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1. Introduction 

Nonlinear interactions play a central role in the development of wave 
spectra in a dispersive medium. In the early stages of the spectral energy transfer, 
the resonant wave-wave interactions are important (see, for example, Craik 
(1985)). The principle objective of the present paper is to show that it is possible 
for a triad of resonantly interacting dispersive waves to exist in nonlinear hyper- 
elastic fluid-filled tubes. 

The study of wave propagation in elastic tubes is of interest particularly with 
regard to its application to, among others, pulse propagation in blood vessels 
(see Pedley, 1980). There is an abundant literature, both theoretical and applied, 
on wave propagation in compliant tubes. While a thorough review is beyond the 
scope of this article, we point out that most studies that have focussed on the 
dispersive properties of the waves (e. g., Rubinow and Keller, 1971, 1978; Moodie 
et al., 1984, 1986 and Moodie and Barclay, 1986), have tended to ignore nonlin- 
earity, and on the other hand studies on the role of nonlinearity in pulse prop- 
agation have generally adopted a low wavenumber approximation and thereby 
ignored the effects of dispersion (e. g., Moodie and Haddow, 1976; Anliker et al., 
1971 and Seymour and Mortell, 1973). 

Johnson (1970) and Cowley (1982, 1983) have shown that in the weakly 
nonlinear and weakly dispersive limit, pulse propagation in elastic tubes is 
governed by a (perturbed) K-dV equation. In large amplitude pulse propagation 
the analytic problem is very difficult and numerical solutions are generally 
required (e.g. Elad et al., 1984). Finally, we point out that in the theory of 
collapsible tubes, the effects of nonlinearity, non-axisymmetry, and dispersion 
(associated with longitudinal tension and bending moments) appear to be very 
important (e.g., Flaherty et al., 1972; Kececioglu et al., 1981 and McClurken et 
al., 1981). In contrast to - and indeed complementing - the above studies, the 
wave-wave interaction equations derived here will correspond to the propaga- 
tion of small-but-finite amplitude strongly dispersive waves in compliant elastic 
tubes. 
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We will consider only axi-symmetric deformations of an incompressible 
homogeneous fluid-filled elastic tube. The tube wall will be assumed to be a 
nonlinear membraneous shell which is axially tethered so as to prevent axial 
motion during deformation. To provide a degree of generality to our analysis the 
azimuthal and longitudinal resultant stresses in the tube wall will not be specif- 
ically given but rather, following Cowley (1982, 1983), will be determined by a 
strain-energy functional denoted W(21, 22) where 21 and 22 are the principal 
stretches in the azimuthal and longitudinal directions, respectively (see (2.6), 
(2.7a) and (2.7b)). For a general account of the nonlinear theory of deformed 
cyclindrical shells see Green and Zerna (1954). 

The plan of the paper is as follows. In Section 2.1 the non-dimensional 
problem is formulated. In Section 2.2, the appropriate asymptotic solution is 
constructed and the wave-wave interaction equations are derived using the 
method of multiple-scales. In Section 3 various properties and special solutions 
to the interaction equations are presented. Section 4 summarizes the paper and 
outlines possible future research. 

2. Formulation of the governing equations and derivation of the interaction 
equations 

2.1. Problem Formulation 

We begin by assuming that the inviscid, homogeneous fluid within the tube 
is perturbed by an axi-symmetric disturbance and that the tube wall can be 
described in terms of a homogeneous, membraneous hyper-elastic material 
which is tethered so as to prevent along tube (i.e., longitudinal) wall motion. 
Inertial effects in the tube wall are neglected. Cowley (1982) has shown that this 
approximation is valid even if the fluid is unsteady provided 

~OmH 
- -  < 1,  (2.1) 
~Oao 

where 0, 0m, %, H are the fluid and wall densities, and undeformed wall radius 
and thickness, respectively. 

Under the above approximation the nonlinear dimensional equation de- 
scribing the fluid are given by 

(r* U*)x, + (r* v*)r, = 0, (2.2) 

u* + u* u** + v* ur* + l_p** = 0 ,  (2.3) 
Q 

vt** + u* v** + v* v* + l p** = 0,  (2.4) 
0 
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with the wall boundary conditions 

v* = a** + u* a** on r * = a * ,  (2.5a) 

p* = 7r*(x*, t*) on r* = a*,  (2.5b) 

where x*, r*, u*, v* and p* are the longitudinal and radial coordinates, longitu- 
dinal and radial velocities, and fluid pressure, respectively. The time-dependent 
radial position of the tube wall is denoted a*(x*, t*), and zc*(x*, t*) is the 
pressure drop across the tube wall due to the wall elasticity. 

