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Modons correspond to isolated dipole vortex solutions of the quasigeostrophic equations. They 
have been proposed as prototype models for some geophysical (and plasma) vortices. The 
classical modon solution on a fi plane does not permit a Rossby wave field in the exterior or 
far-field region of the modon. However, it is qualitatively known that the gravest mode 
associated with a normal mode decomposition of a stationary modon in a continuously stratified 
fluid of finite depth necessarily contains a Rossby wave tail in the downstream region if the 
background flow is eastward. The same effect can be formally recreated in an 
equivalent-barotropic model of a stationary modon embedded in a constant eastward zonal flow. 
An analytical solution to this problem satisfying the correct upstream radiation condition is 
presented and its dynamical characteristics are discussed. 

I. INTRODUCTION 

Butchart et al. ’ (also see Haines and Marshal12), have 
qualitatively proved that the exterior-region horizontal 
streamfunction field associated with the gravest mode in a 
vertical mode decomposition of a stationary baroclinic mo- 
don embedded in an eastward flow of a continuously strat- 
ified fluid of finite depth necessarily contains Rossby waves. 
In fact, the Butchart et al.’ result is rather general and 
applies other eddy solutions besides modons. The key dy- 
namical assumptions are that the quasigeostrophic eddy is 
stationary and embedded in an eastward zonal flow that is 
not meridionally sheared on a fi plane, and that the geo- 
strophic pressure associated with the eddy decays to zero 
at infinity in both the upstream and downstream regions. 
The Butchart et al. ’ result has important implications in 
attempting to model large-scale anomalous atmospheric 
circulation patterns such as atmospheric blocking.2-5 The 
principal purpose of this paper is to present an explicit 
solution for a stationary modon in the equivalent- 
barotropic context, which Contains a downstream Rossby 
wave tail and that satisfies the correct upstream radiation 
condition. 

The equations of motion governing the horizontal 
structure of the streamfunction for the gravest mode asso- 
ciated with the normal mode decomposition introduced by 
Butchart et al. ’ are formally the same as those obtained 
from the equivalent-barotropic potential vorticity equa- 
tion. In classical steadily traveling modon theory,6’7 the 
exterior Rossby wave field is eliminated by demanding that 
the propagation velocity of the modon not be an allowed 
Rossby wave phase velocity. In the context of a stationary 
isolated equivalent modon in an ambient zonal flow, the 
exterior Rossby wave field is eliminated if the ambient 
zonal flow is westward. If the ambient or background zonal 
flow is eastward, it necessarily follows that the exterior 
streamfunction field contains Rossby waves. The reason 
that these two physical situations are not isomorphic is 
because the equivalent-barotropic equation is not invariant 
under Galilean transformations. By an isolated solution we 
mean, following Flier1 et aZ.,’ a solution that contains re- 

gions with closed streamlines in the stationary context, or 
closed streaklines in the steadily traveling context, and for 
which the eddy component of the total streamfunction de- 
cays to zero at infinity. In such a configuration, the fluid 
associated with the eddy interior or closed streamline re- 
gion is isolated from the surrounding exterior or open 
streamline fluid, in the sense that there is no exchange of 
fluid between the two regions. 

The subtlety associated with determining a solution for 
a modon with a Rossby wave tail resides in constructing 
the external Rossby wave field in such a manner so as to 
satisfy the appropriate radiation condition upstream of the 
modon and the matching conditions on the modon bound- 
ary. The solution presented here will satisfy the correct 
upstream radiation condition. The pressure is continilous 
at the modon boundary. However, unlike the classical mo- 
don solution having no exterior wave tail, the azimuthal 
velocity of the wave-like solution presented here will not be 
continuous at the modon boundary. Consequently, the mo- 
don boundary in our solution will correspond to a vortex 
sheet with a zero potential vorticity jump. 

Because of the mathematical similarity between the 
solution for a steadily traveling equivalent modon written 
with respect to the comoving reference frame, and a sta- 
tionary modon embedded in a constant zonal flow, the 
solution presented here also solves the problem of deter- 
mining the structure of a steadily traveling radiating equiv- 
alent modon when the translation velocity is an allowed 
Rossby wave phase velocity. The solution presented here 
will also be presumably useful in modon perturbation and 
modulation theory in the situation where the modon is 
undergoing nonadiabatic adjustment and a field of external 
Rossby waves will be an intrinsic aspect of the time- 
dependent behavior. Examples of this kind of perturbation 
might include north-south oscillations observed in 
eastward-traveling modons if the initial propagation direc- 
tion is tilted slightly away from an exact east-west 
configuration,’ or the problem of determining the topo- 
graphic steering of a modon” over slowly varying topog- 
raphy. 

