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A theory is presented to describe the propagation and structure of coherent cold-core 
(mesoscale) eddies on a sloping bottom including dynamical and thermodynamical 
interaction with the surrounding fluid. Based on parameter values suggested by 
oceanographic and rotating-tank experimental data, the evolution of the baroclinic 
eddy is modelled with nonlinear ‘intermediate lengthscale ’ geostrophic dynamics 
which is coupled to the surrounding fluid. The process of ventilation is modelled with 
a simple cross-interfacial mass flux parameterization. The surrounding fluid is 
governed by nonlinear quasi-geostrophic dynamics including eddy-induced vortex- 
tube compression. Assuming a relatively weak ventilation rate, a multiple-scale 
asymptotic theory is constructed to describe the propagation of an initially isolated 
or coherent baroclinic eddy. Throughout the evolution the eddy is assumed to be 
interacting strongly with the surrounding fluid. To leading order, the eddy and 
surrounding fluid satisfy the Stern isolation constraint. The magnitude of the 
Eulerian velocity field in the surrounding fluid above the eddy is shown to be larger 
than the swirl velocities in the eddy interior as suggested by experimental data. Also, 
to leading order, the along-shelf translation speed is given by the Nof formula. The 
process of ventilation is shown to induce a slowly decaying upslope translation in the 
propagating eddy, and acts to stimulate a weak slowly decaying topographic Rossby 
wave field in the surrounding fluid. The important features of the theory are 
illustrated with a simple example calculation. 

1. Introduction 
Interesting mesoscale oceanographic features that are found in the continental 

shelf regions of the world oceans are propagating bottom-trapped coherent cold 
domes or pools (e.g. Ou & Houghton 1982; Houghton et al. 1982; Armi & D’Asaro 
1980, among many others). It is thought that these oceanographic features may play 
a significant role in the mesoscale dynamics of benthic boundary layers on 
continental shelves and may provide a mechanism for along-shelf nutrient mixing 
etc. Similar bottom- trapped isolated eddies have also been reproduced exper- 
imentally in rotating tanks (e.g. Mory 1983; Mory, Stern & Griffiths 1987; 
Whitehead et al. 1989). As well, there have been some theoretical studies on the 
dynamics of cold-core eddies (e.g. Nof 1983, 1985; Mory 1985; Mory et al. 1987; see 
also Whitehead et al. 1990). 

However, these studies, notwithstanding their importance, have been mainly 
focused on determining the translation speed of the eddy or on determining the 
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general integral constraints that these eddies must satisfy. There has as yet been no 
complete analysis on the detailed internal structure and interaction characteristics 
of these eddies with the surrounding fluid. The principal purpose of this paper is to 
present a unified asymptotic theory describing the propagation and structure of 
coherent cold-core domes on a sloping bottom and their (dynamical and 
thermodynamical) interaction with the surrounding fluid. 

One important conclusion of the analysis presented by the Nof (1983) study was 
that, in the absence of any interaction of the eddy with the surrounding environment, 
the along-shelf propagation speed was given simply by g's*/ fo (hereafter called the 
Nof speed), where g', s* and fo are the reduced gravity, the constant topographic slope 
and the Coriolis parameter, respectively, and that the transverse or cross-shelf 
velocity was identically zero. Note that the Nof speed is independent of the detailed 
spatial structure of the eddy and depends only on the density difference between the 
eddy and the surrounding fluid, the bottom slope and the constant Coriolis 
parameter. The order of magnitude of the along-shelf speed predicted by the Nof 
formula is in qualitative agreement with the observations presented by Houghton 
et al. (1982). Howevcr, thc data taken from the rotating-tank experiments described 
by Mory et al. (1987) did not completely agrcc with the Nof theory. The experiments 
clearly indicated that a non-negligible cross-shelf drift was present. Another 
interesting observation was that the azimuthal velocity field above the eddy in the 
surrounding water was appreciable and was probably larger in magnitude than the 
swirl velocity in the eddy interior. This last observation strongly suggests that it is 
important to include the dynamical response of the surrounding fluid in determining 
the evolution of an initially isolated cold-core eddy. 

Mory et al. (1987) suggested various mechanisms which may account for the above 
discrepancies. The first proposal centred on the action of an induced wave drag on 
the dome due to the excitation of topographic vorticity waves generated by the 
baroclinic vortcx-tube compression associated with the passage of the cold dome 
through the surrounding fluid. Earlier work by Flierl (1984a) had shown how this 
drag could result in a mean meridional drift for surface trapped warm eddies on a p- 
plane. 

A second mechanism suggested by Mory et al. (1987) was that frictional forces 
between the eddy and the bottom (which in the experimental configuration may 
have been particularly important) could result in cross-shelf motion. Mory et al. 
(1987) were unable, however, to distinguish which of these two mechanisms was 
dynamically dominant in their experiment. 

A third effect that may have dynamical importance, especially in the oceano- 
graphic context, is the process of ventilation between the cold eddy and the 
surrounding relatively warmer slope water. Ou & Houghton (1982) argued that this 
effect was of particular importance during the evolution of the cold dome observed 
on the Middle Atlantic Bight during 1979. Although the heating rate for the Middle 
Atlantic Bight cold eddy was a function of the distance the eddy travelled, Houghton 
et al. (1982) estimated that on average it was approximately between 0.5 "C and 
2.0 "C per month. Based on a representative eddy temperature of about 4 "C a 
Newtonian heating timescale for the cold pool will be on the order of lo7 s or about 
3 4  months. It is possible to show (see $3.2) that this (eddy to slope water) mass 
conversion timescale is comparable with the timescale of the topographic Rossby 
waves induced by the vortex-tube compression in the slope water associated with the 
propagating eddy. We may expect, therefore, that the heating processes documented 
by Houghton et al. (1982) and Ou & Houghton (1982) will lead to a non-steady 
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FIGURE I .  Geometry of the two-layer model used in this paper. 

dynamical interaction between the cold eddy and the relatively warmer slope water 
involving diabatic heating, vortex- tube compression and the radiation of topographic 
Rossby waves. 

In  this paper a theory is developed to describe the propagation of a coherent cold- 
core eddy on a linearly sloping bottom. The theory will incorporate both dynamical 
interactions of the eddy with the surrounding fluid and Ventilation processes. Based 
on ‘ synoptic ’ parameter values suggested by the oceanographic and experimental 
data, the new model equations that we derive to  study the above processes 
correspond to strongly interacting ‘hybrid ’ quasi-geostrophic, intermediate- 
lengthscale geostrophic dynamics (see Charney & Flier1 1981). Specifically, we argue 
that the dynamics of the surrounding slope water is essentially quasi-geostrophic but 
that the eddy dynamics while geostrophic is not quasi-geostrophic because eddy 
thickness changes are not small in comparison with the eddy-scale height itself. The 
above model is derived in a formal asymptotic expansion based on two-layer shallow- 
water theory assuming a small (appropriately scaled) shelf slope parameter. 

The parameterization we adopt to describe the ventilation is the CI or cross- 
interfacial mass flux model of Dewar (1987, 1988a, b) .  Physically, this para- 
meterization models the ventilation process as a continuous conversion of cold eddy 
water into relatively warmer slope water and is convenient for the two-layer model 
considered here. There have been other ventilation parameterizations suggested. For 
example, Chapman & Nof (1988) have proposed a parameterization for continuously 
stratified eddy models based on potential vorticity conservation principles. 

