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A perturbation analysis of turbulent flow through a porous barrier 

By J .  D. WILSON, G. E. SWATERS and F, USTINA 
University of Alberta, Edmonton, Canada 

(Received 13 April 1‘988. revised 13 November 1989) 

S ~ J M M A R Y  
Earlier attempts to calculate the mean velocity field in Row about a thin, finite porous barrier (wall- 

mounted or otherwise) are reviewed. By simplifying the governing mean vorticity equation and expanding the 
flow variables in powers of the pressure-loss coefficient of the barrier ( k , )  we derive an analytical solution for 
the mean velocity field in unbounded and homogeneous turbulent Row through a finite barrier. This solution 
is compared with the earlier solution of Kaiser (1959) and with numerical solutions for windbreak flow 
(bounded, inhomogeneous turbulence), and it is shown that all these solutions demonstrate a rate of recovery 
of the mean velocity field which is slower than is observed. I t  is suggested that the weakness of all the solutions 
lies in the treatment of the Reynolds stresses. A further point of interest is that a useful approximation to  the 
pressure field may be obtained by dropping the Reynolds stress terms and solving a simplified equation 
expressing a balance between streamwise advection, pressure gradient, and localized momentum removal at 
the barrier: this might prove useful for the solution of more general porous barrier flows. 

1. INTRODUCTION 

This paper is concerned with calculation of turbulent flow through a porous barrier. 
The original hope was to obtain an analytical solution for windbreak flow, but we have 
succeeded only in the much simpler task of finding a perturbation solution for the passage 
of homogeneous turbulence through a finite porous barrier in a two-dimensional mean 
flow. We hope we will be forgiven for leading the reader (briefly) through a background 
survey and a derivation which are more general than is our solution, because although 
some may be interested in this simplest of all turbulent barrier flows-relating, for 
example, to the case of a long barrier (such as a bridge, perhaps) set well above ground- 
we expect our results will appeal also to those with a curiosity for the ability of the 
classical approach (analytical solution of the Reynolds equations with gradient-diffusion 
closure) to simulate the aerodynamics of windbreak flow. 

Bradshaw (1973) stated that ‘the most difficult flows to predict will be those in which 
a shear layer has its turbulence structure perturbed by a short region of strong pressure 
gradients and extra rates of strain, and then emerges into a longer region in which its 
Reynolds stress gradients are significant compared to smaller pressure gradients.’ Wind- 
break flow is such a flow, and Counihan er af. (1974) noted that ‘despite an enormous 
number of measurements of the wind behind full-scale and model fences and shelter 
belts, there are not even any useful empirical formulae’ describing the sheltering effects 
of these obstructions’. Since the time of those contributions much has been learned from 
well-instrumented windbreak experiments (particularly Raine and Stevenson 1977, and 
Bradley and Mulhearn 1983) and there has been some progress in prediction. The most 
recent analytical contribution remains that of Counihan et al . ,  a perturbation solution 
for the velocity in the far wake of a solid barrier. Numerical integrations of the governing 
equations averaged over time or space, with various standard closure relationships, 
(Hagen et af. 1981; Wilson 1985) show promising comparison with observation, but are 
certainly in need of improvement. 

I This was perhaps an overstatement since it had long been recognized that a porous fence is preferable to a 
solid one,  and optimal ranges of porosity had been suggested. 

989 



990 J. D. WILSON, G. E. SWATERS and F. USTINA 

If the barrier is sufficiently porous, the flow pattern can be only slightly different 
from the equilibrium (approach) flow: this suggests a perturbation analysis. In the 
following sections we review briefly the aerodynamics of windbreak flow, and survey 
past attempts to predict barrier flows. Thereafter we parametrize the momentum removal 
process in the governing equations, and perform a perturbation analysis, obtaining an 
exact solution for the ‘bare bones’ problem alluded to above and, for the windbreak 
case, a crude solution which at least estimates the magnitude of the velocity reduction. 

In most cases symbols are defined in the text where they first appear. In addition, 
symbols, terminology, and notation are explained in an appendix. 

2. DEFINITION OF THE FLOW AND SURVEY OF EARLIER WORK 

( a )  Characterizing the approach flow and the barrier 
The simplest real windbreak flow is a neutrally-stratified atmospheric surface-layer 

(ASL) flow perpendicular to an infinitely long windbreak. The state of the undisturbed 
ASL will for present purposes be taken as controlled by the friction velocity u* and the 
surface roughness length z ,  alone. We will express the variation of the streamwise velocity 
with height in the undisturbed ASL using the power-law profile U = UH ( z / H ) ” ~ ,  where 
H is the fence height. This is a reasonable approximation to the (actual) logarithmic 
profile for heights larger than about 50z, ,  is analytically more tractable, and will permit 
a methodical simplification of the linearized governing equation. To ensure the shear 
stress is height-independent, instead of specifying the eddy viscosity (correctly) as K = 
k,u,z, we write K = KH(z/H)“, where n = 1 - m for m # 0. With this choice for the 
undisturbed profiles of velocity and eddy viscosity the governing equation for the mean 
vorticity, which we derive later, can approximate either real windbreak flow (i.e. a wall- 
mounted barrier), in which case m - 1/7, or, with m = n = 0,  the flow of homogeneous 
turbulence through a barrier. It is for the latter (free-slip) case that we have been able 
to obtain an exact solution. 