118 Phys. Fluids 6 (I), January 1994 1070-6631/94/6(1)/l 16/6/$6.00 cc) 1994 American Institute of Physics 



II. PROBLEM FORMULATION AND SOLUTION The solution to (7b) subject to (5) is given by 

The nondimensional equivalent-barotropic potential cp= F(a/k2)Jl(kr)/Jl(ka) +k-‘( Uk2-- l)r]sin(@ , 
vorticity equation can be written in the forms (9) 

(A-l>1Ct,+JI,+J(~,A~>=O, (1) 

where Ard2/dx”+a2/dy2 and J(A,B) =A,BY-- BAY with 
(x,y) the eastward and northward coordinates, respec- 
tively, and t is the time. Subscripts with respect to (x,y,t) 
indicate the appropriate partial derivatives. The two- 
dimensional velocity field v= (UJ) is related to the geo- 
strophic pressure $(x,y,t) via v=&XV+ ( -tcI,,$X). 

We seek a steady solution to ( 1) in the form 

for r <a. The solution to (7a) subject to (5) and (8) can 
be constructed in the form” 

q= 2 an 
[ Y,(r/U”2)sin(n0) +h,(r,0)] 

Yn(dU1’2) 
2 (104 

tl=l 

where 

M r9W= f+ A,,,Jm sin(&). 
m=l 

(lob) 

e= - uY+qdx,Y), (2) 

where q(x,y) will be referred to as the eddy streamfuno 
tion and the - Uy term corresponds to a constant eastward 
zonal flow if U> 0 (which is what we assume). Substitu- 
tion of (2) into ( 1) leads to 

J(q- Vv,Arp+y) =O, 
which can immediately be integrated to imply 

(3) 

There are no cosine terms in the expansion for Q) given by 
( 10) because of the boundary condition (5). This will 
mean that the Rossby wave field will be antisymmetric 
about y= 0, as is the interior solution (9). This is precisely 
the symmetry observed in Haines and Marshall’s’ numer- 
ical simulations of modons with a downstream Rossby 
wave tail on a /3 plane. 

q-- Uy=F(Atp+y), (4) 

where y(a) determines the relationship between the vor- 
ticity and streamfunction fields. 

Following classical modon theory, we define the exte- 
rior region to be the region containing all those streamlines 
that extend to infinity [given by r= (x’+~~)~‘~>a], the 
interior region to be the region containing all those stream- 
lines that do not extend to infinity (given by r < a), and the 
modon boundary will be given by r=a. The modon bound- 
ary must correspond to a streamline and we may, without 
loss of generality, demand 

Recalling that even (odd) J,(e) functions have the 
same asymptotic form as the odd (even) Y,(*) as r+ 00 
(see Abramowitz and Stegun14), the no-upstream waves 
condition (8) will imply that the coefficients ICJ,, must 
satisfy the constraints 

sin(2n0)= 2 (-l)“+n+1~2n,zm+l~in[(2m+1)8], 
m=O 

(lla) 

sin[(2n+1)8]= Ij$ (-l)m++~2~+1,2msin(2m~), 
m=O 

(lib) 

cp=Uy, on r=a. (5) 

It is possible to interpret (5) as a necessary condition for 
the continuity of the potential vorticity at r=a. 

It follows from (4) and the fact that 9-0 as r--t CO, 
that 

for n=O 1 2 2 f 1.e.1 in the sector rr/2 < 0 < 3~/2. Since the sets 
{sin[(2n+ l)@J},“,, and [sin(2n0>]& both form a com- 
plete set of antisymmetric basis functions in the interval 
7r/2 < 0 < 3rr/2, it follows from ( 1 la) and ( 1 lb) that 

T-(*)=-U*, for r>a, 

and we introduce the ansatz6 

(64 

.F(*)=-k--h, for r<a, (6b) 

where k is called the modon wave number. Substitution of 
(6) into (4) yields, respectively, 

Aq+U-‘q=O, for r>a, (74 

Ap+k2p=(U#--l)y, for r<a. (7b) 

It follows from (7a) that if U < 0, there is no Rossby wave 
field in r> a. If U> 0, it follows that necessarily a Rossby 
wave field exists in r > a. This latter situation is the case we 
are interested in here. The solution to (7) must be obtained 
subject to (5) and the “no upstream waves” condition’ l-l3 

lim r”2p(r,f3) =0, V@E (?r/2,3~/2), (8) 
r-m 

’ I 
(4/r)n(m2-n2)-‘, (n even, m  odd), 

p,,= (4/z-)m(m2-n2)-‘, (n odd, m  even), 
0, (n-m even). 

