
Perturbations of Soliton Solutions to the Unstable
Nonlinear Schrödinger and Sine-Gordon Equations

By Gordon E. Swaters

The adiabatic evolution of soliton solutions to the unstable nonlinear
Schrödinger (UNS) and sine-Gordon (SG) equations in the presence of small
perturbations is reconsidered. The transport equations describing the evolution
of the solitary wave parameters are determined by a direct multiple-scale
asymptotic expansion and by phase-averaged conservation relations for an
arbitrary perturbation. The evolution associated with a dissipative perturbation
is explicitly determined and the first-order perturbation fields are also
obtained.

1. Introdution

The unstable nonlinear Schrödinger (UNS) and sine-Gordon (SG) equations
arise as canonical integrable models describing the weakly nonlinear evolution
of the disturbance field in marginally stable or unstable oceanographic and
meteorological dynamics [1–5] (and in many other dispersive physical systems,
e.g., [6]). In their canonical form, these equations model the space-time
development of wave packets assuming that there is no variability in the
fluid medium or in the mean flow or that nonconservative processes are
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present. It is known, however, that time variability in the background flow
and dissipative processes can have a profound effect on the linear and
nonlinear stability characteristics of atmospheric and ocean currents [7–11].
Indeed, even if the time average of the background flow is itself stable, small
amplitude oscillations can lead to linear destabilization or vice versa (even if
the oscillatory flow is, at each moment in time, linearly stable or unstable,
respectively).

In the context of modeling the finite amplitude evolution of marginally
stable or unstable baroclinic flow with, for example, time variability and/or
dissipation, one is naturally led to the perturbed UNS or SG equations (see, e.g.,
[3,5,9–11]). Given the generic emergence and persistence of isolated coherent
structures in the transition to turbulence in oceanographic and meteorological
dynamics [12], it is of interest to understand the dynamic consequences of
perturbations on the soliton solutions of the UNS and SG equations as these
represent the saturated states of these models.

Huang et al. [13] have presented a theory for the adiabatic deformation
of the solitary wave solution to the UNS equation based on the inverse
scattering formalism similar to that developed for integrable equations by
Kaup and Newell [14] and catalogued for numerous other soliton models
by Kivshar and Malomed [15]. The principal purpose of this paper is to
reconsider the perturbed UNS equation via a direct perturbation expansion
and phase-averaged “conservation balances” following the methods described
by, for example, Kodama and Ablowitz [16] and Grimshaw [17, 18],
respectively. Our results from both the direct perturbation expansion and
conservation balance approaches, of course, completely agree with each other,
but contradict Huang et al. [13]. Moreover, in the context of the dissipative
problem, we are able to explicitly determine the first-order perturbation
field.

Additionally, but on a more minor note, we have identified an error in the
treatment of the perturbed SG equation in [16]. The result of this error
is that the equation describing the adiabatic evolution of the translation
velocity for the kink solitary wave solution of the perturbed SG equation
in [16] is incorrect and does not agree with the inverse scattering results
in [14] or [15]. We hasten to add, however, that the overall conceptual
approach via a direct asymptotic expansion to perturbed solitary wave
equations presented in [16] is correct. There is simply a relatively minor
algebraic error in the section on the perturbed SG equation that leads to an
incorrect evolution equation for the translation velocity and, additionally, for
the solution given for the perturbation field. We briefly present the correct
direct approach to the perturbed SG equation for a general perturbation and
explicitly solve describe the first-order perturbation field for the dissipative
problem.



Perturbations of Soliton Solutions to the Unstable Nonlinear 101

2. The unstable nonlinear Schrödinger equation

We consider the perturbed (nondimensional) UNS equation in the form

vtt + ivx + 2v|v|2 = εF(εt, v), −∞ < x < ∞, t > 0, (1)

where (x, t) are the space-time coordinates, respectively, v(x, t) is the
complex-valued dependent variable, F(εt, v) � O(1) is the complex-valued
perturbation that explicitly depends only on v (and its derivatives) and the
“slow time” εt, where 0 < ε << 1 (and i2 = −1). The UNS equation is
a special case of the Ginzburg–Landau equation and is of the form of the
nonlinear Schrödinger equation (NLS) with x and t interchanged [e.g., 19].
Because the UNS equation is second order in time, the initial conditions for
the Cauchy problem require data for v and vt, which differs from NLS that
is only single order in time. The inverse scattering transform for the UNS
equation was described by Yajima and Wadati [20].