The nonlinear model equations (see (3.14) and (3.15)) contain two non-dimensional 
parameters : an ‘interaction ’ parameter (denoted p )  which physically measures the 
ratio of eddy-induced vortex-tube compression in the surrounding slope water to  the 
background vorticity gradient associated with the shelf slope ; and a diabatic heating 
parameter (denoted /3) which measures the ratio of the timescale associated with the 
Nof translation speed to the ventilation timescale. In  the absence of ventilation 
processes these equations admit an exact radially symmetric isolated-eddy slope- 
water solution which travels at the Nof speed and satisfies the Stern integral 
constraint (Mory 1985). However, the presence of the diabatic ventilation terms 
leads to temporal evolution in the eddy height which in turn, i t  is shown, leads to a 
weak topographic wave field in the slope water and a wave-drag-induced upslope 
drift in the propagating eddy. 
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The plan of the paper is as follows. In  $2 the non-dimensional problem is 
formulated based on shallow-water theory and some preliminary remarks are made. 
In $3  the small-topographic-slope approximation is introduced and the ' quasi- 
geostrophic, intermediate lengthscale geostrophic ' model is derived. In  $4, the 
multiple-scale asymptotic theory is developed to describe the propagation and 
evolution of an initially isolated eddy due to the presence of ventilation processes and 
the subsequent emergence of the topographic wave field. In $5 ,  the various salient 
features of our theory are illustrated with a simple example which assumes that the 
eddy has a parabolic configuration. The paper is summarized and some concluding 
remarks are made in $6. 

2. Problem formulation 
The basic model we assume is an f-plane two-layer system (both layers are 

assumed hydrostatic, homogeneous and incompressible) with a linearly varying 
bottom slope (see figure 1 ) .  The dimensional equations of motion for the upper layer 
or slope water (layer 1) can be written in the form 

[a,.+u:.v*]u:+jê ,x u:+gv*r* = 0 ,  ( 2 . 1 ~ )  

(r*-h*),*+V*. [ U ? ( H +  ?I*- h*-s*y*)] = - X * ( x * ,  y*, t * ) ,  (2.lb) 

where u: = (u:, v;) is the horizontal velocity field, and f, g ,  r*, h*, H ,  and s* are the 
constant Coriolis parameter, gravitational acceleration, reduced layer- 1 pressure, 
cold dome thickness, ' mean ' layer- 1 thickness and bottom slope parameter, 
respectively. The dimensional coordinates are (x*, y*) and t* is dimensional time. 
Subscripts x*, y* and t* indicate partial differentiation, and V* = (a,,, aU*). The term 
- X * ( x * ,  y * , t * )  in (2.lb) models the slope-water mass gain associated with the 
conversion of cold eddy water into relatively warmer slope water as a result of the 
diabatic processes. We will comment more completely on this term below. 

The dimensional equations of motion describing the evolution of the cold-core eddy 
can be written in the form 

( 2 . 2 ~ )  

h: + v*- [u,* h*] = X * ( x * ,  y*, t * ) ,  (2.2b) 

where the notation convention is similar to that used in (2.1), and where p* is the 
dynamic pressure field in the eddy. 

The diabatic heating of the cold pool is determined by the function X * ( x * ,  y*, t * )  
in the eddy continuity equation (2.2b). Our parameterization for this term is based 
on the cross-interfacial (CI) model proposed by Dewar (1987, 1988a, b )  for 
dynamically active warm rings given by 

(2.2c) 

In  this formulation ( 2 . 2 ~ )  is a simple Newtonian cooling/heating law which models 
the conversion of relatively colder eddy water to warmer slope water on a timescale 
determined by l/P*. The reader is referred to Dewar (1987, 1988a, b)  for a complete 
account of the physical principles for the model ( 2 . 2 ~ ) .  However, we point out here 
that this model implicitly assumes that the fluid must exist in either the cold-eddy 
density state or the relatively warmer slope-water density state. Accordingly, if the 
cold eddy is heated by the surrounding slope water an appropriate volume of eddy 
water is converted into slope water and, as a result, the effect of the warming will be 
to induce a mass loss in the cold eddy which is modelled by (2.2b, c ) .  It is important 

1 

Pz 
[a,,+u,*.v*]u,*+fe^,~~,*+-v*p* = 0, 

A?*(x*, y*, t * )  = -P*h*. 
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to add, however, that  other eddy diabatic heating/cooling parameterizations have 
been suggested (e.g. Chapman &, Nof 1988). 

The system of equations (2.1) and (2.2) is closed with the requirement that  the 
dynamic pressure be continuous across the eddy-slope-water interface, i.e. 

where p l ,  p 2  and g’ are the layer 1 and 2 densities, and the reduced gravity gf = 
( p ,  - p l )  g / p ,  > 0 (stable stratification), respectively. 

Further analysis is facilitated by reformulating the governing equations into non- 
dimensional form. The non-dimensionalization scheme we adopt is motivated by 
(but is somewhat different from) the scalings used in Flierl (1984b). The non- 
dimensional (unasterisked) variables are given by 

p* = p19?l*+p,g‘(h*+s*y*), (2.3) 

(2.4) i (x*,y*) = L(x , y ) ,  t* = ( fL/g’s*)  t ,  h* = h,h, 

u: = SfLU, ,  ?l* = a( fL)2g-’v, uz* = g’s*f -1u2, 

p* = p,Lg’s*p, 

where L = (g’H)i/f, h, = h*(x* = y* = t* = 0) and S = h,/H. The horizontal length- 
scale is the internal deformation radius and time has been scaled advectively 
based on the theoretical Nof translation speed. The scalings for u: and 1;1* are based 
on the assumption that changes in upper-layer relative vorticity are due to vortex 
compression with u: and q* in geostrophic balance. As we will see, the above scalings 
will imply that the upper-layer dynamics will be quasi-geostrophic under a small- 
slope-parameter assumption. The lower-layer dynamics will be primarily geostrophic. 
The scaling for p* is geostrophic and the scaling for u; is the Nof translation speed. 
However, changes in the eddy thickness h(x, y , t )  will be as important as the 
horizontal divergence term V - u ,  in the continuity equation. Thus while momentum 
advection can be ignored for the eddy, the evolution of h(z ,  y, t )  is strongly coupled 
to u,. These scalings are similar to those presented in Whitehead et al. (1990). 

Substitution of (2.4) into (2.1), (2.2) and (2.3) gives the non-dimensional problem 

s u l ~ + 6 ( u , . v ) u l + t ~ x u l + v ~  = o ,  ( 2 . 5 ~ )  

(2.5b) 

( 2 . 5 ~ )  

h,+V*(hu,)  = -/3h, (2.5d) 

(1 -g f /g )6y+Sh+s(y -p )  = 0, (2.5e) 

where /? = p*( f s ) - l ,  and s = s*L/H. We will estimate the magnitudes of 6, s and ,8 in 
$3.2. 

The following boundary conditions are imposed on the model. Suppose the 
projection of the intersection of the eddy with the sloping bottom on the plane z = 
0 is given by $(x, y, t )  = 0. The kinematic condition, which physically expresses the 
fact that a fluid parcel on the deforming eddy boundary remains on the boundary, 
is given by 

q5,+u2-V$ = 0 on $(z,y,t) = 0. 