It remains to determine the a, coefficients. We rewrite 
(lOa) in the form 

q= f E a,r,,(r) sin(mO), 
i?l=l i n=l ) 

(124 

where 

r (r) = [&,,Y,Ar/u”2) +L%,,JmW~1’2) 1 ~~.__ nm Y,(aKJ’T , 
(12b) 

where 6,, is the Kronecker delta function between n and 
m. If we apply the boundary condition (5), it follows that 

m  

C anrH,m(a) = Ua6,,l, 
n=l 

(13) 

where tan(B) =y/x since we assume U> 0. 
with m= 1,2,3 ,... . The coefficients in the exterior solution 
are thus completely determined. As it turns out, relatively 
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few (Y, values need to be computed to be able to give very 
accurate results. If we recall the fact that 
Yn(a/U”2) + - co and J,,(a/U1’2)-0 as n+ co 
(Abramowitz and Stegun14), then T,,(a) -S,,, for suffi- 
ciently large n or m. This property will imply relatively few 
terms of the matrix [l?,,] are needed for very accurate 
results. In practice, we found for n,m 2 12 this property 
held. As a result, when it came to solving for the a,, coef- 
ficients from ( 13), very good results were obtained by ap- 
proximating the infinite system with the leading 20X 20 
finite system of equations. (For all cases examined we 
found la,] < IO-’ for n> 15.) In particular, for U=cz= 1 
we found cr,~O.97, az-0.12, cz,z7.3x 10-4, 
a4= 1.04~ lo-‘, a,-2.23 X 10m6, and so on. 

In classical modon theory, the modon wave number is 
determined by demanding that the radial derivative of the 
total streamfunction is continuous at the modon 
boundary.6 In the solution presented here, it will not be 
possible to choose the modon wave number k, so that $I,. is 
continuous at r=a because there are an infinity of trigo- 
nometric terms [sin(nB)I in the exterior region, and 
only a single sin( 0) term in the interior region. There are, 
consequently, two choices one can make; either determine 
k by making an additional closure assumption, or do noth- 
ing and leave the modon wave number as a free parameter 
in the solution. We have chosen to do the former by de- 
termining the modon wave number by demanding that the 
sin( 0) component of r+!~~ be continuous at r=a. It is impor- 
tant to emphasize that this choice is arbitrary. Because the 
solution as constructed satisfies r/1=0 on r=a, where $ is 
the total streamfunction (2), it follows that the continuity 
of rJ ensures that the physical matching conditions of con- 
tinuity of leading-order geostrophic pressure and normal 
mass flux required in inviscid fluid dynamics hold at the 
wave-like modon boundary. The continuity of the azi- 
muthal velocity at the modon boundary, here determined 
by $,(a,@, is not a required condition in inviscid fluid 
dynamics. The implications of this will be more fully dis- 
cussed in the next section. 

Formally, our matching condition on the eddy stream- 
function can be expressed as 

s 

277 
lim sin( 0)q,(r,0)& 

r-a- 0 

2i7 
LIZ lim 

s 
sin(f9)p,,(r,~>&. (14) 

r-d 0 

If (9) and ( 12a) are substituted into ( 14), it follows that 
the modon wave number k will be a nonzero solution of 

4W) k 
J,o=aU’” 

xfa, * [6, &(dw +&,p&m”2) 1 
II=1 y,b/U1’2) 

(15) 
It is straightforward to numerically verify that there will 
exist a countable infinity of solutions k=k(a,U) to (15) 

with k=O the smallest non-negative solution. The ground- 
state wave-like modon will correspond to the first nonzero 
k that solves (15). For example, if a= tJ= 1 we find that 
the ground-state wave number is given by k-3.69. 

If there is no wave field in the exterior region, then 
( 15) reduces exactly to the barotropic limit of the Larichev 
and Reznik6 classical modon dispersion relationship. This 
can be easily seen as follows. A stationary modon with no 
wave tail, in the present context, implies that we must 
choose U ~0. However, in this situation, the exterior re- 
gion solution will be written in terms of exponentially de- 
caying modified Bessel functions, which trivially satisfy the 
no-waves constraint (8). Consequently, there is no h,(r,8) 
term in (10a) and the Y,(r/U’“) terms are replaced by 
K,( r/U1’2) terms. The boundary condition (5) implies 
that only K, ( r/U1’2) contributes to the solution. Substitu- 
tion of the resulting solution into ( 14), realizing the inte- 
gration becomes superfluous, yields the classical barotropic 
modon dispersion relationship. 