A porous barrier is conveniently characterized by its ‘pressure-loss’ or ‘resistance’ 
coefficient, k , ( 8 )  (Laws and Livesey 1978). This is defined with reference to a calibration 
flow wherein the barrier is mounted so as to block a wind tunnel with the normal to the 
barrier inclined at angle 0 to the stream. The resistance coefficient is formed by 
normalizing the pressure drop Ap across the barrier by pu2 (sometimes by pu2/2), 
k,(O) = Ap/pu2. We will assume 8 to be very small and write k,(O) = k,. Evidently, 
k,pu2 Ap is the force per unit area exerted by the barrier on the flow and vice versa. 
To a first approximation one might expect that in an unbounded flow through a porous 
barrier, provided the streamline inclination relative to the barrier is small, the primary 
effect of each element AyAz of barrier area would be to exert a localized retarding force 
FD = k,pu2AyAz on the airstream (where u is the streamwise velocity at the barrier 
element). 

The resistance coefficient is easily measured, and may be correlated with the porosity 
and type of construction of the barrier (e.g., Baines and Peterson 1951). Being an 
aerodynamic rather than a geometric property, its use as a characterizing attribute is 
much preferable to the use of porosity. Flows through barriers of equal porosity and 
span may differ substantially but differences between flows through barriers of equal 
resistance coefficient and span, but unequal porosity, will be difficult to detect. 

( b )  Overview of the aerodynamics of flow through a porous barrier 
An old review of many of the early measurements of windbreak flow is given by van 

Eimern eral. (1964). Heisler and DeWalle (1988) review the effect of windbreak structure 
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on wind flow and in the same book McNaughton (1988) reviews the windbreak effect on 
microclimate. 

(i) Mean velociryfield. Momentum is removed from the flow at the barrier. This causes 
a mean velocity deficit both downstream and (as a result of pressure effects) for a shorter 
range upstream. Immediately cross-stream from (above, in the windbreak case) the 
barrier there is a sharp and shallow zone of increased velocity so that 

U ( z )  dz  = 1 UJz) d z  = constant (1) 

where U,(z) is the unperturbed approaching velocity profile and the integral spans the 
range of the cross-stream coordinate. Between the speed-up region and the velocity- 
__ deficit region is a region of very strong wind shear du/dz .  The action of the shear stress 
u’ w‘  (itself increased in this region) upon this shear converts mean kinetic energy to 
turbulent kinetic energy at an increased rate (relative to the undisturbed flow). The 
consequence is a spreading zone of increased turbulence (again relative to the undisturbed 
flow). The turbulent convection of mean momentum back from the speed-up region to 
the decelerated region causes recovery of the velocity field. 

(ii) Turbulent velocity field. Formally, i.e. in the conservation equations, the flow inter- 
action with the barrier may be treated by adopting a spatial averaging procedure (see 
Wilson and Shaw 1977; Raupach and Shaw 1982; Finnigan 1985), and as a result of the 
spatial averaging there appear terms which may be identified with the viscous and form 
drag. The (fluctuating) drag converts mean kinetic energy (MKE) to turbulent kinetic 
energy (TKE) at the barrier, and also exerts a drag on the turbulent flow, passing energy 
from larger eddies to smaller eddies on the scale of the barrier elements. In spite of this 
strong production of TKE at the barrier, observations (Raine and Stevenson 1977; Wilson 
1987) show a zone of reduced TKE in the near lee of a porous barrier, bounded by the 
spreading wake of increased TKE generated by the increased shear production in the 
strong-shear zone. Presumably the very small scales of motion being fed with energy at 
the barrier are subject to very rapid dissipation. 

(c )  Prediction of porous barrier flow 

G. I. Taylor (1944) gave a solution for the velocity perturbation upstream of a finite 
or infinite porous plate perpendicular to an unbounded laminar flow. Taylor hypothesized 
that the effect of each area element AyAz of the barrier on the flow upstream of the 
barrier is equivalent to the effect of a source of fluid volume of strength k, u AyAz placed 
at the same point. For small k,  Taylor’s result for the velocity immediately upstream of 
a finite barrier is u/u, = 1 -k,/2. Our solutions confirm this result (see Fig. 2), and several 
authors, including Graham (1976), have shown agreement between experimeni and 
Taylor’s theory. 