It can be shown for axi-symmetric cyclindrical membraneous shells (Green 
and Zerna, 1954; in the present context see also Cowley, 1982, 1983), that 

H ~W* H ~ [ a oa** ~W*] 
~r*(x*, t*) = a*(l + e) ~21 a* ~x* L(1 + (a**)2) 1/2 - ~ 2 ] '  (2.6) 

where subscripts indicate differentiation, and where 21 and 22 are the azimuth 
and longitudinal stretches, respectively, i.e., 

21 - a*/ao,  (2.7a) 

22 - (1 + e) (1 + (a**)2) 1/2 , (2.7b) 

where e is the imposed axial pre-strain due to the tethering force. The dimension- 
al strain-energy function is denoted W*(2i, 22). 

In the small-amplitude low-wavenumber limit the first term in (2.6) is the 
hoop stress which is responsible for the non-dispersive Korteweg-Moens wave 
velocity for pressure pulses. Similarly, the second term is principally responsible 
for the dispersive effects associated with longitudinal tension. Cowley (1982) 
analyzed the propagation characteristics of weakly nonlinear and weakly disper- 
sive solutions to the above set of equations. Here, we focus on strongly dispersive 
but weakly nonlinear disturbances in order to study the resonant wave-wave 
interactions. There is abundant experimental evidence that dispersion is an 
essential feature of wave propagation in fluid-filled distensible elastic tubes. 

Equations (2.2)-(2.6) are put into nondimensional form by defining the 
nondimensional (unasterisked) variables 

(r*, x* ) = ao(r, x) , (u*, v* ) = e c ,  (u, v) , 

p* = oc~ p ,  w* = w,  w( ,h ,  ~2), 
(2.8) 

rc*(x*, t*) = f~(x, t) ,  t* = (ao/C,) t ,  

a * = a  o(1 +e~0), 

where c, is the Korteweg-Moens wave velocity given by 

2 n w ,  
C , - -  

ao Q 

and e is a non-dimensional amplitude parameter. It will be assumed that 

0 < ~ 1 .  
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Substitution of (2.8) into the governing equations will imply that  the nonlin- 
ear wave-wave interactions will occur over a space-time scale of 0 (e- 1 ). Thus the 
auxiliary slow space and time scales 

T =  e t  , X = e x  (2.9) 

will be introduced.  Consequently,  nondimensional  derivatives will be re-written 

a~ ~ 5~ + e S x ,  (2.10a) 

5 t ~ 5  t + e5 r .  (2.10b) 

Substitution of (2.8), (2.9) and (2.10) into (2.2)-(2.6) yields the nondimensional  
problem 

(ru)x + (rv), = - e(rU)x , (2.11 a) 

1 
ut + - Px = -  eUUx - evu~ - p x  - c u r  + 0(e2),  (2.11b) 

6 

1 
vt + ~ P r  = -  6 u v x -  6 vv  r -  e r r  + 0(e2), (2.11c) 

with the Taylor expanded (about 6 = 0) boundary  conditions, 
1 62 ~2 p = ~ro + 6zh  + 6 2 T~ 2 - -  6 ~ o p r  - -  ~ Prr ~- 0(63), (2.12a) 

v - ~o t = 6~o r + 6u~ox - 6q~vr + O(e2) ,  (2.12b) 

evaluated at r = 1. The functions ~o, re1 and rc z are the first three terms in the 
small-ampli tude Taylor expansion of z~ (x, t) given by, respectively, 

rc o -= (1 + e) -1 W ~ , (2.13) 

zc I - (1 + e) -1 (W~ - W ~ ~0 - W ~ ~oxx, (2.14) 

7~ 2 ~- (1 + e) - t  ( W  ~ -- W ~  + W~ ~02 (2.15) 

- W ~  - 2 W  ~ ~O~x ( 2 . 1 6 )  

- ( W ~  - w ~  

where 

W9~...i, -= 5 (") W(1, 1 + e)/52i~ . . .52i ,  , 

with 

21 -- 1 + ec0 (2.17) 

22 - (1 + e) (1 + e2(~0~)2/2) + 0(63). (2.18) 

2.2.  A s y m p t o t i c  S o l u t i o n  

The nonl inear  problem (2.11)-(2.18) can be solved with a s traight-forward 
asymptot ic  expansion of  the form 

p = z~ o + 6p(~ x ,  t; X ,  T )  + 6 2 p  (1) (r, x ,  t; X ,  T )  + . . . ,  (2.19a) 

u = u(~ x,  t; X ,  T )  + 6u 11) (r, x ,  t; X ,  T )  + . . . .  (2.19 b) 
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v = v(~ x, t; X ,  T) + ev (1) (r, x, t; X ,  T) + . . . ,  (2.19c) 

