in anomalous planetary-scale 
atmospheric circulation patterns such as blocking [9, 10, 11] or in describing 
the convective motions associated with anomalous heat transports in fusion 
containment devices [12]. However, very little is known about the stability 
of these nonlinear modes. It is of interest, therefore, to determine the 
dynamical characteristics of these solutions if they are subjected to weak but 
nonnegligible forcing. 

The perturbation theory developed by Swaters assumed that the per- 
turbed drift-vortex evolved in such a manner as to maintain globally-aver- 
aged enstrophy and energy balances. These transport equations were 
obtained rigorously as necessary solvability conditions on the first-order 
perturbation equations associated with a direct asymptotic expansion in 
integral powers of the damping parameter. As well, it was assumed that the 
Lamb modon "dispersion" relationship was also continuously maintained 
throughout the dissipation (at least during the main decay sequence). There 
were several interesting predictions that this perturbation theory implied 
and that should be confirmed by direct numerical simulation. For example, 
the asymptotic theory predicted that the "modon wavenumber" of the 
decaying Lamb couple was invariant and that the dipole radius did not 
dilate during the dissipation process. These properties are very different 
from the decay characteristics of the/~-plane barotropic modon [ 13] and the 
Hasegawa-Mima modon [14] which have a monotonically increasing radius 
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and concomitant decreasing wavenumber during the dissipation process. 
The principal purpose of this paper is to present a high-resolution numerical 
solution of the two-dimensional Navier-Stokes equations assuming a Lamb 
couple as an initial condition, and to compare the results of the Swaters 
perturbation theory with the results of the numerical Simulation. We shall 
show that the agreement is very good. 

Another important assumption in the perturbation theory is that the 
non-analy t i c  linear functional relationship between the O(1) stream function 
and vorticity fields in the Lamb modon is being continuously maintained 
throughout the decay. It has been suggested [12] that this is an unrealistic 
assumption in the perturbation theory. We shall present a time sequence of 
detailed stream function-vorticity scatter plots for the decaying Lamb 
couple to show that the non-analytic linear vorticity-stream function func- 
tional relationship is being continuously maintained to a high degree 
accuracy although some scatter does set in. However, we would like to 
immediately point out here that it is our opinion that if the magnitude of 
the external forcing becomes large in an appropriate sense, this adiabatic 
ansatz will probably fail. For example, see the scatter diagrams presented by 
McWilliams and Zabusky [15] for modon-modon interactions. 

The plan of this paper is as follows. In Section 2 we will very briefly 
review the salient features of the perturbation theory presented in Ref. [1]. 
In Section 3 we shall describe the numerical procedure and present the 
comparison. The paper is summarized and some concluding remarks will be 
made in Section 4. 

2. Description of the Asymptotic Theory 

We write the scaled two-dimensional incompressible homogeneous 
Navier-Stokes equations with Rayleigh damping in the form 

A~0, + J(~, A~o) = R-1A~, (2.1) 

where q~ is the stream function [with corresponding velocity field u = 
( u , v ) = e 3 x V t p ] ,  A=d2x+dy2y, the Jacobian is given by J ( A , B )  = 
A x B y -  Bx.4y (subscripts indicate differentiation), and R is the "Reynolds 
number". 

In the inviscid limit (i.e. R ~ oo) an exact nonlinear steadily-translating 
isolated eddy solution to (2.1) is the Lamb couple which can be written in 
the form 

q~(x, y,  t) = - a 2 c r  -1 sin(0) r > a, (2.2a) 

qg(x, y ,  t) = [ 2 c k - l J l ( k r ) / J o ( k a )  - cr] sin 0 r < a, (2.2b) 
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with the "dispersion" relation 

J1 (ka)  = O, 

and where the co-moving 
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(2.2c) 

polar coordinates r 2 =- (x  - ct) 2 + y2 and 
t a n ( 0 ) - y / ( x -  ct) have been introduced. The parameter k is the eddy 
"wavenumber," c is the translation speed, and a is the eddy "boundary" 
between the interior (r < a) and the ex ter ior  (r > a) regions. The ground-  

s ta te  eddy dispersion relationship is given by 

ka  = J~,l , (2.3) 

where j~,~ -3.83171 is the first non-trivial zero of the Bessel function J1 (*). 
It follows from (2.2a,b) that the nonanalytic linear stream function- 

vorticity relationship for the Lamb modon can be expressed in the form 

A~p = O. (q~ + cy) r > a, (2.4a) 