When ε = 0, the soliton solution to (1) can be written in the form

vsoliton(x, t) =

µ sech

[
µ(x − x0 − Ut)

U

]
× exp

[
i

{(
µ2 − 1

4U 2

)
(x − x0 − Ut)

+ U

(
µ2 + 1

4U 2

)
(t − t0)

}]
, (2)

where µ, U , and (x0, t0) are arbitrary real-valued amplitude, translation
velocity, and space-time phase-shift parameters, respectively. Our goal here is
to determine the adiabatic evolution of the soliton when 0 < ε << 1, that is,
to determine the leading order solution to (1) assuming

v(x, 0) = vsoliton(x, 0) and vt (x, 0) = ∂tvsoliton(x, 0), (3)

to leading order.

2.1. Direct singular perturbation expansion

Here, we determine the leading-order adiabatic evolution of the soliton by
constructing a direct perturbation expansion for (1), assuming 0 < ε << 1,
allowing the soliton parameters to slowly evolve over time following the
method generally outlined in [16]. The evolution of the soliton parameters
is determined by applying appropriate solvability conditions, which are that
the inhomogeneous terms in the higher order problems must be orthogonal
to the Kernel of the adjoint operator associated with the linear first order
perturbation problem.
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We begin by introducing the fast phase and slow time variables

θ = x − 1

ε

∫ εt

0
U (ξ ) dξ and T = εt, (4)

respectively, and introducing

� ≡ 1

ε

∫ εt

0
U (ξ )

[
µ2(ξ ) + 1

4U 2(ξ )

]
dξ, (5)

so that

θt = −U (T ), �t = U (T )

[
µ2(T ) + 1

4U 2(T )

]
, (6)

∂x → ∂θ and ∂tt → U 2∂θθ − ε [U∂θT + (U∂θ )T ] + ε2∂TT . (7)

In terms of θ and T , the soliton solution (2) can be written in the form

vsoliton = µ sech(µθ/U ) exp

[
i

{(
µ2 − 1

4U 2

)
θ + �

}]
. (8)

In (8) we have assumed that x0 = t0 = 0. As in the perturbed NLS or KdV
problems (see, e.g., [14,16]), it can be shown that the leading order solvability
conditions do not determine the evolution of the phase shift parameters and
thus, without loss of generality for the analysis presented here, we may set them
to zero. Their evolution is determined by higher order solvability conditions,
or equivalently, higher order fast phase averaged conservation relations, that
do not concern us here.

The adiabatically deformed soliton solution to (1) is most conveniently
obtained in the form

v(θ, T ) = q(θ, T ) exp

[
i

{(
µ2 − 1

4U 2

)
θ + �

}]
, (9)

where q(θ , T ) is complex-valued. Substitution of (4), (5), and (9) into (1)
leads to, after some algebra,(

U 2∂θθ − µ2
)
q + 2|q|2q

= ε

{
exp(−i�)F(T, q exp(i�)) − iqT /U + (Uqθ )T + UqθT

+ 2iθqθU

(
µ2 − 1

4U 2

)
T

+ iq

[
U

(
µ2 − 1

4U 2

)
T

+ UT

2U 2

]

+ (θq/U )

(
µ2 − 1

4U 2

)
T

}
+ O(ε2), (10)
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where, for convenience,

� ≡
(

µ2 − 1

4U 2

)
θ + �. (11)

On account of the fact that the leading order solution will be real-valued,
further progress is facilitated by substituting

q(θ, T ) = η(θ, T ) + iεφ(θ, T ), (12)

where η and φ are real-valued into (10) and separating out the real and
imaginary parts, which lead to, respectively,(

U 2∂θθ − µ2
)
η + 2η3 = εϒR(η, T ) + O(ε2), (13)