The solution just presented is similar in some respects 
to the stationary modon solution on a rotating sphere pre- 
sented by Verkley. I5 There are, however, important differ- 
ences. On the sphere, in contrast to the infinite fi plane, it 
is not necessary to satisfy an upstream radiation condition 
(for the stationary solution), since presumably energy as- 
sociated with those spectral components of the down- 
stream Rossby wave tail that propagate (or are advected) 
eastward would eventually travel entirely around the 
sphere, and thus would also appear in the upstream region. 
There is, therefore, no physical requirement to eliminate 
the upstream Rossby waves associated with the spherical 
modon solution presented by Verkley. However, as a re- 
sult, the p-plane approximations to the spherical solutions 
presented in Appendix A of Verkely” will not satisfy the 
correct upstream radiation condition (8) and therefore are 
not physically admissible solutions on the fi plane. 

III. DYNAMICAL CHARACTERISTICS 

The solution obtained in Sec. II possesses the property 
that the leading-order geostrophic pressure and normal 
mass flux is continuous at the modon boundary r=a. This 
is illustrated in Fig. 1, where we show a cross section for 
- 2~~$<2 on x=0 of the total streamfunction r/j= - Uy 
+q(x,y) for a= U= 1.0 and k-3.69. The modon bound- 
ary is located at y= -- 1 and + 1, respectively. We remark 
that tC, is continuous but not differentiable at r=a, reflect- 
ing the fact that $r is not continuous at r=a (however, &, 
is continuous at r=a). The apparent near smoothness at 
the modon boundary in the total streamfunction seen in 
Fig. 1 is a simple numerical consequence of the fact that 
the radial derivatives associated with the higher harmonics 
make a relatively small contribution to the overall solution 
in comparison the sin(e) mode near the modon boundary 
for these parameter values. 

The continuity of II, and $0 at r=a has an interesting 
consequence for the regularity of the total potential vortic- 
ity PVA$-$+y at r=a. Clearly, since $, is not contin- 
uous at r=a, it follows that the PV will not be continuous 
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FIG. 1. A y cross section of the total streamfunction field v)= - Uy+g, 
on x=0 for -2<y<2. The parameter values are a= U= 1.0 and kx3.69. 
The modon boundary is located at y= - 1 and + 1, respectively. 

at r=a. However, the limit of the PV as r-+a does exist. It 
follows from (6) that 

lim (Aq-$+y)= lim -(l+U-‘)$=O, (16a) 
r-a+ r--a+ 

lim (A+-@+y) = lim - (1 +k2)$=0, (16b) 
r+a- r-a- 

since $ is continuous at r=u and $(a#) =0 on account of 
(5). Thus, the required limit exists. Because the limit ex- 
ists, it follows that the jump in the potential vorticity 
across the modon boundary, defined by 

[PV]as lim PV- lim PV, 
r-a+- r-n- 

is identically zero, that is [PpvI,=O. The modon boundary, 
therefore, corresponds to a vortex sheet with a zero poten- 
tial vorticity jump. Figure 2 illustrates the potential vor- 
ticity field for -2<y<2 on x=0 (for the same parameter 
values as that used in Fig. 1). The modon boundary cor- 
responds to the two cusps located at y= - 1 and + 1, re- 
spectively. 

The solution for $ as constructed above is therefore a 
proper solution of the potential vorticity equation. It is a 
classical solution everywhere except on the set of measure 
zero given by r=a. Note that as r-+u, our solution satisfies 
(3), since 

lim J($vW+Y) 
r-(I 

=a-‘Elim pUA$+y)e--lim +MA$+Y>~I r-0 r-a 
=o, (17) 

since limr+at,-I$,,(A$ f y),l < CO and lim,,, r& 
=lim,,,(A~+y)~=O. 

In Figs. 3(a) and 3 (b) we present “close-up” and 
“large-scale” contour plots of the total potential vorticity 
field A$-++y for -2~~992 and - lO<x,y< 10, respec- 
tively. The modon boundary corresponds to the closed cir- 
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FIG. 2. A y cross section of the potential vorticity field PV=A$-$+y 
on x=0 for -2<y<2. The parameter values are as in Fig. 1. The modon 
boundary, which is a vortex sheet in the solution presented here, corre- 
sponds to the two open circles located at y= - 1 and + 1, respectively. 

cular contour (with value 0). The zero value on the con- 
tour associated with the modon boundary represents the 
(interior and exterior) limits of the potential vorticity at 
the modon radius r=a. The potential vorticity at r=a does 
not formally exist, since the modon boundary corresponds 
to a vortex sheet. 