The eddy thickness must satisfy 

For the upper layer we will impose the additional constraint that 1“./ + 0 as r + co 
‘ahead’ of the propagating eddy. As pointed out by Miles (1968), this is the correct 
‘no upstream waves’ condition (see also McKee 1971; McCartney 1975; Flierl 
1984a,b). 

s(h-g’T/g), +V. [u1(6h+ SY- 1 -g’q/g)] = -s@, 

su2, +s(u2. V )  u2 + t3 x u, + v p  = 0, 

(2.6) 

h(z,  y, t )  = 0 on $(z, y, t )  = 0. (2.7) 
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3. Analysis for small topographic slope 
3.1. ModiJied Nof formulae 

It is possible to  see how the theoretical expressions that Nof (1983) derived for the 
along-shelf and cross-shelf velocities are modified by the presence of a dynamically 
active upper layer as follows. Let us suppose that a steadily travelling ansatz can be 
made in the form u, = u,([,  C), h = h( f [ ,  C), 7 = y ( f [ ,  5) and # = #([, 5) with [ = x- 
c,t and 5 = y-cyt where c = (c,, cy) is the translation velocity vector. In the absence 
of any diabatic processes, the eddy momentum and continuity equations can be 
written in the form 

(3.1) 

V . [ h ( u , - c ) ]  = 0, (3.2) 

s2[(u2 - c ) .  V ]  (u, - c )  +as3 x u, + V(S7/ + Sh + 85) = 0 ,  

where V = (at, a<), respectively. The eddy boundary conditions (2.6) and (2.7) can be 
written in the respective forms, 

(3.3a) 

(3.3b) 

If the product (3.1)mh is integrated over the eddy region R = {([, 5) I aR = q5} i t  
follows that 

(3.4) 

In  deriving (3.4) we have already used the fact that the integral of h( [ ,  5) times the 
nonlinear terms in (3.1) is identically zero since if we integrate by parts these terms 
it follows that 

JJR h(u, - c ) .  V ( u ,  - c )  = Lo JJR h(u, - c )  - n(u2 - c )  - (u, - c )  v - [h(u,-c)] ,  

and the first term on the right-hand side is zero because of the boundary condition 
(3.3 b) and the second term on the right-hand side is zero because of (3.2) ; see also Nof 
(1983). 

From the continuity equation (3.2) we can infer the existence of a co-moving mass 
transport stream function $ = $([, 5) satisfying 

(3.5) 

Note that i t  follows from (3.3a) that $ is constant on # = 0, i.e. the eddy boundary 
forms a streamline in the co-moving frame of reference. Substituting (3.5) into (3.4) 
yields the relation 

h(u, -c )  = g3 x V$. 

It follows, immediately, that the components of the translation velocity vector will 
be given by 

(3.7) 
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In  the no interaction limit ( S + O ) ,  these expressions reduce exactly to  the Nof 
formulae. 

3.2. Approximation of small topographic slope 

The modified Nof formulae (3 .7)  and (3 .8)  state that the interaction between the eddy 
and the surrounding fluid is O(&/s) in comparison with the leading-order (non- 
interaction) terms. I n  this section we shall examine the small-slope asymptotic limit 
defined by 

wherc 0 < s < 1 and p = O(1).  This limit will correspond to a strongly interacting 
eddy-slope water configuration in the sense that although 0 < s x S < 1 the fact that 
p = O ( 1 )  in (2 .5e)  will mean that the leading-order dynamics for the eddy height 
cannot be decoupled from the dynamics for the geostrophic pressure in the slope 
water (see (3 .14) ) .  Physically, this limit has a simple interpretation. The scaled 
topographic slope parameter s = s*L/H can be rearranged into the form s = 

(s*g'/f ) / (g 'H) i .  Thus the parameter s can be interpreted as the ratio of the Nof speed 
to  the phase or group speed of the long baroclinic gravity wave solutions in the 
model. The limit s + O+ can be viewed as a low-bandpass filter which will effectively 
remove the long baroclinic gravity waves in the slope water and focus attention on 
the vorticity wave processes. 

The observations reported in Armi & D'Asaro (1980) and Houghton et al. (1982) 
suggest that  the small (non-dimensiona1)-slope approximation and the scaling (3 .9)  
are physically relevant. For examplc, the observations of the cold pool reported by 
Houghton et al. (1982) correspond to approximate parameter values of s* x 
1.2 m/km, L x 15 km, h, x 30-40 m and H x 20(r300 m suggesting s x 4 x lop2, 
6 x 2 x and consequently that ,u = O( 1 ) .  The oceanographic observations of Armi 
& D'Asaro and the rotating-tank data of Mory et al. scale similarly. The magnitude 
of the non-dimensional heating parameter p can be estimated as follows. Based on a 
heating rate of about 2 "C/month and a scale eddy temperature of 4 OC, it follows 
that p* x 2 x lo-' s-l. Based onf x lop4  s-l and s z 4 x lop2 it therefore follows that 
/3 = p*( fs)-' x lo-'. Consequently, as a rough first approximation, we see that s x S 
and that heating processes, while relatively weak, are an order of magnitude larger 
than the ageostrophic terms in the eddy momentum balance. 

Substitution of (3 .9)  into (2 .5)  yields the following set of equations for the eddy 
and surrounding slope-water problem : 

x u, + v y  = -suit - sp(ul * V )  ul ,  (3 .10a)  

(3.10b) 

2 3 X u z + & z + p V ( h + ~ )  = - s u ~ ~ - s ( u ~ - V ) U ~ ,  (3 .11a)  

h,+V.(hU,) = -ph,  (3.11b) 

6 = ps, (3 .9)  

V - U, = sh, + SV * (YU,) + ~ s V -  (hu,) + sph, 

subject to the eddy boundary conditions 

(3 .12a)  

(3.12b) 

and the appropriate radiation condition. In  (3.106) we have neglected those terms in 
(2 .5b)  which are O(yg'/g).  The elimination of these terms will filter the long surface 
gravity waves out of the model. 

The location of the slope parameter s in (3 .10)  occurs in such a way that to O(s) 
the dynamics of the shelf water will be quasi-geostrophic. The location of the slope 

19 FLM 223 
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parameter s in ( 3 . l l a ,  b) implies that the interior eddy dynamics is essentially 
geostrophic but not quasi-geostrophic since changes in h are comparable with h itself. 
This is analogous to the 'intermediate lengthscale dynamics ' identified in Charney & 
Flierl (1981). 

We can exploit the fact that 0 < s 4 1 by constructing a straightforward 
asymptotic expansion of the form 

Substitution of this expansion into (3.10), (3.11) and (3.12) yields the 0 ( 1 )  problem 
(7, P, U l ,  4, h, $) (70, Po, 4 0 3  uzo3 ho, $ 0 )  +s(rl,P,> 4 1 ,  *z1> hl, $1, + . . . . (3.13) 

in the form 
( 3 . 1 4 ~ )  

~ o t - ~ O z + , u ~ ( ~ O J o )  = -Pho. (3.14b) 

The quasi-geostrophic potential vorticity equation (3 .144  is obtained in the usual 
way (see e.g. Pedlosky 1987, $3.12), by forming the vorticity equation for the O(s) 
equations associated with (3. 10a), eliminating the O(s) divergence term using 
(3.10b), and then finally simplifying the resulting expression using the O( 1 )  equations 
obtained from (3.11). 

The leading-order velocities and dynamic pressure in the eddy will be obtained 
from the auxiliary relations 

( 3 . 1 5 ~ )  
(3.15b) 
( 3 . 1 5 ~ )  

U,, = $3 x vqo, 
~ 2 0  = - 2 1 + / d 3  x V(qo+ho),  

Po = Y +,u(TO + h O L  

and the eddy boundary conditions can be written in the form 

( 3 . 1 6 ~ )  
(3.16b) 

where the Jacobian is given by J(A ,  B )  = A X B Y - A y B x .  
The problem posed by the set of equations (3.14) retains all of the physics 

associated with the Nof and Mory et al. theories. If we were to introduce (as we 
eventually will in a suitable form) co-moving coordinates 6 = x - c , ~  and g = y- 
cut into (3.14) (with /3 = 0) and multiply (3.14b) by 6 and integrate over the eddy 
region R,  the result would be the generalized Nof formula (3.7). Similarly, multiplying 
(3.146) by 6 and integrating over R would yield (3.8). 

The model of Ou & Houghton (1982) for the along-shelf heating of the Middle 
Atlantic Cold Pool can be viewed as corresponding to (3.14b) with qo as a prescribed 
geostrophic pressure associated with a steady along-shelf current and the additional 
approximation hol 4 hoz. In Ou & Houghton's theory the slope water does not 
dynamically evolve and thus there is no analogue of ( 3 . 1 4 ~ )  in their model. The 
equations (3.14a, b) without the heating terms have also been derived in Whitehead 
et al. (1989). Their analysis develops an integral constraint for isolated cold eddies 
and a lower bound for the eddy radius. Although no explicit analytical solutions are 
presented, a series of numerical experiments is described. 