De Bray (1971) was concerned with the design of practical windbreaks (i.e. wall- 
mounted barriers in turbulent shear flow) but apparently applied Taylor’s methodology 
to obtain a prediction of the leeward velocity. It is not clear how Taylor’s result can be 
extended to predict the leeward flow, and the argument is not given, but de Bray’s result 
for the leeward velocity is, for small k,,  u/u, = l -kr.  It will be seen later that this (not 
very accurate) result follows from neglect of the Reynolds stress terms in the governing 
equations. 

Tani (1958) and Kaiser (1959) treated the windbreak as a source of momentum- 
deficit and adopted a passive scalar diffusion model (essentially the Gaussian plume 
model) for the spread of this deficit. That this approach is seriously deficient may be 
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shown by substituting into the governing mean streamwise momentum-equation the 
expansion 

u = Z , + k , A u  w = k , A i i  P = k , A p  

where Aii, AG are the velocity disturbances and AF is the pressure disturbance. One 
obtains, to first order in k,,  

- - 

where the term dU’2/ax has b e e d r o p p e d  and first-order closure (with constant K )  has 
been adopted to parametrize du’w’ldz.  But the Gaussian plume model is the solution 
to the much simpler advection-diffusion equation, 

a AU d 2  AE 
ax  d Z 2  

u,- - - K,- ( 3 )  

(where both u, and K,  are constants). Tani and Kaiser have in effect neglected the 
pressure gradient, permitted free slip along the wall (no momentum flux to ground), 
and adopted a spatially-constant eddy viscosity to parametrize the momentum flux. 
Furthermore the source of momentum excess which would be needed to satisfy the 
integral constraint (Eq. 1) on the horizontal flux of air mass is not included and the 
momentum sink strength is evaluated using the unperturbed velocity field, whereas the 
actual velocity at the fence is reduced (according to Taylor’s findings, by an amount of 
order k,u,/2 for small k,) .  Despite these limitations, the Tani-Kaiser approach does 
predict a wind reduction of the correct order of magnitude for small k, .  Kaiser gave 
solutions both for a single momentum sink of strength Q = k ,pu tH placed at z = H and 
for a collection of strip sources of width d z  and strength d Q  = k,pu;dz extending to z = 
H .  The latter solution is 

where x ,  z are dimensionless (scaled on H )  and R = u,H/K,. This is shown on Fig. 2 in 
comparison with our solutions; the location of the velocity minimum is poorly predicted 
owing to the neglect of the pressure gradient. 

Plate (1971) noted that observations of the mean wind profile in the lee of sharp- 
edged solid barriers reveal a region of very strong vertical shear (lying at z - H for small 
x ) ,  separating the region of reduced mean velocity near the ground from a region of 
increased mean velocity aloft. Recognizing the oversimplification involved, Plate ident- 
ified an ‘intrinsic’ streamwise coordinate lying in this strong-shear region, and considered 
this as an axis separating two slabs of air whose interaction he represented as that of an 
upper stream of initially (i.e. at x = 0) uniform velocity U ,  interacting via turbulent 
momentum exchange with a lower stream of (again initially) uniform velocity U I .  
Assuming the eddy viscosity to vary as K = x ( U 2 - U 1 ) / ( 4 u 2 ) ,  one obtains a standard 
mixing-layer solution involving the empirical parameter u. With the choice u - 15, 
observations of the velocity profile in the strong-shear region behind solid barriers were 
shown to be in good agreement with the solution; but it is probably the use of an x- 
dependent eddy-viscosity, becoming large at large x, and the flexibility afforded through 
u which allow Plate’s solutions to match observation. 

Counihan et al. (1974) presented an analytical theory for the mean velocity field in 
the far ( x / H  2 10) wake of solid obstacles in a turbulent wall-layer of depth 6 (with 
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obstacle height H 6). The restriction to the far wake is a consequence of the fact that 
the flow perturbation due to a solid obstacle can never be small near the obstacle. One 
of the interesting findings is that the leeward fractional velocity change A;/& is approxi- 
mately height-independent in the lower ‘wall region’ of the wake: this is also the case 
behind porous barriers. Bradley and Mulhearn (1983) presented measurements which 
supported the theory in its prediction of the shapes of the far-wake velocity and shear- 
stress profiles and of the rate of decay of the velocity perturbation: the theory under- 
estimated the magnitude of the stress perturbation. 

Turning now to numerical studies, Counihan et al. stated that ‘it would be interesting 
to see the computational methods for solving elliptic problems . . . (recently 
developed) . . . being applied to the (surface obstacle) problem.’ Several years later, 
Durst and Rastogi (1980) reported numerical simulations and wind-tunnel measurements 
of flow about wall-mounted solid barriers. These authors used the ‘k--E’ turbulence 
model, a first-order closure scheme in which the local eddy viscosity K is formed from 
the local turbulent kinetic energy k and its dissipation rate E ,  for which approximate 
budget equations are included (see Launder and Spalding 1974). The length of the 
leeward re-circulation zone was predicted fairly successfully, provided a very fine grid 
resolution was employed: the need for high resolution in modelling is not surprising in 
view of the no-slip condition and associated boundary layers on a solid obstacle. 