(
U 2∂θθ − µ2 + 2η2

)
φ = ϒI (η, T ) + O(ε), (14)

where

ϒR(η, T ) = Re {exp(−i�)F [T, η exp(i�)]}

+ (Uηθ )T + UηθT + (θη/U )

(
µ2 − 1

4U 2

)
T

, (15)

ϒI (η, T ) = Im{exp(−i�)F [T, η exp(i�)]} − ηT /U

+ 2θηθU

(
µ2 − 1

4U 2

)
T

+ η

[
U

(
µ2 − 1

4U 2

)
T

+ UT

2U 2

]
. (16)

Introduction of the straightforward expansion

(η, φ) � (η, φ)(0) + ε(η, φ)(1) + ε2(η, φ)(2) + . . . ,

into (13) and (14) leads to the O(1) problems, respectively,(
U 2∂θθ − µ2

)
η(0) + 2

[
η(0)

]3 = 0, (17)

(
U 2∂θθ − µ2 + 2

[
η(0)

]2)
φ(0) = ϒI

(
η(0), T

)
, (18)

and the O(ε) problem associated with (13) (which is all that is needed) is(
U 2∂θθ − µ2 + 6

[
η(0)

]2)
η(1) = ϒR

(
η(0), T

)
. (19)

From (17) the solution is simply

η(0)(θ, T ) = µ sech(µθ/U ). (20)

Observing that the operators on the left-hand-side of (18) and (19) are
self-adjoint and that (

U 2∂θθ − µ2 + 2
[
η(0)

]2)
η(0) = 0, (21)
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(
U 2∂θθ − µ2 + 6

[
η(0)

]2)
η

(0)
θ = 0, (22)

implies that, necessarily,∫ ∞

−∞
η(0)ϒI

(
η(0), T

)
dθ = 0, (23)

∫ ∞

−∞
η

(0)
θ ϒR

(
η(0), T

)
dθ = 0, (24)

which can be evaluated to yield, respectively,

d

dT

(
1

U

∫ ∞

−∞

[
η(0)

]2
dθ

)

= 2
∫ ∞

−∞
η(0)Im

{
exp(−i�)F

[
T, η(0) exp(i�)

]}
dθ,

d

dT

(
U

∫ ∞

−∞

[
η

(0)
θ

]2
dθ

)
− 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ

(25)

= −
∫ ∞

−∞
η

(0)
θ Re

{
exp(−i�)F

[
T, η(0) exp(i�)

]}
dθ, (26)

which, if (20) is substituted in, can be further simplified to, respectively,

µT = U

∫ ∞

−∞
sech(ξ ) Im{exp(−i�)F[T, µsech(ξ ) exp(i�)]} dξ, (27)

UT = −2U 3
∫ ∞

−∞
sech(ξ ) tanh(ξ ) Re{exp(−i�)F[T, µsech(ξ ) exp(i�)]} dξ,

(28)
where it is understood that � = Uξ [µ2 − 1/(4U 2)]/µ + � in the integrands
in (27) and (28), see (11).

Equations (27) and (28) are the general transport equations describing the
evolution of the UNS soliton amplitude and translation velocity for an arbitrary
perturbation. Owing to the fact that we have set up the asymptotic expansion
in a somewhat different manner than in [13], and more like that presented in
[16] for the NLS equation, it is not possible to easily and directly compare
(27) and (28) with corresponding expressions in [13].

If F [T, µsech(ξ ) exp(i�)] is an even function with respect to ξ , then
the integrand in (28) will be odd, and the right-hand-side of (28) will be
zero. Thus, to leading order, the translation velocity of the UNS soliton will
be invariant and only the amplitude will evolve with respect to T . This is
qualitatively similar to the known results for the perturbed NLS equation, see
[16]. Indeed, this is the case for the dissipative perturbation example explicitly



Perturbations of Soliton Solutions to the Unstable Nonlinear 105

solved for later in this section. The results of this specific example can be
directly compared with those in [13]. As we then show, the results so obtained
do not agree with those in Huang et al. [13].