Aq~ = - k2 (q~  + cy) r < a. (2.4b) 

When the Reynolds number in (2.1) is relatively large but finite we can 
obtain an asymptotic solution for the decaying Lamb dipole in terms of the 
rapidly-varying phase variables 

f 
t /R 

~ - x - R c( t ' )  d t ' ,  (2.5a) 
.1o 

y -= y, (2.5b) 

and the slow time variable 

T = t / R .  (2.5c) 

Substitution of (2.4) into (2.1) gives 

J(q9 + ey, A~0) = R-~Aq~ - R-~Aq~r, (2.6) 

where the Jacobian is understood to be with respect to ~ and y, and 
A - -  + 

The remaining details are straight forward (see [1]). Equation (2.6) is 
solved with an expansion of the form 

~p ,,~ q~(0)(~, y; T) + R-~q~(~)(~, y; T) + R-:~0(:)(~, y; T) + . . . .  (2.7) 

Substitution of (2.7) into (2.6) will lead to a hierarchy of partial differential 
equations. The solution to the O(l) problem is taken to be the Lamb couple 
(2.2) written with respect to the co-moving phase variables in (2.5). The 
adiabatic ansatz  is that c =-c (T) ,  a -  a ( T )  and k = - k ( T )  such that the 
dispersion relationship (2.2c) remains continuously satisfied. 
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Examination of the homogeneous adjoint equation associated with the 
O ( R - 1 )  problem leads to the following solvability conditions on the O(1) 
solutions 

or ffo = 2 (2.8b) 

which when evaluated yield the transport equations 

cr = - c ,  (2.9a) 

(ac)r = - a c ,  (2.9b) 

for the ground-state Lamb dipole. The solution to (2.9) and (2.2) is simply 

a(T)  = ao, (2.10a) 

k ( T )  = ko =j~,~/ao, (2.10b) 

c(T)  = Co exp[ - T], (2.10c) 

where the zero subscript denotes the value at T = 0. Hence, we see immedi- 
ately that the theory predicts that the spatial structure of the decaying Lamb 
couple is constant. 

3. Comparison between theory and numerical simulation 

There are several important predictions of the above theory that can be 
directly compared with a numerical simulation. The solutions (2.9) will imply 
that the e-folding decay time scale in the amplitude of both the stream 
function and vorticity fields is time independent and is set by the initial Lamb 
wavenumber. As well, since a(T)  and k ( T )  are invariant in time, the 
coordinates of the extrema in the vorticity and stream function fields relative 
to the co-moving frame should be time independent. If the Lamb dipole was 
dilating throughout the decay process, one should expect to see the radial 
coordinate of the extrema monotonically increase. A list of the computed 
diagonistic variables that we will present is diplayed in Table 1. 

The numerical scheme adopted for (2.1) is as follows. The vorticity 
equation is split into the coupled system 

1 
qt + J(~o, q) = ~ q, 

Acp = q. 

(3.1) 

(3.2) 
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Table 1 
Definition of symbols used in the diagonistic calculations. 
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f 
t/R 

X~(t) -- R c(z) dz 
do 

En(t)/En(O) 
f~~ f ~  [Vcp.Vq~](,,y;O)d, d y ~  o~ 

_ f _ ~ f _ ~  [(A(~ 

vrnl(t) 

max[lA~p(vml , ~/2; t/R)l l 
vm(t) lyre(O) ~ max[lAq~(vml(t = 0), n/2; 0)[1 

sml(t) 

am(t)/sm(O) =- max[[q~(sml, n/2; t/R)ll 
max[l~p(smt(t = 0), n/2; 0) 1] 

Position of the center of the decaying Lamb 
couple. 

The time-dependent area-integrated energy 
normalized by its initial value. 

The time-dependent area-integrated enstrophy 
normalized by its initial value. 

Radial coordinate of the maximum in the vortic- 
ity IAq~(r, 0; t/R) I with 0 = n/2. 