Earlier in this section we argued that, based on observed order of magnitude 
estimates for our scalings, the interaction parameter ,u = O( 1) .  Consequently, 
(3.14)-(3.16) constitute a fully interacting coupled eddy-slope water model. We have 
not been able to find a general solution for these equations for arbitrary initial 
conditions. However, exact nonlinear solutions can be obtained for some special 
cases. For example, in the absence of any diabatic processes (i.e. /3 = 0) we can find 
exact radially symmetric non-radiating steadily travelling solutions (described in the 
next section). 

on $o = 0 ,  1 $ o , - $ o z + , u J ( ~ o + ~ o ~ $ o )  = 0, 
h, = 0, 
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4. Weak diabatic heating theory 
4.1. Problem .formulation 

Although we have not been able to find a general solution to (3.14) and (3.16), it is 
possible to  make further progress under a weak diabatic heating limit. In our 
discussion in $3.2 it was argued that the interaction parameter p = O(1) but that 
/3 = O(l0-l). In this Section we shall develop a theory describing the dynamical 
evolution of an isolated eddy and slope-water configuration, which is initially 
balanced so that  there is no fully developed 0 ( 1 )  wave field in the slope water for 
t z 0+, under the asymptotic limit 0 -4 s -4 /3 -4 1. We shall show that the vortex-tube 
dynamics associated with the diabatic mass conversion will result in the generation 
of topographic Rossby waves in the slope water and an induced upslope motion in 
the propagating eddy. 

Assuming the cold-core eddy is to leading order radially symmetric, it is natural 
to reformulate the governing equations in the co-moving polar coordinates r = 
(f;'+c)i and 0 = tan-'(</:/5), and the slow time T = Pt, where 6 and y are the co- 
moving phase variables 

rjt 

6 = x-P'J' c,(t')dt', 
0 

[ =  y-p-l[c,(t')dt'. 

( 4 . 1 ~ )  

(4.1 b )  

Note that the along-shelf and cross-shelf velocities given by - 5, = cz( 7') and - Q = 
c,(T) respectively have both been formally scaled O( 1)  on account of the assumption 
that p = 0 ( 1 )  in (3.7) and (3.8). As it turns out, however, the assumption that the 
leading-order eddy and slope-water configuration contains no wave field will imply 
that c ,  = O(P). We have also allowed the translation speeds to be time dependent on 
the slow timescale O(,&l) because of the presence of the diabatic heating terms. 

It follows from (4.1) that derivatives in the governing equations will map 
according to  

(4.2a) 

(4.2b) 

(4.2 c )  

8, --f cos (0) a, - r-l sin (0) a,, 
a, + sin (8) a, + r-l cos (0) a,, 

a, + - cz( T )  [cos (0) a, - v1 sin (0) a,] - c,  ( T )  [sin (0) a, + r-l cos (0) a,] + P aT. 
As well, the boundary of the eddy will be written in the form 

#(z,y,t)  = r-a(0,  T) = 0. 

Substitution of (4.2) and the assumed form for the eddy boundary into (3.14), 
(3.15) and (3.16) yields 

[COS (e) a, - r-l sin (0) a,] [ - cXV2q +q + h] + p J ( q ,  V 2 q )  

- cy [sin (0) a, + r-l cos (0)  a,] V = - pV 'qT, (4.3) 

+c,[sin(8)a,+r-'cos(8)a,]h = phT+/3h, (4.4) 

(c, + 1) [cos (8) a, - r-l sin (0) a,] h -pJ (q ,  h) 

subject to the eddy boundary conditions 

h = 0, (4.5a) 

(c ,  + 1) [a sin (0)],-cy[a cos (8)], = -pa,(q + h),-,u(q + h),-paa,, (4.5b) 

evaluated on r = a(6,T) .  In  polar coordinates, the Jacobian takes the form 
19-2 
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J ( A ,  B )  = r-l(ArBo-AoBr) and V = arr + r-l a, + r-' aeo. Kote that we have deleted 
the zero subscript from the dependent variables for subsequent notational 
conveniencc. 

The radiation condition on the slope-water geostrophic pressure can be written in 
the form 

(4.6) 

G. E .  Swaters and G. R. Flierl 

lim r; q(r,  8; T) = 0, 
r-m 

in the sector I8-8,1 < Bx where 8* = tan-l (c , /c , ) .  This condition is obtained as 
follows. The slowly modulated eddy will propagate along a path whose tangent 
vector is given by (c,(T), c,(T)) on the (x, y)-coordinate plane at  each instant of time. 
The velocity vector will form an angle 8* = tan-l(c,/c,) with the positive x-axis. 
Defining 'ahead' of the propagating eddy to be those coordinates with angle 6' 
satisfying -in < 8- 8, < in, then the 'no waves' constraint that riy --f 0 as r + co 
ahead of the propagating eddy (see Miles 1968 or Flierl 10846) can be written as 
above. 

4.2. The leading-order solution 
We shall develop a weakly ventilated theory for an initially radially symmetric 
isolated baroclinic eddy. The (formal) asymptotic expansion is given by 

h ( r , O ; T )  = h(O)(r;T)+ph(l)(r,8;T)+ ..., (4.7a) 

y(r,O;T) = 7 ( O ) ( r ; T ) + ~ V ( l ) ( r , 8 ; ~ ' ) +  ..., (4.7b) 

c,(T) = c y ( T ) + O ( p ) ,  (4.7d) 

a(8;T)  = .co)(T)+p.(l)(e;T)+..., (4.74 

c,(T) = cl/O)(T)+/3cC'(T)+O(p2). (4.7e) 

As well, the eddy boundary conditions (4.5a, b )  will have to be Taylor expanded 
about r = a(')(T). Neglecting terms of O($) and higher, the approximate boundary 
conditions associated with (4.5a, b )  can be written in the respective forms 

h + ( a - a ~ o ~ ) h , + ~ ( a - a ~ 0 ~ ) 2 h , r + O ( ~ 3 )  = 0, (4.8a) 

- pa&a - a(')) (7 + h)rr -p(a - a(')) (7 + h)or + O(p3), (4.8 6) 

evaluated on r = a(')( T). 
In the expansion for the along-shelf translation speed c,(T) given in (4.7d) we have 

implicitly assumed @(T) = 0. It turns out that if this term is retained in the 
asymptotic expansion it is possible to formally determine completely the O(p) 
solutions (in particular the exterior wave field) and satisfy all known solvability 
conditions associated with the O(p)  equations with this parameter left unspecified. 
We have therefore chosen to set cF)(T) = 0. We hasten to add that it may be that 
cF)(T) is determined from solvability conditions associated with the O(p2)  or higher- 
order problems. However, our inability to solve the O ( p )  equations for the eddy in 
closed form for even the simplest h(O) and f O )  has not made this determination 
tractable. This is unfortunate because the experiments carried out by Mory et al. 
(1987) showed that the observed along-shelf translation speed of the eddy was 
much smaller than the Nof speed and we have not been able to reproduce this result 
for an eddy subjected to diabatic heating. (Recent informal discussions with 1). Nof 
and M. Stern suggest that errors in the measuring of the eddy density may have led 
to overestimating the appropriate Nof speed for the Mory et al. experiment and as a 
result the discrepancy may not be nearly as large as originally thought.) 