2.2. Phase-averaged conservation relation approach

The transport equations (27) and (28) were derived using a straightforward
perturbation expansion and applying appropriate solvability conditions. It is
also possible to obtain (27) and (28) using, in our opinion, the more physically
intuitive approach of phase averaged conservation relations like that described
by Grimshaw [17,18]. The demonstration that (27) and (28) are obtained using
this second approach gives confidence in the results since the transport equations
derived here for the perturbed UNS equation do not agree with those in [13].

The “first three” conservation relations associated with (1) are given
by (

v∗vt − vv∗
t

)
t
+ i(|v|2)x = ε[v∗F(εt, v) − vF∗(εt, v∗)]

= 2εi Im[v∗F(εt, v)], (29)(
v∗

xvt + vxv
∗
t

)
t
+ (|v|4 − |vt |2

)
x

= ε
[
v∗

x F(εt, v) + vx F∗(εt, v∗)
]

= 2εRe
[
v∗

x F(εt, v)
]
, (30)(

|vt |2 + |v|4 + i

2

(
v∗vx − vv∗

x

))
t

+ i

2

(
vv∗

t − v∗vt

)
x

= ε
[
v∗

t F(εt, v) + vt F∗(εt, v∗)
] = 2εRe

[
v∗

t F(εt, v)
]
, (31)

where (·)∗ is the complex-conjugate of (·). Equations (29), (30), and (31)
correspond to the mass, momentum, and energy balance relations, respectively,
and are identical in form to those for the NLS equation with x and t
interchanged, see [18]. Equations (29), (30), and (31) are obtained by forming
v∗ × (1) − v × (1)∗, v∗

x × (1) + vx × (1)∗, v∗
t × (1) + vt × (1)∗, respectively.

Generically, these conservation relations are of the form

Et + Hx = εG, (32)

with E, F, and G the appropriate density, flux, and source term, respectively. If
the multiple scale ansatz (4), together with the asymptotic expansion

v � v(0) + εv(1) + ε2v(2) + . . . ,

is substituted into (32), one obtains an expression of the form

(−U∂θ + ε∂T )
(
E (0) + εE (1) + . . .

) + (
H (0) + εH (1) + . . .

)
θ

= ε
(
G(0) + · · · ),

(33)
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which if integrated with respect to θ (assuming E, H , and G all vanish
sufficiently rapidly as θ → ±∞) yields the leading order phase-averaged
conservation relation

d

dT

∫ ∞

−∞
E (0) dθ =

∫ ∞

−∞
G(0) dθ. (34)

Since it follows from (8) that

vt � −Uv
(0)
θ + i�tv

(0) + O(ε) = −Uv
(0)
θ + iUv(0)

[
µ2 + 1

4U 2

]
+ O(ε),

(35)

vx � v
(0)
θ + O(ε), (36)

where

v(0) ≡ vsoliton = η(0) exp(i�),

we find for the mass, momentum, and energy densities, after a little algebra,

E (0)
mass = (

v∗vt − vv∗
t

)(0) = i
[
η(0)

]2

U
, (37)

E (0)
momentum = (

v∗
xvt + vxv

∗
t

)(0) = −2U
∣∣v(0)

θ

∣∣2 + i�t

(
v(0)v

(0)∗
θ − v(0)∗v(0)

θ

)
= −2U

[
η

(0)
θ

]2 +
(

µ2 − 1

4U 2

) [
η(0)

]2

U
, (38)

E (0)
energy =

[
|vt |2 + |v|4 + i

2

(
v∗vx − vv∗

x

)](0)

=
[
η(0)

]2

2U 2
, (39)

respectively. Similarly, the leading order source (the G) terms associated
with the mass, momentum, and energy conservation relations are given by,
respectively,

G(0)
mass = 2i Im

[
(v∗F(εt, v))0

] = 2iη(0)Im
{
exp(−i�)F

[
εt, η(0) exp(i�)

]}
,

(40)

G(0)
momentum = 2 Re

[(
v∗

x F(εt, v)
)(0)

]
= 2 Re

{[
η(0) exp(−i�)

]
θ

F
[
εt, η(0) exp(i�)

]}
, (41)
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G(0)
energy = 2 Re

[(
v∗

t F(εt, v)
)(0)]