~0 = ~0(~ t ; X ,  T) + e~o(1)(x, t ; X ,  T) + . . . .  (2.19d) 

Substitution of (2.19) into the governing equations gives the 0(1) problem 

(rP~~ + rn(~ = 0 (2.20) 

with 

~p~O)+p~tO)=0 on r = l ,  (2.21) 

where ~ is the operator given by 

5r =-- (1 + e) -1 (W~ - W ~  W ~ ~2 . (2.22) 

The 0(1) velocity field and tube wall displacement will be determined by 

u~ ~ = - p ~ ) ,  (2.23) 

v~ ~ = -/-'r"(~ , (2.24) 

= (r  = 1 ) .  (2 .25)  

The linearity of the 0 (1) problem allows the superposition of three dispersive 
waves in the form 

3 

p(O) = ~ A , ( X ,  T) Io(I k, I r) exp(ik, x - i %  t) + c.c., (2.26) 
n = l  

where (c.c) denotes complex conjugate, and where each wavenumber/frequency 
doublet (k,, co,) satisfies the dispersion relationship 

2 ~,, = Ik, LI l ( lk ,  I)[W~ W~ + e ) +  W~ I), (2.27) 

where Ii(* ) denotes the modified Bessel function of the first kind of order i. 
The amplitude of each wave in the triad is a function of the slow space/time 

variables. It is the evolution of Ai (X, T) and its coupling to the other two wave 
packets in the triad which determines the wave-wave energy transfer. The dy- 
namics of the Ai(X,  T) are determined by secularity conditions in the O (e) 
problem. 

It follows from (2.23), (2.24), (2.25) and (2.26) that 

3 

u (~ = Y', k, A , ( X ,  T) Io(I k, I r) exp(iO,)/e), + c.c., (2.28) 
n = l  

3 

v(~ = Z I k,  I A , ( X ,  T) 11 (I k, It) exp(i0, - izc/2)/c% + c.c., (2.29) 
n = l  

3 

~o (~ = ~ [k, I A , ( X ,  T) 11 (1 k,  t r) exp(iO,)/co 2 + c.c., (2.30) 
n = l  

where 0, -= k, x - o), t is the rapidly varying phase of the n-th wave packet. 
The 0(e) problem for pO) (r, x, t; X, T) can be put  into the form 

(rp~l))~ + r p ~  = Ho(P (~ (231) 
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with the boundary  condit ion 

~p~l)  +p~l) = ~Fx(pCO)) + ~2 Fo(plO))/~t2 on r = 1.  (2.32) 

The nonl inear  operators H o (p(O)), Fo (pW)) and F 1 (pCO)) are given by, respec- 
tively, 

Ho(#O ) _ _ + r 40> + p?> + 

[r(uCO  v O) + . .col  - ~, + v~))]. - -e~x,  (2.33) 

Fo(P (~ ~ (1 + e) -1 (W ~ -- W~ + W~ (pco)~ _ (pCO)p~O) 
0 (0) 2 - W12 ( f o . )  /2 -- 2 W ~  ~'~x"r176 _ ( w O  W o) (o~o) ~.roc~ (2.34) 

F1 (pCO)) ~ _ ..,,co) (uCO) ~o~)), + ( ~o~o~ v~O))t u(O) v~) r (o) v~) 
~ g t T  . . . .  Ur  - -  

(2.35) 
with u Cm, v C~ and (p~o) unders tood to be implicit functions o f p  C~ via (2.23), (2.24) 
and (2.25), respectively. Substi tution o f p  ~~ into Ho(p~~ Fo(p C~ and Ft (p<O)) 

allows them to be expressed in the respective forms, 

3 

H o ( p  ~~ =- - 2ir  E k,  Io(I k, l r) A, X exp(i0n) 
n = l  

3 3 

+ Z Z  
n = l  m = l  

yn,,(r; X, T) A* A* e x p ( -  iO, - iota) 

3 3 

+ Z E  
n = l  m=l 

~m,(r; X ,  T)  A~ A* exp(i0,  - iota) + c.c., (2.36) 

3 

{5('F1 (P ~~ + 82 Fo(pC~ = E [2ilo([k, l)  conAnT 
n = l  

+ 2 W  ~ k.  [k. l iI1 (1 k. 1) A.x ] exp(i0n) 

3 3 

+ Z Z Vnm A* A* e x p ( -  iO n -- iO') 
n = l  m = l  

3 3 

+ Z ~ 9," A, A* exp(i0 n - iO') + c.c., (2.37) 
n = l  m = l  

where (.)* is the complex conjugate of (.) and where the interaction coefficients 
in (2.36) and (2.37) are given by, respectively, 

y,,, =--- kn k~(kn + kin) r/o(] kn Jr) Io(  I km I r)/(co, corn) 