Hagen et al. (1981) applied the ‘ k - ~ ’  model to flow about porous fences, but 
incorporated the effect of the fence by imposing a velocity profile (in effect an extra 
boundary condition) in the very near lee of the fence (as well as far upstream). Wilson 
(1985) instead parametrized the porous barrier as a localized momentum sink of strength 
k,p U (U(  (where U is the local mean velocity) in the governing mean-streamwise momen- 
tum equation. As argued earlier, this is a reasonable first approximation for the effect 
of the fence, provided the streamline inclination is not large. By comparing simulations 
with the experimental data of Bradley and Mulhearn (1983), Wilson showed that good 
predictions of the depth of the near-lee velocity minimum are obtained with modest 
computational effort (i.e., a fairly coarse grid), with no calibration (i.e., a standard 
numerical scheme and closure hypothesis and with all inputs z, ,H, k, specified in the 
experimental data), and regardless of whether one adopted the simplest conceivable 
closure scheme ( K ( x ,  z) = K,(z)= k v ~ . + o ~ ,  where u*, is the far upstream friction velocity), 
the more complex ‘k--E’ model, or a full second-order closure scheme. The numerical 
solutions, regardless of closure scheme, did not predict the sharp and shallow speed-up 
zone observed above the fence and underestimated the rate of recovery of the velocity 
field (the latter deficiency being at least partly a consequence of the former). The 
similarity in this respect of the analytical solution derived here suggests that the weakness 
of the numerical solutions stems from inadequacy of the closure scheme(s) rather than 
from numerical limitations such as grid resolution. 

3 .  GOVERNING EQUATIONS AND PERTURBATION EXPANSION 

( a )  Governing equations 
The presence of a porous barrier means that the Navier-Stokes equations must in 

principle be solved subject to the no-slip condition on a surface having very complex 
geometry. An alternative (see Fig. 1) is to consider the barrier as splitting the region 
z < H  into an upstream region x <  -1/2 and a downstream region x >  l /2  (where 1 is the 
thickness of the barrier). One must now relate the velocity and pressure along the upwind 
face x = 1/2 of the downstream region to the pressure and velocity at x = --l/2, the exit 
face of the upstream region: conservation of mass requires UL = UR = UB (where U, is 
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z = H  - _ _ _  

z=o 
x = - N 2  112 

Figure 1 .  Illustrating that the porous barrier splits the region 0 5 z 5 H into an upwind and a downwind 
region separated by an excluded region - 1/2 5 x 5 1/2. The pressures and streamwise velocities on the 
boundaries of the excluded region are linked by the equations uL = uR = u (a requirement of mass conservation) 
andp, - pR = k,pu’, where k, is the resistance coefficient of the barrier. Also shown. with circular arrows, are 
the regions (and associated signs) of vorticity production. The dominant effect of the barrier is to cause vorticity 
production at the tip of the barrier (double circular arrow). Shear in the approaching flow (illustrated by the 

horizontal double arrows) results in vorticity production of opposite sign distributed along the barrier. 

the velocity ‘at’ the barrier-actually an average across a frontal area large with respect 
to the area of the pores in the barrier since the flow ‘at’ the barrier will be organized 
into jets), and the pressure difference is given by P,-PR = Ap = p k , u ) u / .  The vertical 
and lateral velocities are not necessarily continuous across the barrier (the angle of exit 
from the barrier need not equal the angle of entry), but these (small) effects will be 
neglected. 

With this divided domain, the pressure gradient (dp/dx),,, is meaningless (below 
z = H )  because x = 0 is excluded; but we will nevertheless adopt as valid at all points 
the equations 

du du ldp - + u.- = --- + v v 2 u  - k,u)u/  6 ( x ,  O)s(z, H )  
d t  ’ax; pax 

d w  a w  l a p  
- + u. - = -- - -g + vv2w 
a t  Idxi p d z  

where 

s(z, H )  = 1 for z s H s(z, H )  = 0 for z > H .  

Equation (5a) is valid at x = 0 in the sense that when integrated throughout a region 
-1/2 5 x 5 1/2 it yields the correct pressure drop Ap = k,p u 1 ~ 1 .  When integrated through- 
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out a larger control volume spanning x = 0 (as, for example, is the time-average stream- 
wise equation in the numerical model of Wilson (1985)) the streamwise entry and exit 
velocities on the control volume faces differ and the pressure difference across the control 
volume no longer solely balances the drag on the barrier. 