(cz+ 1) [asin (0)10-cJacos (8)ls = -P~,(v + h)r-P(V + h)o-Paa, 
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Substitution of the expansion (4 .7)  into (4 .3) ,  (4 .4)  and (4 .8)  yields the 0(1) set of 
equations 

cos (0) [ -cia) V 2v(o) + v ( O )  + h(O)], - c:) sin (0) V 2 ~ p )  = 0, (4 .9a)  

[(c:” + 1 )  cos (0) + c:) sin (0)l hp) = 0, (4 .9b)  

subject to the O( 1) boundary conditions 

h(o)[a(o) (T);  TI = 0, 

[cos (0)  (cc) + 1 )  + cc)  sin ( O ) ]  do) = 0. 
( 4 . 1 0 ~ )  

(4.10b) 

Assuming a non-trivial solution for h(O) and a(o), it  follows directly from (4.9 b) or 

($0) = - 1 c(0)  = 0 (4.11a, b )  

(4.10b) and the orthogonality of the trigonometric functions over 0 < 0 < 2~ that 

’ 1 /  

and consequently from (4 .9a)  that 
v Zr(0) + q ( o )  = - h(O) (4.12) 

where the constant of integration is zero because the cddy is isolated. 
Note that h(O)(r;T) is undetermined to this order except for the boundary 

condition ( 4 . 1 0 ~ ) .  The fact that  h(O)(r, T )  is undetermined at this order is a difficulty 
which occurs in many models of isolated eddies (e.g. Killworth 1983; Nof 1983; Flierl 
19843, among others). Flierl (1984b) chose to close the problem by specifying the 
potential vorticity distribution in the eddy interior which in turn would uniquely 
determine h(O)(r; T) .  Nof (1983) preferred to  specify the interior eddy swirl velocity 
(i.e. the eddy azimuthal velocity in a frame of reference moving with the along-shelf 
Nof speed) and thereby determine the appropriate corresponding eddy height. Here, 
it will be more convenient to  specify h(O)(r;O) and simply compute the other 
corresponding fields. Howevcr, because of our scaling, we can interpret the 
specification of h(O)(r; 0) as equivalent to a potential vorticity specification in the 
following sense. The potential vorticity associated with ( 2 . 5 ~ )  and (2 .5d)  may be 
written in the form P = [sg3- (V x u,) + l ] / h .  Thus in the limit as s + 0 we have P x 
l / h o  + O(s). Consequently in the small-slope limit adopted here, the specification of 
h, is equivalent to a specification of the leading-order potential vorticity. 

Given the leading-order eddy height h(O)(r; T ) ,  the isolated solution for the 
geostrophic pressure in the surrounding slope water can be written in the form (see 
Flicrl 19843) 

q C 0 ) ( r ;  T )  = --JnYg(r)ITr‘Jo(r’)h(O)(r’; T)dr’--JnJo(r) r‘&(r’)h(O)(r’; T)dr’, 

(4.13a) 

(4.13 b )  

0 

in r < a(o) ,  and 

in r > a(0) ,  with the ‘ isolation ’ constraint 

q(O)(r; T )  = 0, 

rJ,(r) h(O)(r; T )  dr = 0. r (4.13 c )  

The constraint ( 4 . 1 3 ~ )  is the necessary and sufficient condition for the annihilation 
of the external topographic wave field (Flierl 1984a) and can be physically 
interpreted as a zero-wave drag condition. It also follows from ( 4 . 1 3 ~ )  that  the 
relative circulation in the upper layer is zero and that T ~ O ) ( U ( O ) ;  T) = 0. 

The condition ( 4 . 1 3 ~ )  will imply that the allowed leading-order eddy radius can 
only take on a discrete set of values determined by the particular form for h(O)(r; T).  
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The no radiation condition ( 4 . 1 3 ~ )  raises an intcresting issue concerning the 
characterization or determination of the class of functions h(O)(r; T )  that will allow 
( 4 . 1 3 ~ )  to have non-trivial solutions (a(O) = 0 is always a solution). For example, if we 
take h(O)(r;O) = Jo(r)  it immediately follows that only do) = 0 is allowed. We have 
been unable to determine general necessary and sufficient conditions on h(O)(r ; T) 
which will guarantee that non-trivial solutions for u(O) exist and this aspect of our 
theory remains problematic. The constraint (4.13 c) may be viewed as resulting from 
the fact that the leading-order time evolution is modelled solely as the result of quasi- 
steady advection (see ( 4 . 2 ~ ) ) .  This assumption will remove the possibility of 
generating an O(1) wave field during the early adjustment period that would occur 
in a true initial-value problem. Accordingly, it is important t o  emphasize again that 
the theory developed here is only valid for an appropriately adjusted or dynamically 
balanced initial eddy-slope water configuration which can satisfy the O( 1 )  zero- 
wave-drag condition. We would also like to comment here that the eddy-slope-water 
solution configuration just  obtained can be interpreted as corresponding to  a steadily 
travelling baroclinir monopole on a continental shelf. 

The leading-order isolated eddy solution just constructed will satisfy the Stern 
integral constraint for isolated eddies (Mory 1983, 1985), which for our theory can be 
expressed in the form 

r[?I(O)(r; T )  + h(O)(r; T ) ]  dr  = 0. (4.14) 

This result follows immediately from (4.12) and the fact that  q:')(a(O); T) = 0 as a 
consequence of (4.13). 

Stern's integral constraint has an interesting consequence for the eddy swirl 
velocity (i.e. the eddy azimuthal velocity relative to the steady along-shelf Nof 
translation speed) distribution. It follows from ( 3 . 1 5 ~ )  that  the leading-order eddy 
swirl velocity, denoted by vus(r; T ) ,  is given by 

vs ( r ;  T )  = p(q(O)+h(O)),. (4.15) 

r 

However, from (4.14) and (4.15) i t  is easy to show that 

rzvs(r;  T )  dr  = 0. r (4.16) 

Clearly the constraint (4.16) will imply that within the eddy there must be regions 
of cyclonic and anticyclonic circulation if there is to be any swirl velocity at all. At 
first this result may seem counter-intuitive because it is natural to think that the 
swirl velocity in a cold-core eddy would be strictly anticyclonic. But this conclusion 
rests on the assumption that the dynamic pressure in the eddy is relatively 
unaffected by the dynamical response of the surrounding slope water. However, the 
theory presented here suggests (see ( 3 . 1 5 ~ ) )  that  the contribution to  the eddy 
dynamic pressure from the slope-water geostrophic pressure and the eddy thickness 
are comparable. Since yjP) < 0 where h p )  > 0 (i.e. flow above the eddy is cyclonic), i t  
can easily follow from ( 3 . 1 5 ~ )  that  the eddy swirl velocity can take on positive as well 
as negative values. We shall illustrate these points with an example calculation in $5 .  

4.3. The ,first-order perturbation equations 

There are scvcral dynamical characteristics of the leading order solution that have 
yet to be determined and for which we will have to examine the O(/?) equations of 
motion. We shall be able to determine, based on relatively direct solvability 



Ventilated coherent cold eddies on u sloping bottom 577 

conditions on the O(p) equations, the slow-time ventilation of the cold eddy as well 
as the leading-order cross-shelf translation velocity. Also, the O(p) exterior 
topographic wave field in the slope water can be determined. 

The O(p)  problem in the eddy region r < do) can be written in the form 

[cos (6)  a,. - r-l sin (6)  a,] [v2y(l) + y(l) + h'l)] -p# V2yio)/r +p+') V2yg)/r 

= cp) sin (6)  V2y:") -V2 7;1T (O) ,  ( 4 . 1 7 ~ )  

(4.17h) (+1) Y sin ( 6 )  hp) -pr-l[yp' h'l'- 0 7s (1) h'O'] 7 = h(O) T +  h(O) 

subject to the O(p) eddy boundary conditions 

h(l)(a(o), 6; T )  + h p  (u(o)  ; T) T) = 0, ( 4 . 1 8 ~ )  

pyr) = - CY (1) a ( 0 )  sin ( 6 )  - a(0) a$?), (4.18b) 

evaluated on r = do), where ( 4 . 1 8 ~ )  and yi0)(a(O), 5") = 0 has been used to obtain 
(4.18 b).  