- [k, k m [k, ,(k,  + kin) r I  1 ([ k n I r) 11 (I km I r)/(co, COrn) 

- -  k n k m [ k" I [rio (1 kn I r) 11 (] k" [ r)]./(co, co.,) 

+ I km kn km [ It/1 (kin r) 11 (k n r)]r, (2.38) 
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Vnm ~ - -  ( W I  - -  W11 -[- W~  (co. + com)Z]kn km [11 ([ k. 1) 11 ([ k m [)/ 

�9 [(1 -~ e) (.0 2 03 2 ]  - -  W 1 2  (COn -f- (Dm) 2 [kn km [ kn km I t  ([ kn [) I1 ([ k", I)/ 

�9 [2co. 2 o)2.] - (W~ - W o) (co. + com)2lkn k m [kern 11 ([ kn 1) I t  (1 km 1)/ 
2 2 �9 [co,, co,.] + (co. + co")Zlk,, k" 111 (I k. I) I t  (I km I)/co. 2 

�9 [(1 + e) - t  ( W ~  - -  l/~l ) -~- W ~  ---}- kin) 2 ] 

�9 {Ik",lk.  kmlo(Lkml) I t ( l k .  Mco. co"] + Ik.l It([k.I)/1(I kml) 
- k. k" I k", I(co. + co.,) Io (I k. l) I1 (I k., ])/(co. o92) 

- I k. I k2(co. + co.,) I t  (I k. I) [1 (1 k., I)/(co~ co.,)}, (2.39) 

and where y.., and V.m are obtained by simply replacing (k., co.) by - (k., co.) in 
7.m and v..,, respectively, and where [i (*) indicates differentation with respect to 
the argument�9 

The solution for pro(r, x, t; X,  T) can be written in the general form 

p(i) = ~2 A~i)(t; X, T) exp(ik u x) Io(I ku I r) 

+ 2 G ( r ;  X, T) exp(i0,) + c.c. (2.40) 

The p-summation term (2.40) will correspond to those (nonresonant) fie- 
quencies/wavenumber in the Kernel of (2.31) which are excited by the dynamics 
associated with the tube wall. The e-summation term in (2.40) corresponds to a 
particular solution of (2.31). It follows from (2.36) that the "e" sum will be over 
the wavenumber/frequency doublets defined by 

(k., co.) = {(ki, co , ) : /=  1, 2, 3} u { -  (kt, cot) 

-l-(km, co" ) : l=  l ,2 ,3 ,  m = 1 , 2 , 3 } .  (2.41) 

The amplitude function 4~.(r; X, T) in (2.40) is easily expressed in terms of 
the Green's function for (2,31) which is regular at the origin, i.e., 

~ ( r ;  X, T) ---- - Ko(I k~ I r) i Io(I k= I ~) f~(~; X, T) d~ 
0 

1 
- Io( I k~ Jr) ~ Ko( [ k, I r X, T) de 

r 

where f.(~; X, T) are the coefficients of those terms in Ho(p ~~ which have 
phases with frequency/wavenumber (co., k~). 

Substitution of (2.40) into the 0(e) boundary condition (2.32) implies 

E {[(1 + e) -1 (W~ - W ~ + W ~ k~ l lk .  I l l  (I k. I) A~ 1) 
# 

+ Io ([ k, l) ~. - - . .  

- Z [5~q5..(1; X, T) + ~zqS.(1; X, T)] exp(i0~). (2.42) 
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It follows from (2.42) if any of the resonance conditions 

_+ 01 _+ 02 _+ 03 = 0 

holds, the requirement that the secular terms be removed from the right-hand- 
side of (2.42) will lead to a wave-wave coupling in the slow space/time evolution 
of A I ( X  , T), A z ( X  , T)  and A 3 ( X  , T). With no loss of generality we assume 

i.e., 

01 -4- 02 ~- 03 = 0 ,  (2.43 a) 

k 1 + k 2 + k 3 = 0.  (2.43 b) 

col (kl) + oo2(k2) + c% (k3) (2.43c) 

Thus, setting the coefficients of the secular terms to zero implies 

(ST AI- Cl ~X) A1 = iflt A* A* , (2.44) 

(~r + c2 ~x) A2 = ifl2 A* A'~, (2.45) 

(~r + e3 ~x) A3 = ifla A* A ~ ,  (2.46) 

where the interaction coefficients can be written in the form 

fll = (F23 + F32)/[2Io(1 kl J)col] (2.47) 

f12 = (F31 + F13)/[2Io(1 k2 l)092] (2.48) 

f13 = (FI; + Fz,)/[2Io(t k3 [)093] (2.49) 

where F.m is given by 

r . m  - V . m  - -  [(1 + e) (W 01 -- W o) + W~ + k )2] ; 

K l ( r k ,  + km[)" ( r Io ( lk ,  + kmlr)Y,m) 

--  ((Dn -~- (Din) 2 Ko([ k, + kml) ( r lo ( l k ,  + k,nlr) ~Jnrn) (2.50) 

with ( f ( r ) )  defined as 
1 

( f )  = I f ( l )  d~- 
0 

The coefficients c~, c2, c 3 are the individual wave packet group velocities, 
i.e.~ 

~o). = sgn(k.) c% [I~ ([ k. [) - I~(J k. I)]/ c. = ~k. 

