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ABSTRACT. The governing equations describing a teth- 
ered hyperelastic fluid-filled tube are shown to possess a non-
canonical Hamiltonian formulation. The Hamiltonian struc- 
ture is exploited to give a variational principle for finite- 
amplitude steadily-travelling solitary and periodic pressure 
pulses. Sufficient conditions for the linear and nonlinear sta- 
bility in the sense of Liapunov are described for these solu- 
tions. 

1. Introduction. The study of waves in elastic fluid-filled tubes 
is of interest particularly in regards to, among others, blood flow and 
transmission devices in spacecraft. From the viewpoint of mechanics, 
the subject is of current interest because it represents a coupling be- 
tween two branches of continuum mechanics: nonlinear hydrodynamics 
and elasticity. There is a substantial literature, both theoretical and 
applied, on waves in fluid-filled elastic tubes. While a thorough review 
is beyond the scope of this article, most stutiics have tended to focus 
either on the dispersive aspects ignoring nonlinearity (e.g., Rubinow 
and Keller [25, 261 and Moodie, et al. [18, 19]), or 011 the nonlinear 
aspects ignoring dispersion (e.g., Moodic? and Haddow [17], Anliker, et 
al. [I]and Seymour and Mortell [29]). 

It  is only in the last ten years or so that the combined effects of 
nonlinearity and dispersion in the fluid and elastic wall have been 
examined. For example, Cowley (10, 111based on an earlier theory 
of Moodie and Haddow [17] showed that, as expected, the evolution 
of long weakly-nonlinear elastic jumps in hyperelastic fluid-filled tubes 
are governed by a KdV equation. Moodie and Swaters [20] extended 
the Moodie and Haddow theory to exarninc shock formation in tubes 
with variable wall thicknesses. Swaters and Sawatzky [31]extended the 
Cowley model to include viscoelastic effects in the tube wall in order 
to model the pulse attenuation and broadening that is experimentally 
observed (e.g., Caro et al., [8]) for solitary pressure pulses. Swaters [30] 
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developed a theory for wave-wave interactions in hyperelastic fluid-filled 
tubes in an attempt to model energy transfers within wave spectra. 

Recently, Ropchan and Swaters [24] have exarnirled the shear-flow 
instability problem for hyperelastic fluid-filled tubes. In addition to 
the usual linear Rayleigh instability of a homogeneous fluid (modified, 
of course, by the presence of the elastic wall), Ropchan and Swaters 
found that otherwise neutrally stable modes could resonantly interact 
and produce explosive instabilities which become unbounded in finite 
time. It  is of interest, therefore, to develop a unified theory of the 
finite-amplitude dynamics of fluid-filled tubes. The principal purpose 
of this paper is to develop a Hamiltonian description of the dynamics 
of tethered hyperelastic fluid-filled tubes and to exploit the Hamilto- 
nian formalism to discuss aspects of the dynamical characteristics of 
steadily-travelling solutions. 

The plan of this paper is as follows. In Section 2 the basic model 
and boundary conditions are introduced. In Section 3 the Hamiltonian 
structure is introduced and the Casimir and impulse invariants are 
found. 

In Section 4 the governing equations describing fully nonlinear pcri- 
odic and solitary steadily-travelling solutioils are derived. It is shown 
that in the infinitesimally small amplitude iilnit, this cquation yields 
that known dispersion relation for linear dispersive pressure pulses in 
tethered hyperelastic fluid-filled tubes. It is idso shown that under an 
appropriate low wavenumber weakly nonlinear scaling, this equation 
yields small-but-finite amplitude soliton ant1 pmiodic cnoidal wavc so- 
lutions. In addition, in Section 4, we derive ;I v;triatio~lal principle for 
the fully nonlinear steadily-travelling solutions in terms of a suitably 
constrained Hamiltonian. 

In Section 5 conditions are determined for the positive definiteness 
of the second variation of the constrained Hamiltonian evaluated at  
the steadily-travelling solution. This result is exploited to establish 
the linear stability in the sense of Liapunov of the steadily-travelling 
solution. Based on the linear stability analysis, appropriate convexity 
hypotheses are introduced on the constrained Hamiltonian which can, 
in principle, establish the nonlinear stability of the steadily-travelling 
solutions in the sense of Liapunov. 


































