In  the region exterior to the eddy (i.e. r > do)) the upper-layer geostrophic pressure 
satisfies 

v 2 p  +p = 0 3 (4.19) 

where, again, the constant of integration has been set to zero because it is assumed 
that y(l) + 0 as r + co. 

The leading-order response of the eddy to the diabatic heating is determined by 
(4.17b). Because of the orthogonality of the trigonometric functions and the 
periodicity that y(l) and h(') must have over the interval 0 < 6 < 2n, it  follows from 
(4.17b) that  

h p  + h(0) = 0. (4.20) 

Similarly it follows from (4.186) that  a$? = 0. The solution to  (4.20) is given by 
simply 

h(o)(r; T) = L(r) exp ( - T), (4.21) 

where h(r )  corresponds to the initial radially symmetric eddy height profile. 

4.3.1. Determination of the cross-shelf translation speed 
Even for a very simple O(1) eddy height configuration (e.g. h'O)(r;O) given as a 

parabola; see 95), the O(p)  eddy problem cannot be solved exactly and a numerical 
solution will be required. However, as it turns out, detailed knowledge of the 
structure of h(l)(r, 8; T) and y(l)(r, 8; T )  is not required in order to  determine eithcr the 
leading-order cross-shelf translation speed or the complete structure of the exterior 
(i.e. r > do)) topographic wave field. 

The simplest and most direct way to obtain cF)(T) is to  work directly with (4.17) 
rewritten in the co-moving Cartesian variables ( f , [ )  given by (4.1). In these 
coordinates (4.17) can be written in the form 

[V2q'1' +q(') +h'1']5+pJ(~'0',V271(1))+pJ(~(1),V271(0)) = ~ r )  V2yr'-V21;r$?', (4.22) 

p J ( y ' o ' ,  h(1)) +pJ(y'", h'0') = Y C  h(O) -h(O) - j t ( O ) .  T (4.23) 

I n  order to obtain solvability conditions on (4.22) and (4.23) we shall have to 
examine homogeneous solutions of the adjoint problem associated with (4.22) and 
(4.23). The procedure we describe here is similar to that developed by Flier1 (19843). 

The governing equations for the adjoint problem can be obtained by multiplying 
(4.22) by a function q51((, [; T) and multiplying (4.23) by a function && 6; T), adding 
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the two expressions togethcr and then integrating over the eddy region. The result 
can be put into the form 

/IR luJ(h"), $2)-,uV2J(q(0), $I)-,uJ(q(o)+h(o), -a,(V+ 1 )  $])I q(')d[d[ 

assuming where necessary that the boundary integrals are zero. 
The homogcncous adjoint problem will therefore be given by 

pJ(h( ' ) ,  d2) -,uV 2J( v ( O ) ,  $1) -,UJ(~(O' + h"), dl) - a,( V + 1)  = 0, (4.25) 

, u J ( q ' 0 ' , $ 2 ) + a , $ 1  = 0. (4.26) 

We can find three immediate homogeneous solutions: ($1 = 0, $2 = l ) ,  ($1 = 1, qb2 = 
0) and = - - q ( O ) ,  $2 = c/,u). There may be other solutions but we have not been able 
to  find them. When these homogeneous solutions are substituted into (4.24) the left- 
hand side is identically zero and the right-hand side gives us the required solvability 
conditions. From the pair = 0, $2 = 1 )  we find 

JJR[hr ' ,")+h(o)]d~dc = 0, 

which is satisfied on account of (4.20). Prom the pair ($1 = 1,$2  = 0) we find 
r r  

(4.27) 

(4.28) 

which is satisfied because qP)(a(O); T) = 0. From the pair ($1 = - q ( O ) ,  $2 = c/p)  we 
find 

which can be rearranged using (4.14) into the form 

c:)(T) = ~ ~ T ~ ) r [ ~ q ( o ) - 8 1 1 ( 0 ) ] ( r ;  T) d r / r o ) r q ( o ) ( r ;  0 T ) d r .  (4.29) 

It follows from (4.29) that c;)(T) > 0 since the numerator and denominator are 
both negative definite. This can be shown as follows. From (4.14) and the fact that 
hC0)(r; T) 2 0 for 0 < r < do) it will follow that the denominator in (4.29) is negative. 
If (4.21) is substituted into ( 4 . 1 3 ~ ~ )  then it follows that q(O)(r; 5") will have the general 
form q(O)(r; T) = q(r )  exp ( -  T), where q(r)  is a radially symmetric function that is 
determined in thc calculation of (4.13a). Substituting this form for v(O)(r;  T )  into the 
numerator of (4.29) yields a term of the form aT[q* exp ( - 2T)] where the constant 
q* > 0 and hence the numerator will also be negative. Thus the effect of Ventilation 
is to induce upslope motion in the propagating eddy. As the process of ventilation 
continues (4.29) implies that  the magnitude of cross-shelf drift speed will decrease 
since the magnitude of q ( O )  decreases as T increases. 

This qualitative result can be interpreted as a consequence of the conservation of 
potential vorticity in the upper layer. Equations (3.14a) and (3.14b) can be combined 
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to  state that  to  leading order in p the potential vorticity V 2 y + h + y  is conserved 
following the geostrophic motion. Since the leading-order 'averaged ' geostrophic 
vorticity or circulation in the slope water above the eddy is identically zero, the effect 
of the diabatic heating (which implies h, < 0) can only be offset by a corresponding 
increase in the mean cross-shelf position of the cold-core eddy. 

4.3.2. Determination of the exterior topographic wave Jield 

The O(p)  geostrophic pressure in the exterior region for the upper layer must 
satisfy 

(4.30) 

subject to the boundary condition 

= p -1  c, ( 1 )  cOs(e), (4.31 a )  

evaluated on r = do), and the no-upstream-waves condition 

r+P(r ,O;T)+o  as r+oO in + n < < < < n .  (4.31 b )  

The boundary condition (4.31 a ) ,  which follows directly from (4.18b), will ensure that 
the geostrophic pressure and normal mass flux in the slope water is continuous across 
the eddy boundary r = do). 

The method of solution we use is a modification of the procedures developed by 
Miles (1968) for a similar boundary-value problem (see also McKee 1971 ; McCartney 
1975; Flier1 1 9 8 4 ~ ) .  Following the arguments presented in Miles we construct the 
exterior geostrophic pressure field in the form 

00 

q(l) = u,,(T) [Y,,(r) cos (no)  + $,,(r, 0; !/')]/Yn(a(o)), ( 4 . 3 2 ~ )  
n-o 

where (4.326) 

(The reason for our particular choice of normalization in ( 4 . 3 2 ~ )  will be given below.) 
Recalling that the even (odd) Jn(r) functions have the same asymptotic form as the 

odd (even) Y,,(r) functions as r +  co (see Abramowitz & Stegun 1965), the no-waves 
condition (4.31 b )  will imply that the coefficients b,,, must satisfy the constraints 

m 

cos (2n8) = ( -  l)m+n+1b2n, 2m+l cos [ (2m+ 1) 81, (4.33a) 
m-0 

OD 

cos [ (2n+ 1 )  01 = C ( -  l )m+nb2n+l ,  2m cos 12m8], (4.336) 
m-0 

for n = 0 , 1 , 2 , .  . . in the sector in < 0 < $IT. Since the sets { c o s [ ( 2 m - 1 ) ~ ] } ~ , ,  and 
{cos (2m)}g-0 are both complete in the interval ;IT < 0 < tn, it follows from (4.33a, b) 
that  

(4/7c) m(m2 - n2)-l ( n  even, m odd), 

b,,,m = (4/.n)n(m2-nn2)-' (n odd, m even), (4.34) 

( 0  ( n - m  even). 