= 2 Re
{( − U

[
η(0) exp(−i�)

]
θ

− i�tη
(0) exp(−i�)

)
F

[
εt, η(0) exp(i�)

]}
. (42)

It can be seen immediately that the phased-averaged mass conservation
relation (which follows from (29), (34), and (37)) is identical to (25). The
phased-averaged momentum conservation relation (which follows from (30),
(34), and (38)) is given by

d

dT

∫ ∞

−∞

[
U

[
η

(0)
θ

]2 −
(

µ2 − 1

4U 2

) [
η(0)

]2

2U

]
dθ

= −
∫ ∞

−∞
Re

{[
η(0) exp(−i�)

]
θ
F

[
εt, η(0) exp(i�)

]}
dθ. (43)

Equation (43) can be put exactly into the form of (26) if one notes that the
second term in the integrand in the left-hand-side of (43) can be re-arranged
as

d

dT

∫ ∞

−∞

(
µ2 − 1

4U 2

) [
η(0)

]2

2U
dθ

= 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ + 1

2

(
µ2 − 1

4U 2

)
d

dT

∫ ∞

−∞

[
η(0)

]2

U
dθ

= 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ

+
(

µ2 − 1

4U 2

) ∫ ∞

−∞
η(0) Im

{
exp(−i�)F

[
T, η(0) exp(i�)

]}
dθ

= 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ

+
∫ ∞

−∞
η(0) Im

{
i [exp(−i�)]θ F

[
T, η(0) exp(i�)

]}
dθ

= 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ

+
∫ ∞

−∞
η(0) Re

{
[exp(−i�)]θ F

[
T, η(0) exp(i�)

]}
dθ,
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where (25) has been used and the fact that Im [i(a + ib)] = Re(a + ib) ∀ a,

b ∈ R, so that (43) can be put into the form

d

dT

(
U

∫ ∞

−∞

[
η

(0)
θ

]2
dθ

)
− 1

2U

(
µ2 − 1

4U 2

)
T

∫ ∞

−∞

[
η(0)

]2
dθ

= −
∫ ∞

−∞
Re

{[
η(0) exp(−i�)

]
θ
F

[
εt, η(0) exp(i�)

]}
dθ

+
∫ ∞

−∞
η(0)Re

{[
exp(−i�)

]
θ
F

[
T, η(0) exp(i�)

]}
dθ

= −
∫ ∞

−∞
η

(0)
θ Re

{
exp(−i�)F

[
T, η(0) exp(i�)

]}
dθ,

which is exactly (26).
In addition, although we do not show it here, it follows that the phase-averaged

mass and momentum conservation relations imply that the phase-averaged
energy conservation relation (as obtained from (31), (34), and (38)) will be
satisfied. Thus, in summary, from two different approaches we have derived
a consistent set of transport equations for the adiabatic deformation of a
perturbed UNS soliton.

2.3. Example with a dissipative perturbation

To provide an explicit example that can be compared directly with the results of
Huang et al. [13] and with the known results for the perturbed NLS equation
[14–16], we consider the dissipative perturbation

F(εt, v) = −iγ (εt)v, (44)

in (1), where γ (εt) > 0 is a prescribed O(1) coefficient function. Substitution
of (44) into (27) and (28) yields, respectively,

µT = −Uγ (T )µ
∫ ∞

−∞
sech2(ξ ) dξ = −2Uγ (T )µ, (45)

UT = 0, (46)

which have the solutions

µ(T ) = µ0 exp

[
−2U0

∫ T

0
γ (ξ ) dξ,

]
(47)

U (T ) = U0, (48)

where µ0 = µ(0) and U0 = U(0), respectively. We see that the soliton amplitude
will decay exponentially over time and the translation velocity is constant.

Huang et al.’s [13] treatment of the dissipative perturbation (44) assumes
γ ≡ 1 (and they write the soliton parameters in a slightly, but inconsequential,
different way). In terms of our soliton parameters, the prediction in [13] is that
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µT = − Uµ

1 + 4U 2µ2
and UT = 0,

thus there is agreement for the prediction of invariance in the translation
velocity but a difference between our and their prediction for the rate of
decrease in the soliton amplitude (set γ = 1 in (45)). It is beyond the scope of
this paper to fully dissect the many algebraic manipulations in [13] to find the
precise error(s). The fact that we have obtained (47) and (48) through two
different derivation paths gives confidence that ours is the correct result.