Now let us time-average Eqs. (5) in the normal way. Restricting to two-dimensional 
mean flow perpendicular to an infinitely-long barrier, defining to be the mean departure 
from a hydrostatic state, and neglecting viscous momentum fluxes, we obtain 

If we assume that u(t) is at all times positive - (which will nearly always be true except 
very near the ground), then a = ? = U2+u”.  In the atmospheric surface layer, not 
too close to the ground, one may neglect relative to U 2 ;  we will assume this to be 
generally permissible. Hence, the streamwise momentum equation employed here is the 
usual time-average equation with an added term -k,U2 at the barrier accounting for loss 
of momentum to the barrier; each elementary area AyAz of the barrier exerts a time- 
average force in the negative x-direction of k,p U’AyAz. 

We can expect analytical solutions to Eqs. (6) to yield a discontinuity in pressure at 
x = 0, z < H .  If the pressure field is known at all x and correspondingly imposed, there 
is no need to retain the momentum sink in Eq. (6a), whose inclusion is necessary only 
to generate the required pressure discontinuity (this approach is taken in the approximate 
solution of section 4(b)). 

Because the mean flow under consideration is two-dimensional, the mean vorticity 
has only one component, S2 = aZ/dz-dG/ax. The governing equation for D is readily 
derived by differentiating Eqs. (6) to obtain 

__ - 
- a ~  - a ~  a2u iw i  a2u iw i  a 2  - - 
I d -  + w- = -2 + 2 + --(w12 - u12) + 

ax a 2  a 2  dX axaz 

+ kru*6(x,0)6(z,H) - k,6(x,O)s(z,H)au2/dz. (7) 
As indicated in Fig. 1, the first term on the right-hand side represents a source of positive 
vorticity at the tip of the barrier, while the second term, which will usually be of lesser 
importance, represents a distributed source of negative vorticity along the barrier at 
z < H .  Dr. J.  J. Finnigan (personal communication) has suggested that retention of this 
second term might be inconsistent with neglecting the possible change in flow direction 
across the barrier. 

In the subsequent analysis the term 

in the vorticity equation will be neglected. This is probably not a serious simplification 
as the simulations of Wilson (1985) indicate that gradients in and W’2& only a 
small part in the momentum balance of a shelter flow. The shear stress u’w’ will be 
modelled using first-order closure, u’w’ = -KaU/dz, with the eddy viscosity K treated 
as unaffected by the flow perturbation due to the windbreak, i.e. K independent of the 
streamwise coordinate. This is a radical simplification, yet Wilson (1985) found that such 
an assumption yields predictions of the flow reduction in the near lee of a 50% porous 
windbreak (having k,  = 2) which are almost as good as those resulting from more complex 

- 
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first-order closure schemes, (e.g. 'k-E')  and from use of a Reynolds stress model (wherein 
simplified budget equations for the shear stress, the velocity variances, and the TKE 
dissipation rate are included). Presumably therefore, when k,< 1 (the intended case 
here) the assumption of an unperturbed eddy-viscosity profile is not much worse than 
the adoption of any of the closure schemes available at present. 

Let us define a mean streamfunction @ such that 

(8) 
- - 
u =  -Qz w = Q x  VZ@=--R.  

Substituting the streamfunction into the vorticity Eq. (7) and multiplying through by 
(H/U,H)2, one obtains the dimensionless vorticity equation 

+ kr@2,6(X,O)6(Z,l) - 2k,6(x,0)s(2,1)@.,~zz. (9) 

where all lengths are now scaled by H ,  all velocities by UOH (the dimensionless velocities 
will be denoted in roman type u = :/i,H, w = W/EoH), and R = UoHH/KH is a Reynolds 
number based on the turbulent viscosity. Specifying KH = kvu*z and iiOH = 
(u,/kv) In(H/z,), we obtain R = 38 % 1 for the case H/z ,  = 500. 

(b) Perturbation expansion 
Now let us expand the streamfunction in powers of the (small) resistance coefficient, 

@ = @, + k,@(') + k ; p + .  . . ( 10) 

where the unperturbed streamfunction is @, = -z '+m/(l+m). The corresponding expan- 
sions for the dimensionless velocities are u = u,+k,u(')+. . . , w = k,w(')+. . . and to first- 
order in k ,  we have AE/iioH = k,u('). If earlier suggestions as to the magnitude of AE in 
the near lee of the barrier are correct, we may expect to find u(') - -1 in that region. 

Substituting the expanded stream-function into Eq. (9) and collecting the coefficients 
of k:  we obtain the governing equation for the lowest-order perturbation to the stream- 
function &(') 

- zms(x,0)6(z ,1) +2mz"-'6(x,O)s(z, 1). ( 1  1) 

In section 4 we give a solution to Eq. ( 1 1 )  for the case m = 0, and in section 5 we 
examine the predicted velocity reduction when approach shear is included by neglecting 
the term in (1/R) and further expanding @(I)  in m. 