�9 [210( j k. l) 11 ([ kn [)] + W ~ k. I k.  [ 11 ([ k. l)/[Io ( ] k~ [) con], (2.59) 

where s g n ( x ) = + l  for x > 0  and s g n ( x ) = - I  for x < 0 .  Note that if the 
resonance conditions do not hold then the secularity conditions will imply that 
the amplitude of each wave packet is conserved following the group velocity and 
there is no interaction. With the secular terms removed A~ 1) ~ exp(icof,) where 
the p-summat ion  in (2.42) will be over the remaining non-resonant  wavenumber/  
frequency doublets in the right-hand-side of (2.42). 
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Figure  1 
Resonance  locus in ka, 
a i - a 2 - 1.0. 

k 2 space for 

I I I I I I I I I _ _  

Z- 

( 23  

T I I I I I I 

-1 .50  -0160 0.~30 1.~20 
kl 

Resonance locus ( to - r :  e=0.11) 

the Mooney-Riv l in  s t ra in-energy funct ion  (3.1) wi th  

3. Discussion and special solutions 

The existence of wavenumber triplets which can satisfy the triad conditions 
(2.43) is easily demonstrated by direct calculation, or by a geometrical argument. 
For  example, Fig. I illustrates the nontrivial resonance locus in kl,  k 2 wavenum- 
ber space ( k  3 = - -  k i - -  k 2 cf . ,  (2.43)) assuming the tube wall is described by a 
Mooney-Rivlin strain-energy function in the form 

W(2,, 22) = (al/2) (21 + 222 + ,~[-2 222 _ 3) 

+ (a2/2) ( 2 1 2  --I- 2 2  2 -'~ 22  222 - -  3) (3.1) 

(Ogden, 1984), where ai and a 2 are nondimensional  parameters, and )La, 2 2 a r e  

the principal stretches given by (2.17) and (2.18). Note that  for a Mooney-Rivlin 
tube wall, the allowed wavenumber triplets have a high-wavenumber cutoff. 
Other strain-energy functions may, of course, imply other configurations for the 
resonance locus, including perhaps the non-existence of resonance triplets. We 
have been unable to rigorously established any necessary (or sufficient) condi- 
tions on the strain-energy function which will gurarantee the existence or non- 
existence of resonant triads. 

Because there are no energy loss terms in our governing equations, the total 
energy must  be conserved even though energy is being continuously transfered 
from wave to wave. The leading order nondimensional  energy conservation 
equation for (2.11)-(2.18) can be put into the form 

(8, + ear)  E + (~x + e~x) F = 0 ,  (3.2) 
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where E and F are leading order energy density and flux given by, respective- 
ly, 

1 

E ~ - ( l  + e ) - l ( W ~  W~ ~o2 + W~ + ~r(v2 + vZ) dr + O(e ), (3.3) 
0 

1 

f _~-- 2 W  ~ q)t qT~ + 2 ~ r u p d r  + 0(e). (3.4) 
o 

If the leading order solutions are substituted into (3.2) and the fast-phase os- 
cillations are averaged out, it follows that the slowly-varying amplitudes satis~ 

3 

{a T + c. ~x} [I A. 121k. II1 (I k. D/o([ k. I)/co. 21 = 0. (3.5) 
n = l  

Consequently, the averaged energy of the i-th wave packet is simply 

I Ai 12lki II1 (I ki I) Io(I ki I)/co~. (3.6) 

Equation (3.5) states simply that the sum of the energies following the wave 
packet envelopes is conserved. It follows from (3.5) and the interaction 
Eqs. (2.44), (2.45) and (2.46) that the interaction coefficients must satisfy 

3 

Z I k, l la (I k, [) Io(I k, [) fl,/coz, = 0. (3.7) 

It is tedious but straight-forward to show that the interaction coefficients satisfy 
(3.7). Note that it follows from (3.7) that 

sgn (ill f12 fla) = - 1. (3.8) 

The condition (3.8) guarantees that the wave packet amplitudes remain contin- 
uously bounded for all time for the initial-value problem for sufficiently smooth 
initial data (Craik, 1985). 