2.3.1. First-order perturbation field. We can determine the first order
perturbation fields η(1) and φ(0) as follows. For the dissipative perturbation
(44), assuming the transport or solvability conditions (45) and (46), it follows
from (18) and (19), after a little algebra, that[
∂ζζ − 1 + 2sech2(ζ )

]
φ(0) = γµ−1(1 − 4U 2µ2) sech(ζ )[1 − 2ζ tanh(ζ )], (49)

[
∂ζζ − 1 + 6 sech2(ζ )

]
η(1) = 8γUsech(ζ ) tanh(ζ )[1 − ζ tanh(ζ )], (50)

respectively, where we have introduced the change of independent variable
ζ = µθ /U . Note that ζ → +∞ will always correspond to the far field ahead
of the propagating soliton irrespective of the sign of U .

If we introduce the change of dependent variables

φ(0) = sech(ζ )φ̃(ζ ) and η(1) = sech(ζ ) tanh(ζ )η̃(ζ ),

into (49) and (50), it follows that[
sech2(ζ )φ̃ζ

]
ζ

= γµ−1(1 − 4U 2µ2)sech2(ζ ) [1 − 2ζ tanh(ζ )]

= γµ−1(1 − 4U 2µ2)
[
ζ sech2(ζ )

]
ζ
, (51)

[
sech2(ζ ) tanh2(ζ )η̃ζ

]
ζ

= 8γUsech2(ζ ) tanh2(ζ ) [1 − ζ tanh(ζ )] , (52)

which, individually, can be integrated twice to yield

φ̃ = γ (1 − 4U 2µ2)ζ 2

2µ
,

η̃ = 2γUζ [ζ − coth(ζ )] ,

so that, in terms of the original fast phase variable θ , we obtain

φ(0)(θ, T ) = γµ(1 − 4U 2µ2)θ2sech(µθ/U )

2U 2
, (53)
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η(1)(θ, T ) = 2γµθsech(µθ/U )

[
µθ

U
tanh(µθ/U ) − 1

]
. (54)

Finally, correct to O(ε), the adiabatically dissipating UNS soliton will be
described by

v(x, t) � {
µsech(µθ/U ) + ε

[
η(1) + iφ(0)

]}
exp

[
i

{(
µ2 − 1

4U 2

)
θ + �

}]
,

(55)

where θ (x , εt), �(εt), µ(εt), U (εt), φ(0)(θ , εt), and η(1)(θ , εt) will be given by
(4), (5), (47), (48), (53), and (54), respectively. As in the dissipatively perturbed
NLS soliton [16,18] there is no “shelf region” that emerges in the O(ε)
solution in the far field behind the propagating soliton, i.e., |η(1) + iφ(0)| → 0
exponentially rapidly as θ → −sgn(c)∞. This is a reflection of the fact that
adiabatic dissipating soliton is simultaneously satisfying phase-averaged mass,
energy, and momentum conservation relations. However, clearly the asymptotic
solution (55) is algebraically nonuniform as θ → ±∞. This algebraic
nonuniformity in the far field can be eliminated by introducing asymptotic
techniques of the form described in [16] and is beyond the scope of this paper.

3. The sine-Gordon equation

Because the UNS equation is second order in time, we thought it would be
useful to compare the results of the theory just presented with the direct
perturbation theory, as described in [16], for the sine-Gordon (SG) equation,
which is also second order in time. Unfortunately, there is an easily identified
minor algebraic error in the implementation of the multiple-scale ansatz in
[16] that results in the derivation of an incorrect transport equation for the
soliton–translation velocity and the solution of the perturbation field for the
perturbed SG equation. As written, in fact, the results in [16] do not agree
with the results, based on inverse scattering theory, as described in [14]. We
hasten to add, however, that the overall conceptual description of the direct
perturbation theory in [16] is completely correct.