The only quantities that are left to determine are the a,,. If the double summation 
in (4.32) is interchanged, T , I ( ' ) ( ~ ,  8; T) can be expressed in the form 

(4.35a) 
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where rnrn(T) = [an, Yrn(r) + b n ,  m Jm(r)I/Yn(a("),  (4.35b) 

S,, being the Kronecker delta function between n and m. If we apply the boundary 
condition (4.31 a )  thc a,  will be determined from the infinite set of linear equations 

c aJnrn(a(')) = ,u-1cya(')Srn1, (4.36) 

with m = 0 , 1 , 2 , .  . . . With the bn, and a,  known the exterior solution is complete. 
The expression (4.36) implies that as the cold eddy is progressively ventilated the 
excited wave field will decrease in magnitude because cF)( T) + 0 as T + co . 

As it  turns out, relatively few a,  values need to be computed to be able to give a 
very accurate approximation to the infinite sums in (4.32) or (4.35). If we recall the 
fact that Y,(a(')) +- co and Jn(a(')) + 0 as n + co (Abramowitz & Stegun 1965), then 
clearly (4.34b) implies that r,,,(a(')) x S,, for sufficiently large n or m. (This 
property motivated our normalization in (4.32a).) In  practice, we found that for 
n, m 2 12 this property held. As a result, when it came to solving for the a,  from (4.36) 
very good results were obtained by approximating the infinite system with the 
leading 20 x 20 finite system of linear equations. (For all cases examined we found lanl 
< lo-' for n > 15.) 

m 

n=l  

5. An example calculation for a parabolic eddy 
In this section we shall illustrate the theory that we have developed with an 

example where the leading-order eddy has a simple parabolic shape. Throughout 
this section we shall adopt constant parameter values of s = 5 x ,u = 0.5 and 
p = 5 x 10-3. 

The 0(1) eddy configuration is given by 

h(')(r;  T) = exp ( -  T) 11 - ( r / ~ ( ' ) ) ~ ] .  (5.1) 
In figure 2 ( a )  we plot a cross-shelf section (along x = 0) of the total eddy height 
h(')(r;O)+sy versus y for -10 < y < 10. 

Substitution of (5.1) into (4.13a) can be evaluated analytically to yield 

for the region r < a('). In  figure 2 ( b )  we plot a cross-shelf section (along x = 0) of 
T( ' ) ( r ;  0) versus y for - 10 < y < 10. 

As well, substitution of (5.1) into ( 4 . 1 3 ~ )  can be evaluated analytically to imply 
that the allowed set of eddy radii will satisfy 

J2(u(O)) = 0, (5.3a) 

which, for convenience, we choosc to rewrite in the form 

- J z , n ,  - . (5.3b) 

where j2, , is the nth (non-zero) zero of J2(*). Throughout this section we take the 
'ground-state' radius a(') = j2, z 5.136. 

Substitution of (5.2) into (4.29) implies that the time-dependent cross-shelf 
translation speed is given by 

cF)(T) = 0.227 exp ( -  T). (5.3c) 
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FIQURE 2. (a) A cross-shelf section of the parabolic eddy given by (5.1) on the sloping bottom at, 
T = 0. (b) A cross-shelf section of the upper-layer O(1) geostrophic pressure (immediately over the 
eddy depicted in (a) as determined by (5.2) a t  T = 0. The two dots on the y-axis denote the outer 
eddy boundary a t  y = +do). 

We remark that the integral in the numerator of (4.29) was evaluated numerically. 
The total leading-order pressure in the eddy (see ( 3 . 1 5 ~ ) )  is given by 

p(O)(r; 2’) = y+y(+O)(r; 2’) +h(O)(r; T)), (5.4) 
where the first term corresponds to the dynamic pressure associated with gravity and 
the sloping bottom, and the remaining terms are responsible for generating the swirl 
velocity (i.e. the leading-order eddy azimuthal velocity relative to the leading-order 
along-shelf translation speed) in the eddy interior (see (4.15)). For convenience we 
shall denote the last two terms on the right-hand side of (5.4) as the ‘swirl pressure’. 
Recall that  the Stern integral constraint (4.14) will imply that the swirl pressure in the 
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FIQURE 3. (a )  A contour plot of the 'swirl' pressure p[h(O)(r;O) +$O)( r ;O) ]  in the eddy. The dashed 
contour is the zero-value contour. Radially inward (outward) of the zero contour the swirl pressure 
anomaly is negative (positive) as demanded by the Stern integral constraint (4.14). (a) A contour 
plot of the total eddy geostrophic pressure field given by (5.4). The eddy geostrophic Eulerian 
velocity field is essentially the Nof speed (i.e. the along-shelf translation). 

X 

eddy must take on positive as well as negative values (if it is to be non-zero). In  figure 
3 (a )  we present a contour plot of the swirl pressure ,u[h(O)(r; 0) + qJ0)(r; O)]. The dashed 
contour is the 0-contour which occurs only once for the ground-state solution. The 
region of positive swirl pressure is located in 2.68 < r ,< a(o). The region 0 < T < 2.68 
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FIGURE 4. (a) The eddy swirl velocity as determined by (4.15). The velocities are non- 
dimensionalized with the Nof speed g's/f % 2.5 cm/s. The flow is mostly cyclonic with a small 
anticyclonic zone near the eddy boundary. The dashed horizontal line marks v, = 0 and the dot on 
the r-axis denotes the eddy boundary r = do'. (b) The cyclonic azimuthal velocity in the upper layer 
immediately over the eddy as determined by (5.5). The magnitude of the maximum dimensional 
azimuthal velocity is about twice as large as the maximum dimensional eddy swirl velocity. 

has negative swirl pressure. The maximum swirl pressure is about 0.16 and occurs a t  
T z 3.83. The minimum swirl pressure is located at T = 0 and has a value of 
approximately -0.65. These values scale linearly with the magnitude of the 
interaction parameter p. 

In  figure 3 ( b )  we present a contour plot of the total leading-order eddy pressure 
field p(O)(r;O) as given by (5.4). Because the magnitude of the swirl pressure is 
relatively small in comparison with the 'bottom slope' pressure contribution, the 
resulting contours are roughly speaking parallel to the isobaths. For realistic values 
of the interaction parameter (i.e. p x 1) there are no closed pressure contours. 
Consequently, to a stationary observer watching the cold-core eddy propagate, the 
relative velocity field in the eddy interior will appear almost negligible. This property 
has been observed in some rotating-tank experiments (J. A. Whitehead, personal 
communication). It is important to add, however, that the magnitude of the 
deflection in the pressure contours scales linearly with p. 

In figures 4(a) and 4 ( b )  we present radial cross-sections of the leading-order swirl 
velocity and the azimuthal velocity in the upper layer, respectively, in the eddy 
region T < do) at t = 0. The eddy swirl velocity is given by (4.15) and the leading- 
order slope-water azimuthal velocity is given by 
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FIGURE 5.  A contour plot of the complete leading-order geostrophic pressure field in the upper layer 
as determined by (5.6). The circular contours correspond t o  the strong cyclonic flow immediately 
over the eddy and the crescent-shaped contours correspond to the topographic Rossby wave field 
behind the propagating eddy. The H(L) symbols represent positive (negative) pressure anomalies 
and the contour interval is f0.16. 

Recall that i t  followed from the Stern integral constraint (4.14) that the swirl 
velocity in the eddy must take on cyclonic and anticyclonic values. For our parabolic 
eddy model, there is a broad region r 5 3.85; see figure 4(a) where the swirl velocity 
is cyclonic. The maximum magnitude of vs(r; 0) in this cyclonic region is about 0.33. 
This would correspond to about + of the Nof translation speed in dimensional units, 
or about 0.8-1.0 cm/s if the Nof speed is about 2.5-3.0 cm/s. Near the outer interior 
edge of the eddy (3.8 5 r < a(O)), the swirl velocity becomes anticyclonic. The 
maximum swirl velocity in this region for T = 0 is located along the eddy boundary 
and is about 20% of the Nof translation speed. 