The general initial-value problem for (2.44)-(2.46) for compact initial data 
can be solved by the method of inverse scattering (Kaup, 1976) using the 
Zakharov and Manakov (1973, 1975) scattering problem. If, however, the initial 
wave envelopes are well separated, Kaup (1976) has shown how to treat the 
subsequent problem using a sequence of the much simpler Zakharov and Shabat 
(1972) scattering problem. We will not reproduce these details here. Excellent 
reviews and further details can be found in, for example, Kaup, Reiman and Bets 
(1979), Ablowitz and Segur (1981) or Craik (1985). 

In some practical situations the interaction equations can be well approxi- 
mated by retaining only the time dependence (or equivalently the space depen- 
dence, e.g. Hsieh and Mysak (1980)). It is easy to show, when the above approx- 
imation can be made, that maximum energy exchange occurs when the wave 
packet amplitudes are of the form 

Ak(T) = iek(T),  (3.9) 
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with ~K(T) real-valued and where i z = - 1. Subst i tut ion of(3.9) into (2.44), (2.45) 
and (2.46) implies 

~ I T  = - -  f l l  0~2 OC3' (3.10a) 

c~2~ = - f12 ~1 c~3, (3.10b) 

~3T = - f13 ~2 cq.  (3.10c) 

Solutions to (3.10) may  be writ ten in terms of Jacobi  elliptic functions 
(Bretherton, 1964). Wi thou t  loss of generality we may assume that  ill, f12 are of 
one sign and f13 differs, and that at T =  0, el(0)  = ~1o > 0, e2(0) = e20 > 0 and 
% (0) = 0. Consequent ly ,  the solutions can be written 

e l ( T )  = al o dn (a T [ m) (3.11 a) 

e2(T)  = azo c n ( a T [  m) (3.11 b) 

~3(T) = a 2 o ( -  f13/f12) 1/z s n ( a T I  m) (3.11c) 

where 

-= (3.11 d) 

m --- (~l / f12)(a2o/alo)  2. (3.11 e) 

It is cus tomary  to assume that 0 < m < 1. If in (3.11 e) it turns out  that  m > 1 
the following t ransformations (Abramowitz  and Stegun, 1965) can be used: 

dn(* I m) = cn(m 1/2 * Ira- 1) 

cn(* l m) = dn(m 1/a * Ira-x )  

sn( * Ira) = sn(m a/2 * I m - 1 ) / m  1/2 �9 

Assuming 0 < m < 1 the period of the energy transfer is easily computed  to 
be 

Tp ~ 2 ( -  flz f13) 1/2 K(m)/alo (3.12) 

where K (m) is a complete  elliptic integral of  the first kind with parameter  m. 
Since we have assumed that  ~3 (0 )=  0, the solutions (3.11) describe the 

following process:  during 0 < T < Tv/2 the third wave extracts energy from the 
first two and during the last half of the cycle re-deposits it back  again. No te  that  
there is a singular limit m ~ 1 for which Tp ~ + ~ and the ampli tudes are 
described by hyperbol ic  functions. 

There also exist s teadi ly-propagat ing periodic and "explosively unstable" 
solutions to the interactions Eqs. (2.44), (2.45) and (2.46) (Case and Chiu, 1977). 
These are obta ined by construct ing solutions of the form 

Ai =- A i ( X  - ~ T)  

for i = 1, 2, 3 with # a c o m m o n  constant  p ropaga t ion  velocity. If  c~ - # is one 
sign for i = 1, 2, 3, then it is known  that the solutions develop a singularity in 
finite time (Craik and Adam, 1978). On  the other  hand if ci - # are of different 
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sign bounded periodic solutions in terms of elliptic functions can be constructed 
similar to those obtained previously. 

Other approximations are also of interest. In particular the "pump-wave 
approximation" which describes the situation in which one of the three wave 
packets in the triad has an initially large amplitude relative to the other two. For 
this configuration it is possible to assume that the large amplitude wave packet, 
say A1, remains relatively constant (at least initially) in comparison to the rapid 
development of A 2 (X, T) and A 3 (X, T) and, consequently, the dynamics for 
A2(X, T) and A3(X, T) is linear. The wave packet with amplitude A 1 is called 
the pump  wave. 