Here, we very briefly present the corrected direct perturbation theory. Our
results will agree with those in [14]. In laboratory coordinates, the perturbed
(nondimensional) SG equation can be written in the form

vtt − vxx + sin(v) = εF(εt, v), (56)

where (x, t) are the space-time coordinates, respectively, v(x, t) is the
real-valued dependent variable, F(εt, v) � O(1) is the real-valued perturbation
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that explicitly depends only on v and the “slow time” εt, where 0 < ε << 1.
In the limit ε = 0, (56) has the kink soliton solution

vsoliton = 4 tan−1
[
exp(x − ct − x0)/

√
1 − c2

]
, (57)

where x0 and c are the arbitrary phase shift and translation velocity parameters
(note that |c| < 1), respectively. As before, the leading order solvability
conditions do not determine the evolution of the phase shift parameter and
thus, without loss of generality for the analysis presented here, we henceforth
assume x0 = 0.

To determine the adiabatic deformation of the kink soliton, we introduce
the fast phase and slow time variables

θ = x − 1

ε

∫ εt

0
c(ξ ) dξ and T = εt. (58)

It follows that

∂xx → ∂θθ , (59)

and that

∂tt → (−c∂θ + ∂T )(−c∂θ + ∂T ) = c2∂θθ − ε[c∂θT + (c∂θ )T ] + ε2∂TT . (60)

It is at this point that there is an error in Section 3.2 in [16]. In the transition
from [16]’s equation (3.18) to their equation (3.19), Kodama and Ablowitz
[16] have assumed that

∂tt → c2∂θθ + 2ε(c∂θ )T + O(ε2),

rather than the correct form in (60). This is a minor algebraic error, but it
leads to erroneous conclusions about the evolution of c(T ) and the solution for
the first-order perturbation field. We will see that with (60), the associated
solvability conditions will exactly reproduce the deformation theory obtained
from inverse scattering theory [14].

Substitution of (58) into (56) leads to

(c2 − 1)vθθ + sin(v) = ε [cvθT + (cvθ )T + F(T, v)] + O(ε2). (61)

Introducing the straight forward asymptotic expansion

v � v(0) + εv(1) + ε2v(2) + . . . , (62)

into (61) leads to the O(1) and O(ε) problems, respectively,

(c2 − 1)v(0)
θθ + sin

(
v(0)

) = 0, (63)

[
(c2 − 1)∂θθ + cos

(
v(0)

)]
v(1) = cv(0)

θT + (
cv(0)

θ

)
T

+ F
(
T, v(0)

)
. (64)
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The solution to (63) is taken to be the kink soliton written in the form

v(0) = 4 tan−1
[

exp(θ/
√

1 − c2)
]
. (65)

Observing that the operator on the left-hand-side of (64) is self-adjoint and
that a homogeneous solution is given by

v
(1)
homogeneous = v

(0)
θ = 2sech(θ/

√
1 − c2)√

1 − c2
, (66)

which implies that the right-hand-side of (64) must satisfy

d

dT

(∫ ∞

−∞
c
[
v

(0)
θ

]2
dθ

)
= −

∫ ∞

−∞
F

(
T, v(0)

)
v

(0)
θ dθ. (67)

If we appreciate that ∫ ∞

−∞
[v(0)

θ ]2 dθ = 8√
1 − c2

,

then it is seen that (67) exactly reproduces the results for the perturbed SG
equation in Section 7 in [14].

Alternatively, (67) can be obtained from the phase-averaged momentum
conservation relation obtained by multiplying (56) through by vx and writing
the result in the form

(vtvx )t −
[

cos(v) + v2
t + v2

x

2

]
x

= εvx F(εt, v). (68)

Hence, if we introduce the variables (58) and the expansion (62), we see that
(67) follows after integrating (68) with to θ ∈ (−∞, ∞).