The time-dependent magnitude of  the maximum 
vorticity normalized by its initial value. 

Radial coordinate of the maximum in the 
stream function [q~(r, 0; t/R)] with 0 = ~/2. 

The time-dependent magnitude of the maximum 
in the stream function normalized by its initial 
value. 

The vorticity, q(x, y, t), is integrated forward in time using a 2nd-order 
symplectic leapfrog procedure in which the Jacobian is finite-difference with 
the Arakawa [16] (see also McWilliams et al. [17]) scheme which preserves 
skew-symmetry, and energy and enstrophy conservation. The updated stream 
function is then obtained from the Poisson problem (3.2) using a direct 
solver. The problem was also solved in a 128 • 128 doubly-periodic square 
domain, in which each side had a length of  ten nondimensional units. It has 
been recently shown by Browning and Kreiss [18] that in the computation 
of two-dimensional turbulence, 2nd-order 128 x 128 difference schemes give 
qualitatively similar results as 64 • 64 spectral methods for t ~< 200. The 
initial nondimensional Lamb radius was set to one. Thus the finite-difference 
scheme had a grid spacing of about fix = Oy ~ 0.0787 units or about 25.4 grid 
points per Lamb radius. McWilliams et al. [ 17] have shown that with this 
resolution the numerical translation speed of the Lamb drift-vortex will be 
well within 5% of the true translation speed. The nondimensional time step 
was chosen to be 5 x 10 -3. With these finite difference parameters the 
linearized Courant-Friedriehs-Lewy stability criteria was always satisfied for 
(3.1). Finally, because the domain was doubly-periodic we smoothed the 
initial data near the domain boundaries according to the recipe in Ref. [17] 
(see also Ref. [14]). For our simulation we set a0= 1.0, c0= 1.0 and 
ko = 3.83171 and R -- 102 . 
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Figure l a  
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Decay in the normalized globally-averaged energy (see Table 1). The  solid line is the theoretical 
prediction and the open circles are the numerically determined values. 
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Decay in the normalized globally-averaged enstrophy (see Table 1). The  solid line and circles are as 
described in Figure la.  

The comparison is summarized in Figures 1-  5. In Figures 1 a and 1 b we 
present the comparison between the decay in the normalized globally-aver- 
aged energy and enstrophy between the theory and the numerical simula- 
tion, respectively. The theory predicts that the decay is a simple exponential 
with a constant e-folding fast time scale of  R/2. The numerically determined 
integrated energy and enstrophy was obtained by simple summing -q~pSxSy 
and q26x6y over all grid points, respectively and normalizing by the initial 
value. It is clear from Figures 1 a and 1 b that the integrated decay properties 
are reproduced very accurately. 

Figure 2 is a comparison between the predicted location of  the x-coor- 
dinate associated with the propagating Lamb couple and the numerically 
determined position. The numerically determined location was obtained by 
tracking the x and y coordinates of  the relative extrema in the stream 
function and vorticity fields. These coordinates and the extrema values were 
obtained by a quadratic interpolation procedure. 
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Figure 2 
The x-coordinate of the travelling Lamb modon (see Table 1). The solid line and circles are as described 
in Figure la. 
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Figure 3a 
The radial coordinate of the stream function maximum (see Table 1). The solid line and circles are as 
described in Figure la. 
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The decay in the normalized maximum of the stream function field (see Table 1). The solid line and 
circles are as described in Figure la. 

Figures 3a,b and 4a,b depict the radial coordinate of the stream 
function and vorticity maximum and its magnitude. Because the theory 
predicts that the Lamb wavenumber and radius is temporally invariant, it 
follows that the theory predicts that the radial coordinate in the extrema 
will also be invariant. Figures 3a and 4a show that the numerical simulation 
retains this property. This decay characteristic of the Lamb couple is 
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Figure 4a 
The radial coordinate of the vorticity maximum (see Table 1). The solid line and circles are as described 
in Figure la. 
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Figure 4b 
The decay in the normalized maximum of the vorticity field (see Table 1). The solid line and circles are 
as described in Figure la. 

different from the dilation seen in the dissipating modon solutions in 
r-plane dynamics [13, 14, 17]. We attribute this difference to the fact that in 
the r-plane modon the spatial scale (i.e, the modon wavenumber and 
radius) is parametrically coupled to the translation speed in the r-plane 
modon dispersion relationship and in the Lamb couple this dependency 
does not occur because of  the absence of  a background vorticity gradient in 
the exterior region (i.e., r > a). The decay in the amplitude of the vorticity 
and stream function fields is also exponential. 