The analysis is straight-forward and thus we only briefly present the main 
results for (2.44), (2.45) and (2.46). Under  the pump-wave approximation, (2.44), 
(2.45) and (2.46) reduce to 

(~r + c2 0x) A2 = ifl2 A* A~o (3.13) 

(ST + c3 ~x) A3 = ifl3 A'~ A~o (3.14) 

where Alo is the constant pump wave amplitude. 
Equations (3.13) and (3.14) can be combined to an equation of the form 

[~z _ ~zz _ sgn( f l2  f13)] Ai = 0 (3.15) 

where i = 2, 3, and where the real variables z- and Z are given by, respectively, 

v - 111011/?2/?311/a T (3A6a) 

Z -  21Alollf lz  fl3t 1/2 [ X -  (c 2 + c3) T/2]/(c 2 - c3). (3.16b) 

When sgn (/72/?3) = - 1, (3.15) is a Klein-Gordon equation and the initial- 
value problem may be solved by Fourier integrals (e.g., Whitham, 1974). If 
sgn(/?z ]]3) = + 1, (3.15) is the telegraph equation and the initial-value problem 
may be solved by Riemann's method (see, e.g., Craik and Adam, 1978). 

4. S u m m a r y  

It has been shown that small-but-finite amplitude dispersive waves in non- 
linear hyper-elastic fluid-filled tubes can form a resonant triad. The three-wave 
interaction equations (TWI) were derived using a multiple-scales method.  The 
total energy associated with the propagating wave packets is conserved, al- 
though there is a continuous process of energy transfer between the three waves. 
For a Mooney-Rivlin strain-energy functional there is a 0(1) nondimensional  
high wavenumber cut-off for the allowed triads. This implies that the wave-wave 
interactions described here may be of importance in pressure pulse with charac- 
teristic wavelengths on the order of the tube radius and longer. We expect, 
therefore, that  resonant energy exchange will be of some importance in the 
evolution of pressure pulse spectra in fluid-filled elastic tubes. 
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Some important approximations to the TWI equations and their corre- 
sponding solutions were also discussed. In some practical situations only the 
temporal or spatial evolution of the wave packet amplitudes need be considered. 
For this configuration bounded, periodic solutions written in terms of Jacobi 
elliptic functions are well known (Bretherton, 1964). Under a pump wave ap- 
proximation, it is possible to derive a linear Klein-Gordon or telegraph equation 
to describe the initial evolution of the (non-pump) wave packet amplitudes 
(Craik and Adam, 1978). There also exist steadily-traveling (with a common 
propagation speed) bounded periodic and explosively unstable solutions to the 
TW1 equations (Case and Chiu, 1977). 

In many practical configurations, however, the tube wall may have variable 
mechanical properties in the axial direction or a small resonance mis-match may 
occur. Thus the question of how the interaction process is modified by the 
presence of perturbations is of interest. Kaup (1976 b) has developed a singular 
perturbation theory for the Zakharov-Shabat scattering transform. This method 
will be useful for investigating the interaction of perturbed localized well-sepa- 
rated wave packets. Similarly, other effects have been neglected here: visco-elas- 
ticity in the tube wall and fluid viscosity are two and, of course, we have not 
retained any azimuthal dependence in our solutions. These questions need to be 
answered before the role of nonlinear wave-wave interactions in pulse propaga- 
tion in elastic fluid-filled tubes is completely understood. 

References 

[1] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, S.I.A.M. Philadel- 
phia, 1981. 

[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York 
1965. 

[3] M. Anliker, R. L. Rockwell and E. Odgen, Nonlinear analysis of flow pulses and shock waves 
in arteries. Part I: Derivation and properties of  mathematical model. J. Appl. Math. Phys. 
(ZAMP) 22, 217-246 (Part I), (1971). 

[4] F. P. Bretherton, Resonant interactions between waves. The ease of  discrete oscillations, J. Fluid 
Mech. 20, 457-479 (1964). 

[5] K. M. Case and S. C. Chiu, Three-wave resonant interactions of gravity-capillary waves, Phys. 
Fluids 20, 742-745 (1977). 

[6] S. J. Cowley, Elastic jumps on fluid-filled elastic tubes, Fluid Mech. 116, 459-473 (1982). 
[7] S. J. Cowley, On the wavetrains associated with elastic jumps on fluid-filled elastic tubes, Q. J1. 

Mech. Appl. Math. 36, 284-312 (1983). 
[8] A. D. D. Craik, Wave Interactions and Fluid Flows, Cambridge Universiy Press, Cambridge 

1985. 
[9] A. D. D. Craik and J. A. Adam, Evolution in space and time of  resonant wave triads. L The 

"'pump-wave approximation", Proc. Roy. Soc. Lond. A363, 243-255 (1978). 
[10] D. Elad, A. Foux, Y. Kivity and Y. Lanir, Inflation waves in nonlinear distensible tubes, Int. 