3.1. Example with a dissipative perturbation

To explicitly compare with the calculation in [16], we assume the dissipative
perturbation

F(εt, v) = −γ (εt)vt ,

in (56). It follows from (67) that

d

dT

(
c

∫ ∞

−∞

[
v

(0)
θ

]2
dθ

)
= −γ c

∫ ∞

−∞

[
v

(0)
θ

]2
dθ,

which can be evaluated to give

(c/
√

1 − c2)T = −γ c/
√

1 − c2 =⇒ cT = −γ c(1 − c2), (69)
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which is different than the result in [16] (see the result immediately following
equation (3.21) in [16]). Equation (69) can be immediately integrated to yield

c(T ) = c0√
c2

0 + (
1 − c2

0

)
exp

[
2

∫ T

0
γ (ξ ) dξ

] , (70)

and we note that 1 − c2
0 > 0.

3.1.1. First order perturbation field. We can determine the solution for v(1)

directly as follows. From [64], we have[
(c2 − 1)∂θθ + cos

(
v(0)

)]
v(1) = cv(0)

θT + (
cv(0)

θ

)
T

+ cγ v
(0)
θ

= −γ c3
(
v

(0)
θ + 2θv

(0)
θθ

)
. (71)

If we define v(1) = v
(0)
θ ṽ, it follows that

([
v

(0)
θ

]2
ṽθ

)
θ

= γ c3

1 − c2

(
θ
[
v

(0)
θ

]2)
θ
,

which can be integrated twice to imply

v(1) = γ c3θ2sech(θ/
√

1 − c2)

(1 − c2)
3
2

, (72)

which is different than equation (3.23) in [16]. As in [16], we find that there is
no shelf region formed behind the propagating soliton. However, the solution
for v(1) is algebraically nonuniform in the far field. This nonuniformity can be
removed using appropriate asymptotic techniques.

4. Conclusions

We have presented an adiabatic perturbation theory for the soliton solution
of the unstable nonlinear Schrödinger (UNS) equation. The theory was
constructed using both a direct perturbation approach, like that described in
[16] for a number of other 1 + 1 dimensional soliton models, and fast-phase
averaged conservation relations, like that described in [17,18]. Our results,
while internally consistent, disagree with the results of Huang et al. [13] for
the UNS equation. General transport equations were derived for the soliton
amplitude and translation velocity for an arbitrary perturbation. These transport
equations were solved in the case of a dissipative perturbation in order to
explicitly compare our results with those in [13]. We find, as in [13], that the
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translation velocity is invariant (analogous to that which occurs in the NLS
equation with damping, see [16]). However, we find a much simpler decay
result for the soliton amplitude than in [13].

In addition, we have determined the first order perturbation field for the
dissipative example. Again, as in perturbed NLS theory, we find that no
shelf region emerges behind the propagating soliton. This occurs because
the transport equations for the soliton parameters simultaneously satisfy
phase-averaged energy, momentum, and mass conservation relations.

Because the UNS equation is second order in time, it was thought useful
to compare the results of our analysis with the direct perturbation theory
for the sine-Gordon (SG) equation, which is also second order in time.
Unfortunately, we have identified a minor algebraic error in the multiple scale
asymptotic theory described in [16] for the SG equation. As written the
results in [16] do not agree with the known results from inverse scattering
theory [14]. We briefly describe the corrected direct perturbation theory for
the SG equation in laboratory coordinates and explicitly solve the problem
for a dissipative perturbation and in order compare our results with those
in [16].

The original motive for this paper resides in our desire to analyze the finite
amplitude development of baroclinically unstable flows with time variability
and dissipation present in the so-called “frontal geostrophic” dynamical regime
[21–23]. This is a dynamical regime that describes stratified sub-inertial ocean
currents with large amplitude isopycnal defections on length scales longer
than the internal deformation radius. In the weakly nonlinear finite-amplitude
limit, it is known that marginally unstable waves will satisfy the UNS
equation (5) or the SG equation (2). When time variability and dissipation
is included, the resulting wave-packet equations are of the form of the
perturbed UNS equation. Clearly, it is important from the viewpoint of the
oceanographic application that we are interested in to properly understand
the deformation characteristics associated with these soliton models when
perturbations are present. Once it became clear that the results in [13] were
not reproducible, it was thought appropriate to reconsider this problem in a
suitably general way from both the point of view of the direct perturbation
approach and phased-averaged conservation relations. Our results on the
oceanographic problem will be published in a venue better oriented to that
audience.
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