The Rossby wave tail, which is not very pronounced in 
Fig. 3 (a), is clearly seen in Fig. 3 (b) . Note how the wave 
tail is confined to the downstream region, in accordance 
with the radiation condition (8). Also, as pointed out ear- 
lier, note that the potential vorticity field is an odd function 
with respect to y. This is the pattern observed in the nu- 
merical experiments reported by Haines and Marshall.’ 

In Figs. 4(a) and 4(b) we present “close-up” and 
large-scale contour plots of the total streamfunction field, 
$(x,y> = - Uy+p(x,y) for -2gx,y<2 and - lO<x,yglO, 
respectively. Here, again, the modon boundary corre- 
sponds to the closed circular (with value 0). The values for 
a and U for both Figs. 3 and 4 are, as in Figs. 1 and 2, 
given by a= U= 1 and k-3.96. The ambient mean flow 
moves from left to right and the modon is stationary. 

IV. DISCUSSION 

We have presented a solution for a stationary equiva- 
lent modon on a fi plane that is embedded in an eastward 
flow, which satisfies the correct upstream radiation condi- 
tion. The solution has continuous geostrophic pressure and 
normal mass flux across the modon boundary. It is not 
possible to select the modon wave number, as in classical 
modon theory, to ensure that the azimuthal velocity field is 
continuous at the modon boundary. We have chosen to 
assign the modon wave number by demanding that the 
component of the azimuthal velocity field associated with 
the sin(e) mode is continuous at r=a. In the absence of an 
exterior wave field this matching condition reduces to the 
classical barotropic modon dispersion relationship. The so- 
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FIG. 3. (a) A “close-up” contour plot of the potential vorticity field for 
-2<xg(2 with the same parameter values as in Fig. 1. The solid and 
dashed contours correspond to non-negative and negative isolines of po- 
tential vorticity, respectively. The contour increment is about * 1.0. The 
modon boundary corresponds to the circular zero-value contour. The 
reader is reminded that the zero value on the circular contour associated 
with the modon boundary corresponds to the limiting contour value and 
does not represent the actual value of the potential vorticity on the modon 
boundary, which does not exist since the modon boundary is a vortex 
sheet. The maximum and minimum values of potential vorticity within 
the modon interior are about + 10.5 and - 10.5, respectively. (b) A 
“large-scale” contour plot of the potential vorticity field for - lO<xg< 10 
with the same parameter values as in Fig. 1. The solid and dashed con- 
tours are as in (a). The contour increment is about h2.0. 

lution obtained is very similar to those observed in numer- 
ical simulations of radiating modons on a /3 plane. 

The fact that we cannot choose the modon wave num- 
ber is such a way as to ensure that the azimuthal velocity 
field is continuous at the modon boundary implies that the 
modon boundary in our solution is a vortex sheet. The 
implications of this property on the stability of the present 
solution needs to be further examined in order to better 
determine the physical importance of this solution as a 
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FIG. 4. (a) A “close-up” contour plot of the total streamfunction field 
for -2(x9<2 with the same parameter values as in Fig. 1. The solid and 
dashed lines correspond to non-negative and negative streamline values, 
respectively. The contour increment is about *0.3. The modon boundary 
corresponds to the circular zero-value contour. The relative maximum 
and minimum values of the streamfunction within the modon interior are 
about +0.72 and -0.72, respectively. (b) A “large-scale” contour plot of 
the total streamfunction field for - lO<xy<lO with the same parameter 
values as in Fig. 1. The solid and dashed contours are as in Fig. 4(a). The 
contour increment is about =t 1.0. 

model for a stationary dipole with a Rossby wave tail on a 
fl plane. Preliminary numerical time integrations of ( 1) 
using the stationary solution presented here as an initial 
condition suggests that the qualitative features of the solu- 
tion remain coherent for several eddy circulation time 
scales. However, it needs to be emphasized again that these 
observations are preliminary and further study is required. 

Another issue we have not examined here is the effect 
of the wave drag associated with the wave tail. Because 
there will be a nonzero downstream momentum flux asso- 
ciated with the wave tail, there must be an energy source 
for the waves. Consequently, there will be a decay in the 
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strength of the dipole over time. The stationary ansatz 
introduced here will make sense only if the decay time 
scale is long in comparison with the eddy circulation time 
scale. A detailed calculation of this decay is required to 
verify that our ansatz has physical merit. 
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