4. FREE SLIP SOLUTIONS 

As stated at the outset, we have been unable to solve the vorticity equation for a 
wall-mounted barrier, even in the simplified form of Eq. (11). Here, setting m = n = 0,  
we focus on the simplest member of the class of turbulent streams disturbed by a porous 
barrier. There is no shear in the approach flow and the turbulence is homogeneous. 
Physically, the simplified equation represents one or other of the (equivalent) problems: 

(i) An unbounded flow through a barrier of extent -H 5 z 5 H ,  with symmetry about 
z = 0, at which plane W = 0 and d E / d z  = 0. 

(ii) Flow bounded at z = 0 by a wall along which free slip is permitted. 

\ 
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A flow of this type may be realized by, for example, forcing a porous but rigid net to 
move through a fluid which is in homogeneous turbulent motion. 

We will give an exact solution, then show that by neglecting the turbulent diffusion 
terms one may obtain a simple expression for the pressure field which, when imposed in 
the streamwise momentum equation, results in a solution almost the same as the exact 
solution. 

(a)  Exact solution 
For clarity the superscript on the perturbation streamfunction will be dropped. With 

m = n = 0 Eq. (11) reduces to 

and we will impose boundary conditions: 

@ + 0  asIxl-+x 

@ + 0  a s z + m  (13) 
@ = G X = @  z z  = 0  a t z = 0 .  

To progress, we replace the boundary condition at z = ~0 with the same condition 
at an arbitrary location z = L. Then if we write 

the conditions at z = 0 and z = L are automatically satisfied. Substituting this de- 
composition into Eq. (12), multiplying throughout by sin(mnz/L), and integrating from 
z = 0 to z = L ,  we obtain an ordinary differential equation for the X " ,  

X;xx - a,X; - (a,,/R)X:: - (a; /R)X" = -(2/L)s(x,O)sin(nn/L) (15) 
where a, = (nx/L)*.  Since @ (and therefore Xn) must vanish at 1x1 = m, we may take the 
Fourier transform of Eq. (15). Defining the transform of X"(x) by 

X"(/c) = I x  X"(x>exp(-ikx) dx (16) 
- x  

where i = d(--l) and k is the wavenumber, we obtain the equation 

where 
X n ( k )  = { ( 2 / ~ ) s i n ( n x / ~ ) > / ~ ( k )  

B(k)  = ik3 + ika,, - (an/R)k2  + (a; /R) .  

The equation B(k)  = 0 has three imaginary roots k j  = ik,, 
positive and one negative. To invert Eq. (17) we write 

(k*; real), two of which are 

where the return contour linking k = -x and k = --x will be chosen to lie at Ikl = = in 
such a way that exp(ikx) vanishes. By the residue theorem (Churchill et al. 1974) we may 
write 
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where the R j  are the residues of exp(ikx)/B(k) at the simple poles enclosed by the 
contour. In the present case, for a pole at k = k,, we have 

R, = exp(ik,x)/B’(k,) (22) 
where 

Then 

This solution for the lowest-order perturbation streamfunction has been used to 
calculate the streamwise velocity perturbation u(I) and is shown on Fig. 2 for the case 
H / z ,  = 500. The fractional velocity reduction in the near lee is of order k ,  and minimum 
velocity occurs downstream from the barrier (because of the adverse pressure gradient 
at x > 0). Anyone familiar with the typical leeward extent of wind reduction behind a 
shelterbelt may find the very slow recovery exhibited by our solution to be surprising 
and, perhaps, unrealistic. We delay comment on this until section 6. 

(b )  An approximate solution 
Equation (12) contains the small parameter 1/R, and prior to obtaining the exact 

solution given above we carried out a further (singular) perturbation expansion in 1/R 
(‘singular’ because 1/R multiplies the terms of highest order, so the simplified equations 

0.0 

.o. 2 

-0.4 
I Ai 

k r  60  

- _  

-0.6 

-0.8 

-1.0 

. l .  2 

1 I 1 1 1 1 I 

UNBOUNDED HOMOGENEOUS TURBULENCE 

Figure 2. Analytical solutions for the fractional velocity change (l/kr)(Ai/Go) as a function of streamwise 
location x / H  at height z / H  = 1/2, with H / z ,  = 500. (i) The exact solution to first order in k,, d’), with L = 80 
(-). (ii) Kaiser’s solution, Eq. (4) (----). (iii) The ‘no diffusion’ solution, Eq. (27) (----) (iv) 
Approximate solution obtained by solving Eq. (30) using the Green’s function method (Eqs. (31), (32)) for 

x > -10 with u(’)(-lO,z) = 0 and the pressure field p* of equation (29); ( 0 ) .  
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resulting from the expansion in 1/R cannot satisfy all the original boundary conditions.) 
The lowest-order term in the (now double) perturbation expansion is governed by 

V2$,. = -S(x,0)6(z,E) (25)  

where the superscript (*) denotes the solution to first order in k,  and to zeroth order in 
(l/R). Using the appropriate Green's function (to enforce w* = 0 along z = 0) one 
obtains as the solution to this Poisson equation 

-1 
4n 

x2 + ( 2  - 1)* 
x2 + (2  + 1)* 

w* =-In 

and with manipulation involving the continuity equation one obtains 

(27) 
This ('no diffusion') solution for the lowest-order perturbation is shown on Fig. (2). 