We can estimate the maximum slope-water azimuthal velocities from figure 4 (b ) .  
The azimuthal slope-water velocity is cyclonic over the eddy region and has a 
maximum non-dimensional value of about 0.8 near r = 2.0. From (2.4) the scale 
velocity in the slope water is SfL x 3.0 cm/s which implies that the maximum 
dimensional azimuthal velocity in the slope water is about 2.5 cm/s. Hence if we 
compare the swirl velocity in the eddy interior (recall that this is defined to be the 
azimuthal velocity in the eddy interior relative to the along-shelf motion) to the slope 
water azimuthal velocity we see that the velocities in the slope water are on the order 
of twice the eddy swirl velocities. 

In  figure 5 we present a contour plot of the complete leading-order geostrophic 
pressure in the upper layer including the topographic wave field in r > a(O) for T = 
0. That is, we have plotted q(r, 8 ;  0) as determined by 

( 5 . 6 ~ )  
(5.6b) 
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Even though we have not included the O(/?) solutions in the eddy region r < a(0), we 
believe that by choosing /3 small enough (recall that /? = 5 x lop3), figure 5 is a correct 
asymptotic representation of the leading-order slope-water pressure field in 0 < r < 
00. The circular contours in figure 5 correspond to the eddy-region (i.e, r < a(O)$O)(r; 
0) solution and the remaining crescent-shaped contours correspond to the external 
(i.e. r < am) q(O)(r; 0) solution and the remaining crescent-shaped contours correspond 
to the external (i.e. r >  a(o)) O(p) topographic wave field. The closed contours 
containing the H and L symbols correspond to regions of positive and negative 
pressure anomaly, respectively. The maximum wave amplitude occurs immediately 
behind the low-pressure region located over the eddy and has a magnitude of about 
14% of the minimum in the main low. 

6. Summary and concluding remarks 
A theory has been presented to describe the propagation of coherent cold-core 

baroclinic eddies on a sloping bottom and their dynamic and thermodynamic (i.e. 
ventilated) interaction with the surrounding ocean. The theoretical study presented 
in this paper was motivated by oceanographic observations (e.g. Ou & Houghton 
1982 ; Houghton et al. 1982 ; Armi & D’Asaro 1980) and rotating-tank experiments 
(e.g. Mory 1983 ; Mory et al. 1987) on steadily travelling baroclinic eddies on a sloping 
bottom. Some of the properties of the oceanographic data, particularly the along- 
shelf translation speed, agreed with a theory proposed by Nof (1983) for these eddies. 
However, the data from the rotating-tank experiments did not seem to agree with 
the Nof theory. 

Mory et al. (1987) suggested that frictional forces or dynamical interaction between 
the cold-core eddies and the surrounding slope water (neglected in the Nof theory) 
may be important. The possible importance of dynamical interactions is suggested 
by the Stern integral constraint (Mory 1983, 1985; see (4.14)) which requires that the 
area-integrated geostrophic pressure in the slope-water balance the area-integrated 
buoyancy force in the cold dome if the eddy-slope-water configuration is to be 
isolated. If this balance does not hold, then there will be an excited topographic wave 
field behind the propagating eddy (see Flierl 1984a, b )  and a concomitant cross-shelf 
drift. 

In the oceanographic context, other processes are also important. For example, 
the process of ventilation between the cold eddy and the relatively warmer slope 
water was of importance during the evolution of the cold dome described by 
Houghton et al. (1982) and Ou & Houghton (1982). 

The new model equations (see (3.14) and (3.15)) developed in this paper to study 
the dynamical and ventilatory interactions between a cold-core eddy and the 
surrounding ocean on a sloping bottom corresponded to strongly interacting ‘hybrid ’ 
quasi-geostrophic, intermediate-lengthscale geostrophic dynamics (see Charney & 
Flierl 1981). Based on parameter values suggested by the oceanographic data, the 
dynamics of the surrounding slope water is a quasi-geostrophic with relative 
vorticity induced by the vortex- tube compression associated with the passage of the 
ventilating cold-core eddy. Thc eddy dynamics is geostrophic but is not quasi- 
geostrophic because eddy height changes are not small in relation to the scale height 
of the eddy (see figure 1).  The model equations were derived in a formal asymptotic 
expansion based on the shallow-water equations for a two-layer fluid assuming a 
small (appropriately scaled) shelf slope parameter. 

Because of the discrete stratification used in our model, the parameterization we 
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adopted to describe the process of ventilation is the simple CI or cross-interfacial 
mass flux model of Dewar (1987, 1988a, 6 ) .  This parameterization models the 
ventilation process as a continuous convcrsion of cold eddy water into relatively 
warmer slope water. 

The model equations were solved using a multiple-scale asymptotic analysis valid 
in the limit of a relatively weak ventilation rate (but O(1) dynamical interaction 
between the eddy and surrounding fluid) assuming an initially radially symmetric 
isolated eddy and slope-water configuration. The leading-order solution corresponds 
to a solitary baroclinic monopole configuration (see figure 2a,  6 )  which propagates a t  
the Nof speed and which satisfies the Stern integral constraint. For the simple 
parabolic eddy shape examined in $5, the swirl velocity in the eddy is about 30 YO of 
the Nof translation speed and about 50% of the Eulcrian azimuthal velocity 
computcd in the upper layer above the eddy. Consequently, to  an external observer, 
the co-moving velocity field in the eddy would appear relatively quiescent in 
comparison to the slope-water vclocity field above the eddy. 

We are able to obtain an exact description of the induced topographic wave field 
behind the eddy (see figure 5) and to compute the associated cross-shelf translation 
velocity (see (4.29)). We find that thc cross-shelf translation is positive (i.e. up the 
slope). If c$, p* and L denote the dimensional upslope speed, the dimensional 
ventilation rate (units of i/s), and the lengthscale, then cy* - 0.227/3*L initially. The 
fact that c,* > 0 can be explained as a straightforward consequence of slope-water 
potential vorticity conservation and the ventilating eddy (see the discussion after 
(4.29)). 

It has been suggested (Mory et al. 1987) that the cddies of thc type studied in this 
paper may result from the baroclinic instability of pycnobathic or bottom gravity 
currents (see also Smith 1976; Shaw & Csanady 1983; Griffiths, Killworth & Stern 
1982). The analysis by Griffiths et al. (1982) is restricted to long wavelengths and only 
contains a single layer. It is not difficult to show that (in the absence of diabatic 
processes) our two-layer model equations (3.14) and (3.15) admit exact along-shelf 
gravity current solutions. The stratification characteristics of these gravity currents 
will resemble a cold-core coupled density front on a sloping bottom. Swaters (1991) 
presents a detailed baroclinic instability analysis of these gravity current solutions. 

Another interesting problem is the effect of bottom friction on the propagation 
characteristics of the isolated-cold-eddy solutions examined in this paper. Mory et al. 
( 1987) suggested that frictional spin-down may be important in the dynamics, 
particularly in the rotating-tank simulations. It turns out that if one includes a 
simple Rayleigh damping term in the non-dimensional eddy momentum equations 
( 2 . 5 ~ )  with an 0(1) dissipation coefficient, and subsequently examines a weak 
dissipation limit similar to the weak Ventilation limit examined here (for the 
appropriately modifed (3.14), (3.15) and (3.16)), i t  can be shown that hcO)(r; T) must 
satisfy a fully nonlinear parabolic equation and that the along-shelf translation speed 
is smaller than the Nof speed. We are currently examining this problem and hope to 
be able to report on this in the future. 

This study was initiated when G. E. S. was a postdoctoral associate supported by 
National Science Foundation grants awarded to G. R. F. Final preparation of the 
manuscript was supported in part by an Operating Research grant awarded by the 
Natural Sciences and Engineering Research Council of Canada, and by a Science 
Subvention awarded by the Department of Fisheries and Oceans of Canada to 
G. E. S. 
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