J. Engng. Sci. 22, 103-118 (1984). 
[11] J. E. Flaherty, J. B. Keller and S. I. Rubinow, Post-buckling behaviour of  elastic tubes and rings 

with opposite sides in contact, SIAM J. Appl. Math. 23, 446-455 (1972). 
[12] A. E. Green and W. Zerna, Theoretical Elasticity, Oxford University Press, London 1954. 
[13] W. W. Hsieh and L. A. Mysak, Resonant interactions between shelf waves with applications to 

the Oregon Shelf, J. Phys. Oceanogr. 10, 1729-1741 (1980). 



Vol. 39, 1988 Resonant three-wave interactions in tubes 681 

[14] R. S. Johnson, A non-linear equation incorporating damping and dispersion, J. Fluid Mech. 42, 
49-60 (1970). 

[15] D. J. Kaup, The three-wave interaction - a nondispersive phenomenon, Stud. App]. Math. 55, 
9-44 (1976a). 

[16] D. J. Kaup, A perturbation expansion for the Zakharov-Shabat inverse scattering transform, 
S.I.A.M.J. Appl. Math. 31, 121-133 (1976b). 

[17] D. J. Kaup, A. Reiman and A. Bers, Space-tirne evolution of  nonlinear three-wave interactions. 
L Interactions in a homogeneous medium, Rev. Mod. Phys. 51, 275-310 (1979). 

[18] I. Kececioglu, M. E. McClurken, R. D. Kamm and A. H. Shapiro, Steady, super-critical flow 
in eollapsible tubes. Part. L Experimental observations, J. Fluid Mech. 109, 367-389 (1981). 

[19] A. H. Shapiro, Steady, Super-critical flow in collapsible tubes. Part IL Theoretical studies, J. 
Fluid Mech. 109, 391-415 (1981). 

[20] T. B. Moodie, D. W. Barclay, S. E. Greenwald and D. L. Newman, Waves in fluid filled tubes: 
Theory and experiment. Acta Mech. 54, 107-119 (1984). 

[21] T. B. Moodie, D. W. Barclay and S. E. Greenwald, Impulse propagation in liquid filled disten- 
sible tubes: Theory and experiment for intermediate to long wavelengths, Acta Mech. 59, 47-58 
(1986). 

[22] T. B. Moodie and D. W. Barclay, Wave propagation and reflection in liquid filled distensible tube 
systems exhibiting dissipation and dispersion, Acta Mech. 59, 139-155 (1986). 

[23] T. B. Moodie and J. B. Haddow, Waves in thin-walled elastic tubes containing an incompressible 
inviseidfluid, Int. J. Non-Lin. Mech. 12, 223-23I (1977). 

[24] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chicbester 1984. 
[25] T. J. Pedley, The Fluid Mechanics of  Large Blood Vessels, Cambridge University Press, Cam- 

bridge 1980. 
[26] S. I. Rubinow and J. B. Keller, Wave propagation in a fluid-filled tube. J. Acoust. Soc. Am. 50, 

198-223 (1971). 
[27] S.I. Rubinow and J. B. Keller, Wave Propagation in a visco-elastie tube containing a viscous 

fluid. J. Fluid Mech. 88, 181-203 (1978). 
[28] B. R. Seymour and M. P. Mortell, Nonlinear resonant oscillations in open tubes, J. Fluid Mech. 

58, 733-749 (1973). 
[29] G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York 1974. 
[30] V. E. Zakharov and S. V. Manadov, Resonant interaction of wave packets in nonlinear media, 

Soviet Phys. - J.E.T.P. Lett. 18, 243-247 (1973). 
[31] V. E. Zakharov and S. V. Manakov, The theory of  resonance interaction of wave packets in 

nonlinear media, Soviet Phys. - J.E.T.P. 42, 842-850 (1976). 
[32] V. E. Zakharov and A. B. Shabat, Exact theory of  two-dimensional self-modulating waves in 

nonlinear media, Soviet Phys. - J.E.T.P. 34, 62-69 (1972). 

Abstract 

A multiple-scales method is used to derive the Three-Wave Interaction (TWI) equations 
describing resonantly interacting triads in nonlinear hyper-elastic fluid-filled tubes. The tube wall 
is assumed to be an axially-tethered nonlinear membraneous cylindrical shell for which the resultant 
stresses can be determined by a strain-energy functional. The fluid within the tube is assumed to be 
two-dimensional, axi-symmetric and inviscid. We show that small-but-finite amplitude strongly 
dispersive pressure wave packets can continuously exchange energy in a resonant triad while 
conserving total energy. For a Mooney-Rivlin shell wall the theory presented predicts a short 
wavelength cutoff on the order of the tube radius. Thus pressure pulses containing wavelengths on 
the order of the tube radius and longer may contain resonantly interacting modes. Special solutions 
are presented: temporally developing modes, pump-wave approximations and explosively unstable 
steadily-traveling wave packets. 
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