From upstream to a distance of about x = 1 downstream this solution differs little from 
the exact solution; however the velocity does not recover downstream because the 
turbulent momentum-transfer term which causes re-acceleration has been dropped. This 
grossly deficient solution is of little value, but there is an interesting aspect to it. 

Let p = p/pi& be the dimensionless pressure. The pressure field p* corresponding 
to this 'no diffusion' velocity perturbation is governed by the equation 

v*p* = -s(z,l)sX(x,o) (28) 
where 6, is the deriuatiue of the delta function. The boundary condition along z = 0 is 
p,* = 0.  The solution is 

The first-order pressure field is discontinuous at x = 0, z < 0 with 

Lim p* = 1/2 and Lim p* = -1/2, 
X - 0 -  X' 0 + 

Z < l  z < l  

i.e. the pressure drop across the fence, Ap, is given by -pk,ii: as expected. 
We will now impose this perturbation pressure field in the equation 

all(') ap  1 d*U(')  +-- _ _ _ - _ _  - 
d X  dx R d z 2  

which is the form of the L-momentum equation corresponding to the simplified vorticity 
equation (12). 

The solution to Eq. (30) may be obtained by the Green's function method: specifying 
the solution at an 'upstream' point xI one has 

u(')(x,z) = 1' I X  G(x,z; x',z') (-dp(x',z')/dx') dx'dz' + 
x ' = x ,  z '=O 

+ G(x,z;xI,z')u(')(xl,z') dz' (31) 
z ' = O  
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where the appropriate Green’s function is 

- ( z  - Z ’ ) Z  1 ( - ( z  + z ’ ) 2  I} + exp (32) 4(x - x ’ ) / R  V{4(x - x ’ ) / R )  
C(x,z; x ’ ,z ’ )  = 

The Kaiser solution shown on Fig. 2, (Eq. (4), given earlier), is easily obtained from 
Eqs. (31,32) by choosing xI  = 0, u(’)(O,z’) = -s(z’,l), and setting the pressure gradient 
to zero in Eq. (31). 

Now if we write u(l) = 0 at xI = - 10 and specify the pressure field as p* given in Eq. 
(29), we obtain a solution (see Fig. (2)) which is virtually the same as the exact solution 
to Eq. ( 1 2 ) .  The interesting question is the extent to which this finding might be 
generalized: may one, in a more complex barrier flow, facilitate a solution by first 
neglecting the stress gradients and obtaining an approximation to the pressure field which 
can subsequently be imposed in the full equation? Such a procedure would (superficially) 
resemble the practice of solving disturbed boundary-layer flows by calculating an outer- 
layer pressure perturbation and imposing this on the more complex inner layer. 

5 .  VELOCITY REDUCTION WITH APPROACH SHEAR 

When the no-slip condition is retained we may further expand in the small parameter 
m (=1/7) the component of the streamfunction appearing at first order in k,, 

@ ( I )  = @(1)(0) + m @ ( ’ ) ( l )  + . . . . 

We will examine only the ‘no diffusion’ solution. Substitution into Eq. (11) yields, 
dropping terms in (l /R),  

v 2 @ p )  = -6(X,O)6(Z,l) (33) 

(34) V*@(11)(1) = -@p(o)/z* + 2 z ” - ’ 6 ( x , o ) s ( z , l ) .  
The solution to Eq. (33) has already been given, and Eq. (34) is easily solved by the 
Green’s function method (again we form the Green’s function so as to ensure that the 
vertical velocity vanishes on z = 0). The solution confirms that 

Lim ( I/k,)( Aii/i,) Î - 1 

for heights near the ground, i.e. in the case of a wall-mounted barrier one may expect 
that the fractional velocity reduction in the near lee is approximately height-independent 
and has magnitude - k,. 

X’ = 

6. DISCUSSION AND CONCLUSION 

The analytical solutions give a rate of recovery of the velocity field which is much 
slower than one expects on the basis of observations behind barriers in the neutrally- 
stratified atmospheric surface layer, and it is of interest that numerical solutions (Wilson 
1985) for windbreak flow likewise underestimate the rate of recovery. Figure 3 shows 
solutions (using second-order closure: methodology as described by Wilson 1985) for a 
fence in the neutral surface layer with H / z ,  = 600 and k, = 0.05 and 2.0. The points to 
be noted are: 

(i) As in our free-slip solution and the no-diffusion solution for small m, in the near lee, 
(l/kJ(AE/ZJ - -1 for small k,. 