In Figure 5 a - f  we present a time sequence of vorticity-stream function 
scatter diagrams for t = 0, 0, 5, 1 .0 , . . .  5.0, respectively. The translation 
speed used in the co-moving stream function was obtained from the 
numerical simulation. The adiabatic theory we have predicted here has 
explicitly assumed that the nonanalytic linear functional relationships be- 
tween the vorticity and the stream-function (2,4a,b) is being continuously 
maintained during the decay. Figure 5 a - f  show that this relationship is in 
fact being maintained throughout the main decay sequence to a very high 
degree. We shall comment on this property in Section 4. 
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Figure 5a 
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Figure 5c 
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Figure 5 
Time-series scatter diagrams of the vorticity Aq~ versus the co-moving streamlines ~o + cy for the 
numerical simulation. The panels a, b, c, d, e and f correspond to t = 0, 1, 2, 3, 4 and 5, respectively. 
The negatively sloped curve corresponds to points in the interior (r < a) region, and the flat curve 
corresponds to points in the exterior (r > a) region. 
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4. Summary and concluding remarks 

A comparison has been presented between a high-resolution numerical 
simulation of a frictionally decaying Lamb couple and a multiple-scale 
asymptotic theory proposed previously [ 1]. Not only are global properties, 
such as the predicted decay in the area-integrated energy and enstrophy 
accurately reproduced, but also "local" properties such as the theoretically 
predicted temporal invariance of the spatial structure (i.e., the Lamb couple 
wavenumber and radius) have been numerically confirmed. This means that 
the decay characteristics of the Lamb mode is quite different than the decay 
characteristics of r-plane modons. We have also presented a detailed 
time-series of vorticity-stream function scatter diagrams to provide numeri- 
cal confirmation of the adiabatic ansatz which has been explicitly assumed 
in the adiabatic perturbation theory. 

The point has been made [12], that there is no a priori reason to believe 
that the non-analytic functional relationships between the stream function 
and vorticity fields ought to be maintained during a period of perturbed 
evolution. We believe, however, that if the forcing is weak enough in an 
appropriate sense these nonlinear modes will respond adiabatically. We 
have made the point in the context of the Hasegawa-Mima or equivalent- 
barotropic modon [14], that these nonlinear modes satisfy the first-order 
necessary conditions for the variational problem determined by an enstro- 
phy constrained by the energy pseudo-Hamiltonian. If these modes are 
examples of minimum enstrophy vortices in two-dimensional turbulence 
[19], then it would seem plausible that during a period of "small-amplitude" 
forcing an adiabatic evolution would occur at least initially. There are 
important caveats to be made however. Under "large-amplitude" forcing 
the adiabatic ansatz will probably completely fail as it does during vortex- 
vortex interactions [15] or partially fail as it does in modon-topographic 
interactions [20]. 
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Abstract 

A multiple-scale adiabatic asymptotic theory is developed to describe the dissipation of the solitary 
Lamb couple or modon solutions of the two-dimensional Navier-Stokes equations. The transport 
equations describing the evolution of the Lamb couple are obtained as solvability conditions for a direct 
asymptotic expansion assuming a relatively large but finite Reynolds number and are equivalent to 
globally-integrated leading-order enstrophy and energy balances. The asymptotic theory predicts that the 
spectral or spatial characteristics of the decaying Lamb couple are temporally invariant and that there 
is a simple exponential decay in the amplitude and translation speed. We compare the predictions of the 
theory with a high-resolution numerical simulation. The global and local predictions of the theory and 
the results of the numerical simulation are in very good agreement. As well, we present a time-series of 
vorticity-stream function scatter diagrams as derived from the numerical simulation to show that the 
non-analytic linear vorticity-stream function relationship is being continuously maintained during the 
perturbed evolution of the Lamb couple. 
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