(ii) For larger k ,  the fractional velocity change is not as large as k ,  and the rate of recovery 
is faster in the sense that, far from the fence (say at x = 20), the fractional velocity 
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0.0 - - 

. - 
k,= 2.0 . 

-0.4 - - 

1 Aa -_  
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WINDBREAK FLOW 
. -0.6 - - 

-0.8 - 

I I 1 I 1 1 1 I I I I 
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-1 .2 .  
- 4  .2 

x / H  

Figure 3. Numerical solutions for windbreak flow using second-order closure for the fractional velocity change 
at  height z / H  = 0-38 for small and moderate values of the resistance coefficient k, .  The simulations were 
performed with H / z ,  = 600, corresponding to the cxperirnent of Bradley and Mulhearn (1983). Experimental 

data (for k ,  = 2)  is plotted (*). 

reduction is a smaller proportion of its maximum (near-lee) value than is the case for 
small kr . 

It may be that observations behind very porous fences would confirm this slow 
recovery (the experimental difficulty of such an experiment is obvious-one is faced with 
accurately measuring very small mean velocity differences). On the other hand, even at 
large k,,  the numerical model underestimates the rate of recovery. Therefore we suspect 
that both the analytical solution for the free-slip flow and the (much more complex) 
numerical model for windbreak flow are deficient. Furthermore, the deficiency probably 
lies in the treatment of Reynolds stress because, having examined both analytical and 
numerical solutions, we can discount both numerical limitations (e.g. grid resolution) 
and the approximations of the analytical solution (linearization of advection by the mean 
flow, neglect of approach shear) since the numerical model handles the latter correctly. 

Given that the fractional velocity reduction at small k ,  is of order k,, it is necessary 
to correct a formula given by Wilson (1985) which is wrong for small k,. A formula for 
the fractional velocity reduction in the near lee of a porous windbreak which is satisfactory 
in this respect (and gives an equally good summary of the simulation experiments from 
which the original formula was derived) is 

In conclusion, although our solution is an improvement upon earlier analytical 
treatments of porous-barrier flow, we admit that it has little but 'curiosity' value, 
because of the oversimplifications we have introduced (extreme porosity, homogeneous 
turbulence, neglect of approach shear, imposed eddy viscosity). We do however hope 
that our attempt may encourage the search for a more realistic analytical solution for 
windbreak flow. 
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APPENDIX 
Terminology and Notation 

Force exerted by the flow on given area of the barrier 
Barrier height 
Turbulent kinetic energy per unit mass, or wavenumber. 
Pressure loss (resistance) coefficient. 
Von Karman's constant (=0.4) 
Eddy viscosity 
Arbitrary (large) dimensionless height at which upper boundary condition 
is imposed for analytical solution for streamfunction 
Exponents in power-law profile for (respectively) the mean streamwise 
velocity and the eddy viscosity 
Pressure 
Dimensionless pressure 
Reynolds number, tl,HH/KH 
Dimensionless unit-step function, zero for z1 > z2 
Time 
Streamwise (x), horizontal cross-stream ( y ) ,  and vertical ( z )  velocity 
components 
Change in the mean streamwise velocity ( U  = U, + Atl) 
Change in the mean vertical velocity (W = A F )  
Fluctuating velocities, u(t) = U + u'(t) ,  etc. 
Dimensionless velocities; u = U/UoH, w = W/UoH 
Friction velocity 
Streamwise, horizontal cross-stream, and vertical coordinates. Used both 
as dimensional coordinates and as non-dimensional coordinates scaled on 
barrier height H. 
Function appearing in series solution for the perturbation streamfunction 
Surface roughness length 
Boundary layer depth 
Delta function on x-coordinate 
Rate of dissipation of turbulent kinetic energy 
Density 
Kinematic viscosity 
Vorticity 
Stream-function 

$,,, $(I) ,  $A2) Terms in perturbation expansion of stream-function in kr, appearing at 
indicated order 

(5 Empirical parameter appearing in mixing-layer solution. 
Overbar notation 
An overbar denotes an average value, a tilde the Fourier transform along the x- 
coordinate. 

Subscript notation 
0 

H 
Superscript notation 
(a)  
(a> (b )  

denotes unperturbed (far upstream) value 
denotes value at z = H 

component of expansion in k,  alone; appears at order (k,)a 
component of expansion in k,, m, ( l / R ) ;  appears at order (k,)a(m)b(l/R)" 
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Example: u = U/EoH = u, + k,u(') + k;u(*) + . . . 
To first order in k,,  then 
u = U, + AZ = Lo + k,u,,u(') 
AE/UoH = k,ufl) 

- 
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